Update to 2.0.0 tree from current Fremantle build
[opencv] / 3rdparty / libjpeg / jidctred.c
diff --git a/3rdparty/libjpeg/jidctred.c b/3rdparty/libjpeg/jidctred.c
new file mode 100644 (file)
index 0000000..421f3c7
--- /dev/null
@@ -0,0 +1,398 @@
+/*
+ * jidctred.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains inverse-DCT routines that produce reduced-size output:
+ * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
+ *
+ * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
+ * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
+ * with an 8-to-4 step that produces the four averages of two adjacent outputs
+ * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
+ * These steps were derived by computing the corresponding values at the end
+ * of the normal LL&M code, then simplifying as much as possible.
+ *
+ * 1x1 is trivial: just take the DC coefficient divided by 8.
+ *
+ * See jidctint.c for additional comments.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"              /* Private declarations for DCT subsystem */
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling is the same as in jidctint.c. */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  13
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  13
+#define PASS1_BITS  1          /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_211164243  ((INT32)  1730)       /* FIX(0.211164243) */
+#define FIX_0_509795579  ((INT32)  4176)       /* FIX(0.509795579) */
+#define FIX_0_601344887  ((INT32)  4926)       /* FIX(0.601344887) */
+#define FIX_0_720959822  ((INT32)  5906)       /* FIX(0.720959822) */
+#define FIX_0_765366865  ((INT32)  6270)       /* FIX(0.765366865) */
+#define FIX_0_850430095  ((INT32)  6967)       /* FIX(0.850430095) */
+#define FIX_0_899976223  ((INT32)  7373)       /* FIX(0.899976223) */
+#define FIX_1_061594337  ((INT32)  8697)       /* FIX(1.061594337) */
+#define FIX_1_272758580  ((INT32)  10426)      /* FIX(1.272758580) */
+#define FIX_1_451774981  ((INT32)  11893)      /* FIX(1.451774981) */
+#define FIX_1_847759065  ((INT32)  15137)      /* FIX(1.847759065) */
+#define FIX_2_172734803  ((INT32)  17799)      /* FIX(2.172734803) */
+#define FIX_2_562915447  ((INT32)  20995)      /* FIX(2.562915447) */
+#define FIX_3_624509785  ((INT32)  29692)      /* FIX(3.624509785) */
+#else
+#define FIX_0_211164243  FIX(0.211164243)
+#define FIX_0_509795579  FIX(0.509795579)
+#define FIX_0_601344887  FIX(0.601344887)
+#define FIX_0_720959822  FIX(0.720959822)
+#define FIX_0_765366865  FIX(0.765366865)
+#define FIX_0_850430095  FIX(0.850430095)
+#define FIX_0_899976223  FIX(0.899976223)
+#define FIX_1_061594337  FIX(1.061594337)
+#define FIX_1_272758580  FIX(1.272758580)
+#define FIX_1_451774981  FIX(1.451774981)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_2_172734803  FIX(2.172734803)
+#define FIX_2_562915447  FIX(2.562915447)
+#define FIX_3_624509785  FIX(3.624509785)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const)  ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result.  In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+              JCOEFPTR coef_block,
+              JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  INT32 tmp0, tmp2, tmp10, tmp12;
+  INT32 z1, z2, z3, z4;
+  JCOEFPTR inptr;
+  ISLOW_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE*4];    /* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+    /* Don't bother to process column 4, because second pass won't use it */
+    if (ctr == DCTSIZE-4)
+      continue;
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+       inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
+       inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero; we need not examine term 4 for 4x4 output */
+      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      
+      continue;
+    }
+    
+    /* Even part */
+    
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp0 <<= (CONST_BITS+1);
+    
+    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
+    
+    tmp10 = tmp0 + tmp2;
+    tmp12 = tmp0 - tmp2;
+    
+    /* Odd part */
+    
+    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    
+    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+        + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+        + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+        + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+    
+    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+        + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+        + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+        + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+    /* Final output stage */
+    
+    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
+  }
+  
+  /* Pass 2: process 4 rows from work array, store into output array. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < 4; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
+       wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+                                 & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      outptr[2] = dcval;
+      outptr[3] = dcval;
+      
+      wsptr += DCTSIZE;                /* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part */
+    
+    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
+    
+    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+        + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
+    
+    tmp10 = tmp0 + tmp2;
+    tmp12 = tmp0 - tmp2;
+    
+    /* Odd part */
+    
+    z1 = (INT32) wsptr[7];
+    z2 = (INT32) wsptr[5];
+    z3 = (INT32) wsptr[3];
+    z4 = (INT32) wsptr[1];
+    
+    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+        + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+        + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+        + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+    
+    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+        + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+        + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+        + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+    /* Final output stage */
+    
+    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
+                                         CONST_BITS+PASS1_BITS+3+1)
+                           & RANGE_MASK];
+    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
+                                         CONST_BITS+PASS1_BITS+3+1)
+                           & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
+                                         CONST_BITS+PASS1_BITS+3+1)
+                           & RANGE_MASK];
+    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
+                                         CONST_BITS+PASS1_BITS+3+1)
+                           & RANGE_MASK];
+    
+    wsptr += DCTSIZE;          /* advance pointer to next row */
+  }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+              JCOEFPTR coef_block,
+              JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  INT32 tmp0, tmp10, z1;
+  JCOEFPTR inptr;
+  ISLOW_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE*2];    /* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+    /* Don't bother to process columns 2,4,6 */
+    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
+      continue;
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
+       inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
+      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      
+      continue;
+    }
+    
+    /* Even part */
+    
+    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp10 = z1 << (CONST_BITS+2);
+    
+    /* Odd part */
+
+    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+    /* Final output stage */
+    
+    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
+    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
+  }
+  
+  /* Pass 2: process 2 rows from work array, store into output array. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < 2; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+                                 & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      
+      wsptr += DCTSIZE;                /* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part */
+    
+    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
+    
+    /* Odd part */
+
+    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+        + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+        + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+        + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+    /* Final output stage */
+    
+    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
+                                         CONST_BITS+PASS1_BITS+3+2)
+                           & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
+                                         CONST_BITS+PASS1_BITS+3+2)
+                           & RANGE_MASK];
+    
+    wsptr += DCTSIZE;          /* advance pointer to next row */
+  }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+              JCOEFPTR coef_block,
+              JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  int dcval;
+  ISLOW_MULT_TYPE * quantptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  SHIFT_TEMPS
+
+  /* We hardly need an inverse DCT routine for this: just take the
+   * average pixel value, which is one-eighth of the DC coefficient.
+   */
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+  dcval = (int) DESCALE((INT32) dcval, 3);
+
+  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */