first commit
[blok] / Box2D / Source / Dynamics / Joints / b2PulleyJoint.cpp
diff --git a/Box2D/Source/Dynamics/Joints/b2PulleyJoint.cpp b/Box2D/Source/Dynamics/Joints/b2PulleyJoint.cpp
new file mode 100644 (file)
index 0000000..4366af9
--- /dev/null
@@ -0,0 +1,430 @@
+/*
+* Copyright (c) 2007 Erin Catto http://www.gphysics.com
+*
+* This software is provided 'as-is', without any express or implied
+* warranty.  In no event will the authors be held liable for any damages
+* arising from the use of this software.
+* Permission is granted to anyone to use this software for any purpose,
+* including commercial applications, and to alter it and redistribute it
+* freely, subject to the following restrictions:
+* 1. The origin of this software must not be misrepresented; you must not
+* claim that you wrote the original software. If you use this software
+* in a product, an acknowledgment in the product documentation would be
+* appreciated but is not required.
+* 2. Altered source versions must be plainly marked as such, and must not be
+* misrepresented as being the original software.
+* 3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "b2PulleyJoint.h"
+#include "../b2Body.h"
+#include "../b2World.h"
+
+// Pulley:
+// length1 = norm(p1 - s1)
+// length2 = norm(p2 - s2)
+// C0 = (length1 + ratio * length2)_initial
+// C = C0 - (length1 + ratio * length2) >= 0
+// u1 = (p1 - s1) / norm(p1 - s1)
+// u2 = (p2 - s2) / norm(p2 - s2)
+// Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2))
+// J = -[u1 cross(r1, u1) ratio * u2  ratio * cross(r2, u2)]
+// K = J * invM * JT
+//   = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2)
+//
+// Limit:
+// C = maxLength - length
+// u = (p - s) / norm(p - s)
+// Cdot = -dot(u, v + cross(w, r))
+// K = invMass + invI * cross(r, u)^2
+// 0 <= impulse
+
+void b2PulleyJointDef::Initialize(b2Body* b1, b2Body* b2,
+                               const b2Vec2& ga1, const b2Vec2& ga2,
+                               const b2Vec2& anchor1, const b2Vec2& anchor2,
+                               float32 r)
+{
+       body1 = b1;
+       body2 = b2;
+       groundAnchor1 = ga1;
+       groundAnchor2 = ga2;
+       localAnchor1 = body1->GetLocalPoint(anchor1);
+       localAnchor2 = body2->GetLocalPoint(anchor2);
+       b2Vec2 d1 = anchor1 - ga1;
+       length1 = d1.Length();
+       b2Vec2 d2 = anchor2 - ga2;
+       length2 = d2.Length();
+       ratio = r;
+       b2Assert(ratio > B2_FLT_EPSILON);
+       float32 C = length1 + ratio * length2;
+       maxLength1 = C - ratio * b2_minPulleyLength;
+       maxLength2 = (C - b2_minPulleyLength) / ratio;
+}
+
+b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def)
+: b2Joint(def)
+{
+       m_ground = m_body1->GetWorld()->GetGroundBody();
+       m_groundAnchor1 = def->groundAnchor1 - m_ground->GetXForm().position;
+       m_groundAnchor2 = def->groundAnchor2 - m_ground->GetXForm().position;
+       m_localAnchor1 = def->localAnchor1;
+       m_localAnchor2 = def->localAnchor2;
+
+       b2Assert(def->ratio != 0.0f);
+       m_ratio = def->ratio;
+
+       m_constant = def->length1 + m_ratio * def->length2;
+
+       m_maxLength1 = b2Min(def->maxLength1, m_constant - m_ratio * b2_minPulleyLength);
+       m_maxLength2 = b2Min(def->maxLength2, (m_constant - b2_minPulleyLength) / m_ratio);
+
+       m_force = 0.0f;
+       m_limitForce1 = 0.0f;
+       m_limitForce2 = 0.0f;
+}
+
+void b2PulleyJoint::InitVelocityConstraints(const b2TimeStep& step)
+{
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+       b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+
+       b2Vec2 p1 = b1->m_sweep.c + r1;
+       b2Vec2 p2 = b2->m_sweep.c + r2;
+
+       b2Vec2 s1 = m_ground->GetXForm().position + m_groundAnchor1;
+       b2Vec2 s2 = m_ground->GetXForm().position + m_groundAnchor2;
+
+       // Get the pulley axes.
