Update to 2.0.0 tree from current Fremantle build
[opencv] / src / cv / cvhaar.cpp
diff --git a/src/cv/cvhaar.cpp b/src/cv/cvhaar.cpp
new file mode 100644 (file)
index 0000000..4ae0c07
--- /dev/null
@@ -0,0 +1,2414 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+/* Haar features calculation */
+
+#include "_cv.h"
+#include <stdio.h>
+
+#if CV_SSE2
+#   if CV_SSE4 || defined __SSE4__
+#       include <smmintrin.h>
+#   else
+#       define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
+#       define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
+#   endif
+#if defined CV_ICC
+#   define CV_HAAR_USE_SSE 1
+#endif
+#endif
+
+/* these settings affect the quality of detection: change with care */
+#define CV_ADJUST_FEATURES 1
+#define CV_ADJUST_WEIGHTS  0
+
+typedef int sumtype;
+typedef double sqsumtype;
+
+typedef struct CvHidHaarFeature
+{
+    struct
+    {
+        sumtype *p0, *p1, *p2, *p3;
+        float weight;
+    }
+    rect[CV_HAAR_FEATURE_MAX];
+}
+CvHidHaarFeature;
+
+
+typedef struct CvHidHaarTreeNode
+{
+    CvHidHaarFeature feature;
+    float threshold;
+    int left;
+    int right;
+}
+CvHidHaarTreeNode;
+
+
+typedef struct CvHidHaarClassifier
+{
+    int count;
+    //CvHaarFeature* orig_feature;
+    CvHidHaarTreeNode* node;
+    float* alpha;
+}
+CvHidHaarClassifier;
+
+
+typedef struct CvHidHaarStageClassifier
+{
+    int  count;
+    float threshold;
+    CvHidHaarClassifier* classifier;
+    int two_rects;
+
+    struct CvHidHaarStageClassifier* next;
+    struct CvHidHaarStageClassifier* child;
+    struct CvHidHaarStageClassifier* parent;
+}
+CvHidHaarStageClassifier;
+
+
+struct CvHidHaarClassifierCascade
+{
+    int  count;
+    int  is_stump_based;
+    int  has_tilted_features;
+    int  is_tree;
+    double inv_window_area;
+    CvMat sum, sqsum, tilted;
+    CvHidHaarStageClassifier* stage_classifier;
+    sqsumtype *pq0, *pq1, *pq2, *pq3;
+    sumtype *p0, *p1, *p2, *p3;
+
+    void** ipp_stages;
+};
+
+
+const int icv_object_win_border = 1;
+const float icv_stage_threshold_bias = 0.0001f;
+
+static CvHaarClassifierCascade*
+icvCreateHaarClassifierCascade( int stage_count )
+{
+    CvHaarClassifierCascade* cascade = 0;
+
+    CV_FUNCNAME( "icvCreateHaarClassifierCascade" );
+
+    __BEGIN__;
+
+    int block_size = sizeof(*cascade) + stage_count*sizeof(*cascade->stage_classifier);
+
+    if( stage_count <= 0 )
+        CV_ERROR( CV_StsOutOfRange, "Number of stages should be positive" );
+
+    CV_CALL( cascade = (CvHaarClassifierCascade*)cvAlloc( block_size ));
+    memset( cascade, 0, block_size );
+
+    cascade->stage_classifier = (CvHaarStageClassifier*)(cascade + 1);
+    cascade->flags = CV_HAAR_MAGIC_VAL;
+    cascade->count = stage_count;
+
+    __END__;
+
+    return cascade;
+}
+
+static void
+icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade )
+{
+    if( _cascade && *_cascade )
+    {
+#ifdef HAVE_IPP
+        CvHidHaarClassifierCascade* cascade = *_cascade;
+        if( cascade->ipp_stages )
+        {
+            int i;
+            for( i = 0; i < cascade->count; i++ )
+            {
+                if( cascade->ipp_stages[i] )
+                    ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)cascade->ipp_stages[i] );
+            }
+        }
+        cvFree( &cascade->ipp_stages );
+#endif
+        cvFree( _cascade );
+    }
+}
+
+/* create more efficient internal representation of haar classifier cascade */
+static CvHidHaarClassifierCascade*
+icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
+{
+    CvRect* ipp_features = 0;
+    float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;
+    int* ipp_counts = 0;
+
+    CvHidHaarClassifierCascade* out = 0;
+
+    CV_FUNCNAME( "icvCreateHidHaarClassifierCascade" );
+
+    __BEGIN__;
+
+    int i, j, k, l;
+    int datasize;
+    int total_classifiers = 0;
+    int total_nodes = 0;
+    char errorstr[100];
+    CvHidHaarClassifier* haar_classifier_ptr;
+    CvHidHaarTreeNode* haar_node_ptr;
+    CvSize orig_window_size;
+    int has_tilted_features = 0;
+    int max_count = 0;
+
+    if( !CV_IS_HAAR_CLASSIFIER(cascade) )
+        CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
+
+    if( cascade->hid_cascade )
+        CV_ERROR( CV_StsError, "hid_cascade has been already created" );
+
+    if( !cascade->stage_classifier )
+        CV_ERROR( CV_StsNullPtr, "" );
+
+    if( cascade->count <= 0 )
+        CV_ERROR( CV_StsOutOfRange, "Negative number of cascade stages" );
+
+    orig_window_size = cascade->orig_window_size;
+
+    /* check input structure correctness and calculate total memory size needed for
+       internal representation of the classifier cascade */