+       m_u1 = p1 - s1;
+       m_u2 = p2 - s2;
+
+       float32 length1 = m_u1.Length();
+       float32 length2 = m_u2.Length();
+
+       if (length1 > b2_linearSlop)
+       {
+               m_u1 *= 1.0f / length1;
+       }
+       else
+       {
+               m_u1.SetZero();
+       }
+
+       if (length2 > b2_linearSlop)
+       {
+               m_u2 *= 1.0f / length2;
+       }
+       else
+       {
+               m_u2.SetZero();
+       }
+
+       float32 C = m_constant - length1 - m_ratio * length2;
+       if (C > 0.0f)
+       {
+               m_state = e_inactiveLimit;
+               m_force = 0.0f;
+       }
+       else
+       {
+               m_state = e_atUpperLimit;
+               m_positionImpulse = 0.0f;
+       }
+
+       if (length1 < m_maxLength1)
+       {
+               m_limitState1 = e_inactiveLimit;
+               m_limitForce1 = 0.0f;
+       }
+       else
+       {
+               m_limitState1 = e_atUpperLimit;
+               m_limitPositionImpulse1 = 0.0f;
+       }
+
+       if (length2 < m_maxLength2)
+       {
+               m_limitState2 = e_inactiveLimit;
+               m_limitForce2 = 0.0f;
+       }
+       else
+       {
+               m_limitState2 = e_atUpperLimit;
+               m_limitPositionImpulse2 = 0.0f;
+       }
+
+       // Compute effective mass.
+       float32 cr1u1 = b2Cross(r1, m_u1);
+       float32 cr2u2 = b2Cross(r2, m_u2);
+
+       m_limitMass1 = b1->m_invMass + b1->m_invI * cr1u1 * cr1u1;
+       m_limitMass2 = b2->m_invMass + b2->m_invI * cr2u2 * cr2u2;
+       m_pulleyMass = m_limitMass1 + m_ratio * m_ratio * m_limitMass2;
+       b2Assert(m_limitMass1 > B2_FLT_EPSILON);
+       b2Assert(m_limitMass2 > B2_FLT_EPSILON);
+       b2Assert(m_pulleyMass > B2_FLT_EPSILON);
+       m_limitMass1 = 1.0f / m_limitMass1;
+       m_limitMass2 = 1.0f / m_limitMass2;
+       m_pulleyMass = 1.0f / m_pulleyMass;
+
+       if (step.warmStarting)
+       {
+               // Warm starting.