+    for( i = 0; i < cascade->count; i++ )
+    {
+        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
+
+        if( !stage_classifier->classifier ||
+            stage_classifier->count <= 0 )
+        {
+            sprintf( errorstr, "header of the stage classifier #%d is invalid "
+                     "(has null pointers or non-positive classfier count)", i );
+            CV_ERROR( CV_StsError, errorstr );
+        }
+
+        max_count = MAX( max_count, stage_classifier->count );
+        total_classifiers += stage_classifier->count;
+
+        for( j = 0; j < stage_classifier->count; j++ )
+        {
+            CvHaarClassifier* classifier = stage_classifier->classifier + j;
+
+            total_nodes += classifier->count;
+            for( l = 0; l < classifier->count; l++ )
+            {
+                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
+                {
+                    if( classifier->haar_feature[l].rect[k].r.width )
+                    {
+                        CvRect r = classifier->haar_feature[l].rect[k].r;
+                        int tilted = classifier->haar_feature[l].tilted;
+                        has_tilted_features |= tilted != 0;
+                        if( r.width < 0 || r.height < 0 || r.y < 0 ||
+                            r.x + r.width > orig_window_size.width
+                            ||
+                            (!tilted &&
+                            (r.x < 0 || r.y + r.height > orig_window_size.height))
+                            ||
+                            (tilted && (r.x - r.height < 0 ||
+                            r.y + r.width + r.height > orig_window_size.height)))
+                        {
+                            sprintf( errorstr, "rectangle #%d of the classifier #%d of "
+                                     "the stage classifier #%d is not inside "
+                                     "the reference (original) cascade window", k, j, i );
+                            CV_ERROR( CV_StsNullPtr, errorstr );
+                        }
+                    }
+                }
+            }
+        }
+    }
+
+    // this is an upper boundary for the whole hidden cascade size
+    datasize = sizeof(CvHidHaarClassifierCascade) +
+               sizeof(CvHidHaarStageClassifier)*cascade->count +
+               sizeof(CvHidHaarClassifier) * total_classifiers +
+               sizeof(CvHidHaarTreeNode) * total_nodes +
+               sizeof(void*)*(total_nodes + total_classifiers);
+
+    CV_CALL( out = (CvHidHaarClassifierCascade*)cvAlloc( datasize ));
+    memset( out, 0, sizeof(*out) );
+
+    /* init header */
+    out->count = cascade->count;
+    out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1);
+    haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count);
+    haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
+
+    out->is_stump_based = 1;
+    out->has_tilted_features = has_tilted_features;
+    out->is_tree = 0;
+
+    /* initialize internal representation */
+    for( i = 0; i < cascade->count; i++ )
+    {
+        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
+        CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
+
+        hid_stage_classifier->count = stage_classifier->count;
+        hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
+        hid_stage_classifier->classifier = haar_classifier_ptr;
+        hid_stage_classifier->two_rects = 1;
+        haar_classifier_ptr += stage_classifier->count;
+
+        hid_stage_classifier->parent = (stage_classifier->parent == -1)
+            ? NULL : out->stage_classifier + stage_classifier->parent;
+        hid_stage_classifier->next = (stage_classifier->next == -1)
+            ? NULL : out->stage_classifier + stage_classifier->next;
+        hid_stage_classifier->child = (stage_classifier->child == -1)
+            ? NULL : out->stage_classifier + stage_classifier->child;
+
+        out->is_tree |= hid_stage_classifier->next != NULL;
+
+        for( j = 0; j < stage_classifier->count; j++ )
+        {
+            CvHaarClassifier* classifier = stage_classifier->classifier + j;
+            CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
+            int node_count = classifier->count;
+            float* alpha_ptr = (float*)(haar_node_ptr + node_count);
+
+            hid_classifier->count = node_count;
+            hid_classifier->node = haar_node_ptr;
+            hid_classifier->alpha = alpha_ptr;
+
+            for( l = 0; l < node_count; l++ )
+            {
+                CvHidHaarTreeNode* node = hid_classifier->node + l;
+                CvHaarFeature* feature = classifier->haar_feature + l;
+                memset( node, -1, sizeof(*node) );
+                node->threshold = classifier->threshold[l];
+                node->left = classifier->left[l];
+                node->right = classifier->right[l];
+
+                if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
+                    feature->rect[2].r.width == 0 ||
+                    feature->rect[2].r.height == 0 )
+                    memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
+                else
+                    hid_stage_classifier->two_rects = 0;
+            }
+
+            memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
+            haar_node_ptr =
+                (CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
+
+            out->is_stump_based &= node_count == 1;
+        }
+    }
+
+#ifdef HAVE_IPP
+    {
+    int can_use_ipp = !out->has_tilted_features && !out->is_tree && out->is_stump_based;
+
+    if( can_use_ipp )
+    {
+        int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
+        float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
+            (orig_window_size.height-icv_object_win_border*2)));
+
+        CV_CALL( out->ipp_stages = (void**)cvAlloc( ipp_datasize ));
+        memset( out->ipp_stages, 0, ipp_datasize );
+
+        CV_CALL( ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ));
+        CV_CALL( ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ));
+        CV_CALL( ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ));
+        CV_CALL( ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ));
+        CV_CALL( ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ));
+        CV_CALL( ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ));
+
+        for( i = 0; i < cascade->count; i++ )
+        {
+            CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
+            for( j = 0, k = 0; j < stage_classifier->count; j++ )
+            {
+                CvHaarClassifier* classifier = stage_classifier->classifier + j;
+                int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
+
+                ipp_thresholds[j] = classifier->threshold[0];
+                ipp_val1[j] = classifier->alpha[0];
+                ipp_val2[j] = classifier->alpha[1];
+                ipp_counts[j] = rect_count;
+
+                for( l = 0; l < rect_count; l++, k++ )
+                {
+                    ipp_features[k] = classifier->haar_feature->rect[l].r;
+                    //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
+                    ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
+                }
+            }
+
+            if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i],
+                (const IppiRect*)ipp_features, ipp_weights, ipp_thresholds,
+                ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
+                break;
+        }
+
+        if( i < cascade->count )
+        {
+            for( j = 0; j < i; j++ )
+                if( out->ipp_stages[i] )
+                    ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] );
+            cvFree( &out->ipp_stages );
+        }
+    }
+    }
+#endif
+
+    cascade->hid_cascade = out;
+    assert( (char*)haar_node_ptr - (char*)out <= datasize );
+
+    __END__;
+
+    if( cvGetErrStatus() < 0 )
+        icvReleaseHidHaarClassifierCascade( &out );
+
+    cvFree( &ipp_features );
+    cvFree( &ipp_weights );
+    cvFree( &ipp_thresholds );
+    cvFree( &ipp_val1 );
+    cvFree( &ipp_val2 );
+    cvFree( &ipp_counts );
+
+    return out;
+}
+
+
+#define sum_elem_ptr(sum,row,col)  \
+    ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
+
+#define sqsum_elem_ptr(sqsum,row,col)  \
+    ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
+
+#define calc_sum(rect,offset) \
+    ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
+
+
+CV_IMPL void
+cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
+                                     const CvArr* _sum,
+                                     const CvArr* _sqsum,
+                                     const CvArr* _tilted_sum,
+                                     double scale )
+{
+    CV_FUNCNAME("cvSetImagesForHaarClassifierCascade");
+
+    __BEGIN__;
+
+    CvMat sum_stub, *sum = (CvMat*)_sum;
+    CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
+    CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
+    CvHidHaarClassifierCascade* cascade;
+    int coi0 = 0, coi1 = 0;
+    int i;
+    CvRect equ_rect;
+    double weight_scale;
+
+    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