+               b2Vec2 P1 = B2FORCE_SCALE(step.dt) * (-m_force - m_limitForce1) * m_u1;
+               b2Vec2 P2 = B2FORCE_SCALE(step.dt) * (-m_ratio * m_force - m_limitForce2) * m_u2;
+               b1->m_linearVelocity += b1->m_invMass * P1;
+               b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
+               b2->m_linearVelocity += b2->m_invMass * P2;
+               b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
+       }
+       else
+       {
+               m_force = 0.0f;
+               m_limitForce1 = 0.0f;
+               m_limitForce2 = 0.0f;
+       }
+}
+
+void b2PulleyJoint::SolveVelocityConstraints(const b2TimeStep& step)
+{
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+       b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+
+       if (m_state == e_atUpperLimit)
+       {
+               b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
+               b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
+
+               float32 Cdot = -b2Dot(m_u1, v1) - m_ratio * b2Dot(m_u2, v2);
+               float32 force = -B2FORCE_INV_SCALE(step.inv_dt) * m_pulleyMass * Cdot;
+               float32 oldForce = m_force;
+               m_force = b2Max(0.0f, m_force + force);
+               force = m_force - oldForce;
+
+               b2Vec2 P1 = -B2FORCE_SCALE(step.dt) * force * m_u1;
+               b2Vec2 P2 = -B2FORCE_SCALE(step.dt) * m_ratio * force * m_u2;
+               b1->m_linearVelocity += b1->m_invMass * P1;
+               b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
+               b2->m_linearVelocity += b2->m_invMass * P2;
+               b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
+       }
+
+       if (m_limitState1 == e_atUpperLimit)
+       {
+               b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
+
+               float32 Cdot = -b2Dot(m_u1, v1);
+               float32 force = -B2FORCE_INV_SCALE(step.inv_dt) * m_limitMass1 * Cdot;
+               float32 oldForce = m_limitForce1;
+               m_limitForce1 = b2Max(0.0f, m_limitForce1 + force);
+               force = m_limitForce1 - oldForce;
+
+               b2Vec2 P1 = -B2FORCE_SCALE(step.dt) * force * m_u1;
+               b1->m_linearVelocity += b1->m_invMass * P1;
+               b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
+       }
+
+       if (m_limitState2 == e_atUpperLimit)
+       {
+               b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
+
+               float32 Cdot = -b2Dot(m_u2, v2);
+               float32 force = -B2FORCE_INV_SCALE(step.inv_dt) * m_limitMass2 * Cdot;
+               float32 oldForce = m_limitForce2;
+               m_limitForce2 = b2Max(0.0f, m_limitForce2 + force);
+               force = m_limitForce2 - oldForce;
+
+               b2Vec2 P2 = -B2FORCE_SCALE(step.dt) * force * m_u2;
+               b2->m_linearVelocity += b2->m_invMass * P2;
+               b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
+       }
+}
+
+bool b2PulleyJoint::SolvePositionConstraints()
+{
+       b2Body* b1 = m_body1;
+       b2Body* b2 = m_body2;
+
+       b2Vec2 s1 = m_ground->GetXForm().position + m_groundAnchor1;
+       b2Vec2 s2 = m_ground->GetXForm().position + m_groundAnchor2;
+
+       float32 linearError = 0.0f;
+
+       if (m_state == e_atUpperLimit)
+       {
+               b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+               b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+
+               b2Vec2 p1 = b1->m_sweep.c + r1;
+               b2Vec2 p2 = b2->m_sweep.c + r2;
+
+               // Get the pulley axes.
+               m_u1 = p1 - s1;
+               m_u2 = p2 - s2;
+
+               float32 length1 = m_u1.Length();
+               float32 length2 = m_u2.Length();
+
+               if (length1 > b2_linearSlop)
+               {
+                       m_u1 *= 1.0f / length1;
+               }
+               else
+               {
+                       m_u1.SetZero();
+               }
+
+               if (length2 > b2_linearSlop)
+               {
+                       m_u2 *= 1.0f / length2;
+               }
+               else
+               {
+                       m_u2.SetZero();
+               }
+
+               float32 C = m_constant - length1 - m_ratio * length2;
+               linearError = b2Max(linearError, -C);
+