+        CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
+
+    if( scale <= 0 )
+        CV_ERROR( CV_StsOutOfRange, "Scale must be positive" );
+
+    CV_CALL( sum = cvGetMat( sum, &sum_stub, &coi0 ));
+    CV_CALL( sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ));
+
+    if( coi0 || coi1 )
+        CV_ERROR( CV_BadCOI, "COI is not supported" );
+
+    if( !CV_ARE_SIZES_EQ( sum, sqsum ))
+        CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
+
+    if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
+        CV_MAT_TYPE(sum->type) != CV_32SC1 )
+        CV_ERROR( CV_StsUnsupportedFormat,
+        "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
+
+    if( !_cascade->hid_cascade )
+        CV_CALL( icvCreateHidHaarClassifierCascade(_cascade) );
+
+    cascade = _cascade->hid_cascade;
+
+    if( cascade->has_tilted_features )
+    {
+        CV_CALL( tilted = cvGetMat( tilted, &tilted_stub, &coi1 ));
+
+        if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
+            CV_ERROR( CV_StsUnsupportedFormat,
+            "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
+
+        if( sum->step != tilted->step )
+            CV_ERROR( CV_StsUnmatchedSizes,
+            "Sum and tilted_sum must have the same stride (step, widthStep)" );
+
+        if( !CV_ARE_SIZES_EQ( sum, tilted ))
+            CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
+        cascade->tilted = *tilted;
+    }
+
+    _cascade->scale = scale;
+    _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
+    _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
+
+    cascade->sum = *sum;
+    cascade->sqsum = *sqsum;
+
+    equ_rect.x = equ_rect.y = cvRound(scale);
+    equ_rect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
+    equ_rect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
+    weight_scale = 1./(equ_rect.width*equ_rect.height);
+    cascade->inv_window_area = weight_scale;
+
+    cascade->p0 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x);
+    cascade->p1 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x + equ_rect.width );
+    cascade->p2 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height, equ_rect.x );
+    cascade->p3 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height,
+                                     equ_rect.x + equ_rect.width );
+
+    cascade->pq0 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x);
+    cascade->pq1 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x + equ_rect.width );
+    cascade->pq2 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height, equ_rect.x );
+    cascade->pq3 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height,
+                                          equ_rect.x + equ_rect.width );
+
+    /* init pointers in haar features according to real window size and
+       given image pointers */
+    {
+#ifdef _OPENMP
+    int max_threads = cvGetNumThreads();
+    #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
+#endif // _OPENMP
+    for( i = 0; i < _cascade->count; i++ )
+    {
+        int j, k, l;
+        for( j = 0; j < cascade->stage_classifier[i].count; j++ )
+        {
+            for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
+            {
+                CvHaarFeature* feature =
+                    &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
+                /* CvHidHaarClassifier* classifier =
+                    cascade->stage_classifier[i].classifier + j; */
+                CvHidHaarFeature* hidfeature =
+                    &cascade->stage_classifier[i].classifier[j].node[l].feature;
+                double sum0 = 0, area0 = 0;
+                CvRect r[3];
+#if CV_ADJUST_FEATURES
+                int base_w = -1, base_h = -1;
+                int new_base_w = 0, new_base_h = 0;
+                int kx, ky;
+                int flagx = 0, flagy = 0;
+                int x0 = 0, y0 = 0;
+#endif
+                int nr;
+
+                /* align blocks */
+                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
+                {
+                    if( !hidfeature->rect[k].p0 )
+                        break;
+#if CV_ADJUST_FEATURES
+                    r[k] = feature->rect[k].r;
+                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
+                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
+                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
+                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
+#endif
+                }
+
+                nr = k;
+
+#if CV_ADJUST_FEATURES
+                base_w += 1;
+                base_h += 1;