+               C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
+               float32 impulse = -m_pulleyMass * C;
+               float32 oldImpulse = m_positionImpulse;
+               m_positionImpulse = b2Max(0.0f, m_positionImpulse + impulse);
+               impulse = m_positionImpulse - oldImpulse;
+
+               b2Vec2 P1 = -impulse * m_u1;
+               b2Vec2 P2 = -m_ratio * impulse * m_u2;
+
+               b1->m_sweep.c += b1->m_invMass * P1;
+               b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
+               b2->m_sweep.c += b2->m_invMass * P2;
+               b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
+
+               b1->SynchronizeTransform();
+               b2->SynchronizeTransform();
+       }
+
+       if (m_limitState1 == e_atUpperLimit)
+       {
+               b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
+               b2Vec2 p1 = b1->m_sweep.c + r1;
+
+               m_u1 = p1 - s1;
+               float32 length1 = m_u1.Length();
+
+               if (length1 > b2_linearSlop)
+               {
+                       m_u1 *= 1.0f / length1;
+               }
+               else
+               {
+                       m_u1.SetZero();
+               }
+
+               float32 C = m_maxLength1 - length1;
+               linearError = b2Max(linearError, -C);
+               C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
+               float32 impulse = -m_limitMass1 * C;
+               float32 oldLimitPositionImpulse = m_limitPositionImpulse1;
+               m_limitPositionImpulse1 = b2Max(0.0f, m_limitPositionImpulse1 + impulse);
+               impulse = m_limitPositionImpulse1 - oldLimitPositionImpulse;
+
+               b2Vec2 P1 = -impulse * m_u1;
+               b1->m_sweep.c += b1->m_invMass * P1;
+               b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
+
+               b1->SynchronizeTransform();
+       }
+
+       if (m_limitState2 == e_atUpperLimit)
+       {
+               b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
+               b2Vec2 p2 = b2->m_sweep.c + r2;
+
+               m_u2 = p2 - s2;
+               float32 length2 = m_u2.Length();
+
+               if (length2 > b2_linearSlop)
+               {
+                       m_u2 *= 1.0f / length2;
+               }
+               else
+               {
+                       m_u2.SetZero();
+               }
+
+               float32 C = m_maxLength2 - length2;
+               linearError = b2Max(linearError, -C);
+               C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
+               float32 impulse = -m_limitMass2 * C;
+               float32 oldLimitPositionImpulse = m_limitPositionImpulse2;
+               m_limitPositionImpulse2 = b2Max(0.0f, m_limitPositionImpulse2 + impulse);
+               impulse = m_limitPositionImpulse2 - oldLimitPositionImpulse;
+
+               b2Vec2 P2 = -impulse * m_u2;
+               b2->m_sweep.c += b2->m_invMass * P2;
+               b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
+
+               b2->SynchronizeTransform();
+       }
+
+       return linearError < b2_linearSlop;
+}
+
+b2Vec2 b2PulleyJoint::GetAnchor1() const
+{
+       return m_body1->GetWorldPoint(m_localAnchor1);
+}
+
+b2Vec2 b2PulleyJoint::GetAnchor2() const
+{
+       return m_body2->GetWorldPoint(m_localAnchor2);
+}
+
+b2Vec2 b2PulleyJoint::GetReactionForce() const
+{
+       b2Vec2 F = B2FORCE_SCALE(m_force) * m_u2;
+       return F;
+}
+
+float32 b2PulleyJoint::GetReactionTorque() const
+{
+       return 0.0f;
+}
+
+b2Vec2 b2PulleyJoint::GetGroundAnchor1() const
+{
+       return m_ground->GetXForm().position + m_groundAnchor1;
+}
+
+b2Vec2 b2PulleyJoint::GetGroundAnchor2() const
+{
+       return m_ground->GetXForm().position + m_groundAnchor2;
+}
+
+float32 b2PulleyJoint::GetLength1() const
+{
+       b2Vec2 p = m_body1->GetWorldPoint(m_localAnchor1);
+       b2Vec2 s = m_ground->GetXForm().position + m_groundAnchor1;
+       b2Vec2 d = p - s;
+       return d.Length();
+}
+
+float32 b2PulleyJoint::GetLength2() const
+{
+       b2Vec2 p = m_body2->GetWorldPoint(m_localAnchor2);
+       b2Vec2 s = m_ground->GetXForm().position + m_groundAnchor2;
+       b2Vec2 d = p - s;
+       return d.Length();
+}
+
+float32 b2PulleyJoint::GetRatio() const
+{
+       return m_ratio;
+}