+                kx = r[0].width / base_w;
+                ky = r[0].height / base_h;
+
+                if( kx <= 0 )
+                {
+                    flagx = 1;
+                    new_base_w = cvRound( r[0].width * scale ) / kx;
+                    x0 = cvRound( r[0].x * scale );
+                }
+
+                if( ky <= 0 )
+                {
+                    flagy = 1;
+                    new_base_h = cvRound( r[0].height * scale ) / ky;
+                    y0 = cvRound( r[0].y * scale );
+                }
+#endif
+
+                for( k = 0; k < nr; k++ )
+                {
+                    CvRect tr;
+                    double correction_ratio;
+
+#if CV_ADJUST_FEATURES
+                    if( flagx )
+                    {
+                        tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
+                        tr.width = r[k].width * new_base_w / base_w;
+                    }
+                    else
+#endif
+                    {
+                        tr.x = cvRound( r[k].x * scale );
+                        tr.width = cvRound( r[k].width * scale );
+                    }
+
+#if CV_ADJUST_FEATURES
+                    if( flagy )
+                    {
+                        tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
+                        tr.height = r[k].height * new_base_h / base_h;
+                    }
+                    else
+#endif
+                    {
+                        tr.y = cvRound( r[k].y * scale );
+                        tr.height = cvRound( r[k].height * scale );
+                    }
+
+#if CV_ADJUST_WEIGHTS
+                    {
+                    // RAINER START
+                    const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
+                    const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
+                    const float feature_size = float(tr.width*tr.height);
+                    //const float normSize    = float(equ_rect.width*equ_rect.height);
+                    float target_ratio = orig_feature_size / orig_norm_size;
+                    //float isRatio = featureSize / normSize;
+                    //correctionRatio = targetRatio / isRatio / normSize;
+                    correction_ratio = target_ratio / feature_size;
+                    // RAINER END
+                    }
+#else
+                    correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
+#endif
+
+                    if( !feature->tilted )
+                    {
+                        hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);
+                        hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);
+                        hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);
+                        hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);
+                    }
+                    else
+                    {
+                        hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);
+                        hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,
+                                                              tr.x + tr.width - tr.height);
+                        hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);
+                        hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);
+                    }
+
+                    hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
+
+                    if( k == 0 )
+                        area0 = tr.width * tr.height;
+                    else
+                        sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
+                }
+
+                hidfeature->rect[0].weight = (float)(-sum0/area0);
+            } /* l */
+        } /* j */
+    }
+    }
+
+    __END__;
+}
+
+
+CV_INLINE
+double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,
+                                 double variance_norm_factor,
+                                 size_t p_offset )
+{
+    int idx = 0;
+    do
+    {
+        CvHidHaarTreeNode* node = classifier->node + idx;
+        double t = node->threshold * variance_norm_factor;
+
+        double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
+        sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
+
+        if( node->feature.rect[2].p0 )
+            sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
+
+        idx = sum < t ? node->left : node->right;
+    }
+    while( idx > 0 );
+    return classifier->alpha[-idx];
+}
+
+
+CV_IMPL int
+cvRunHaarClassifierCascade( const CvHaarClassifierCascade* _cascade,
+                            CvPoint pt, int start_stage )
+{
+    int result = -1;
+    CV_FUNCNAME("cvRunHaarClassifierCascade");
+
+    __BEGIN__;
+
+    int p_offset, pq_offset;
+    int i, j;
+    double mean, variance_norm_factor;
+    CvHidHaarClassifierCascade* cascade;
+
+    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
+        CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
+
+    cascade = _cascade->hid_cascade;
+    if( !cascade )
+        CV_ERROR( CV_StsNullPtr, "Hidden cascade has not been created.\n"
+            "Use cvSetImagesForHaarClassifierCascade" );
+
+    if( pt.x < 0 || pt.y < 0 ||
+        pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 ||
+        pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 )
+        EXIT;
+
+    p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
+    pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
+    mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area;
+    variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] -
+                           cascade->pq2[pq_offset] + cascade->pq3[pq_offset];
+    variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean;
+    if( variance_norm_factor >= 0. )
+        variance_norm_factor = sqrt(variance_norm_factor);
+    else
+        variance_norm_factor = 1.;
+
+    if( cascade->is_tree )
+    {
+        CvHidHaarStageClassifier* ptr;
+        assert( start_stage == 0 );
+
+        result = 1;
+        ptr = cascade->stage_classifier;
+
+        while( ptr )
+        {
+            double stage_sum = 0;
+
+            for( j = 0; j < ptr->count; j++ )
+            {
+                stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j,
+                    variance_norm_factor, p_offset );
+            }
+
+            if( stage_sum >= ptr->threshold )
+            {
+                ptr = ptr->child;
+            }
+            else
+            {
+                while( ptr && ptr->next == NULL ) ptr = ptr->parent;
+                if( ptr == NULL )
+                {
+                    result = 0;
+                    EXIT;
+                }
+                ptr = ptr->next;
+            }
+        }
+    }
+    else if( cascade->is_stump_based )
+    {
+        for( i = start_stage; i < cascade->count; i++ )
+        {
+#ifndef CV_HAAR_USE_SSE
+            double stage_sum = 0;
+#else
+            __m128d stage_sum = _mm_setzero_pd();
+#endif
+
+            if( cascade->stage_classifier[i].two_rects )
+            {
+                for( j = 0; j < cascade->stage_classifier[i].count; j++ )
+                {
+                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
+                    CvHidHaarTreeNode* node = classifier->node;
+#ifndef CV_HAAR_USE_SSE
+                    double t = node->threshold*variance_norm_factor;
+                    double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
+                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
+                    stage_sum += classifier->alpha[sum >= t];
+#else
+                    // ayasin - NHM perf optim. Avoid use of costly flaky jcc
+                    __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
+                    __m128d a = _mm_set_sd(classifier->alpha[0]);
+                    __m128d b = _mm_set_sd(classifier->alpha[1]);
+                    __m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
+                                             calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
+                    t = _mm_cmpgt_sd(t, sum);
+                    stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
+#endif
+                }
+            }
+            else
+            {
+                for( j = 0; j < cascade->stage_classifier[i].count; j++ )
+                {
+                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
+                    CvHidHaarTreeNode* node = classifier->node;
+#ifndef CV_HAAR_USE_SSE
+                    double t = node->threshold*variance_norm_factor;
+                    double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
+                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
+                    if( node->feature.rect[2].p0 )
+                        sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
+                    
+                    stage_sum += classifier->alpha[sum >= t];
+#else
+                    // ayasin - NHM perf optim. Avoid use of costly flaky jcc
+                    __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
+                    __m128d a = _mm_set_sd(classifier->alpha[0]);
+                    __m128d b = _mm_set_sd(classifier->alpha[1]);
+                    double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
+                    _sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
+                    if( node->feature.rect[2].p0 )
+                        _sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
+                    __m128d sum = _mm_set_sd(_sum);
+                    
+                    t = _mm_cmpgt_sd(t, sum);
+                    stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
+#endif
+                }
+            }
+
+#ifndef CV_HAAR_USE_SSE
+            if( stage_sum < cascade->stage_classifier[i].threshold )
+#else
+            __m128d i_threshold = _mm_set_sd(cascade->stage_classifier[i].threshold);
+            if( _mm_comilt_sd(stage_sum, i_threshold) )
+#endif
+            {
+                result = -i;
+                EXIT;
+            }
+        }
+    }
+    else
+    {
+        for( i = start_stage; i < cascade->count; i++ )
+        {
+            double stage_sum = 0;
+
+            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
+            {
+                stage_sum += icvEvalHidHaarClassifier(
+                    cascade->stage_classifier[i].classifier + j,
+                    variance_norm_factor, p_offset );
+            }
+
+            if( stage_sum < cascade->stage_classifier[i].threshold )
+            {
+                result = -i;
+                EXIT;
+            }
+        }
+    }
+
+    result = 1;
+
+    __END__;
+
+    return result;
+}
+
+
+static int is_equal( const void* _r1, const void* _r2, void* )
+{
+    const CvRect* r1 = (const CvRect*)_r1;
+    const CvRect* r2 = (const CvRect*)_r2;
+    int distance = cvRound(r1->width*0.2);
+
+    return r2->x <= r1->x + distance &&
+           r2->x >= r1->x - distance &&
+           r2->y <= r1->y + distance &&
+           r2->y >= r1->y - distance &&
+           r2->width <= cvRound( r1->width * 1.2 ) &&
+           cvRound( r2->width * 1.2 ) >= r1->width;
+}
+
+
+#define VERY_ROUGH_SEARCH 0
+
+CV_IMPL CvSeq*
+cvHaarDetectObjects( const CvArr* _img,
+                     CvHaarClassifierCascade* cascade,
+                     CvMemStorage* storage, double scale_factor,
+                     int min_neighbors, int flags, CvSize min_size )
+{
+    int split_stage = 2;
+
+    CvMat stub, *img = (CvMat*)_img;
+    CvMat *temp = 0, *sum = 0, *tilted = 0, *sqsum = 0, *norm_img = 0, *sumcanny = 0, *img_small = 0;
+    CvSeq* result_seq = 0;
+    CvMemStorage* temp_storage = 0;
+    CvAvgComp* comps = 0;
+    CvSeq* seq_thread[CV_MAX_THREADS] = {0};
+    int i, max_threads = 0;
+
+    CV_FUNCNAME( "cvHaarDetectObjects" );
+
+    __BEGIN__;
+
+    CvSeq *seq = 0, *seq2 = 0, *idx_seq = 0, *big_seq = 0;
+    CvAvgComp result_comp = {{0,0,0,0},0};
+    double factor;
+    int npass = 2, coi;
+    bool do_canny_pruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
+    bool find_biggest_object = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
+    bool rough_search = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
+
+    if( !CV_IS_HAAR_CLASSIFIER(cascade) )
+        CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
+
+    if( !storage )
+        CV_ERROR( CV_StsNullPtr, "Null storage pointer" );
+
+    CV_CALL( img = cvGetMat( img, &stub, &coi ));
+    if( coi )
+        CV_ERROR( CV_BadCOI, "COI is not supported" );
+
+    if( CV_MAT_DEPTH(img->type) != CV_8U )
+        CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
+    
+    if( scale_factor <= 1 )
+        CV_ERROR( CV_StsOutOfRange, "scale factor must be > 1" );
+
+    if( find_biggest_object )
+        flags &= ~CV_HAAR_SCALE_IMAGE;
+
+    CV_CALL( temp = cvCreateMat( img->rows, img->cols, CV_8UC1 ));
+    CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ));
+    CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 ));
+    CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
+
+    if( !cascade->hid_cascade )
+        CV_CALL( icvCreateHidHaarClassifierCascade(cascade) );
+
+    if( cascade->hid_cascade->has_tilted_features )
+        tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
+
+    seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
+    seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage );
+    result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
+
+    max_threads = cvGetNumThreads();
+    if( max_threads > 1 )
+        for( i = 0; i < max_threads; i++ )
+        {
+            CvMemStorage* temp_storage_thread;
+            CV_CALL( temp_storage_thread = cvCreateMemStorage(0));
+            CV_CALL( seq_thread[i] = cvCreateSeq( 0, sizeof(CvSeq),
+                sizeof(CvRect), temp_storage_thread ));
+        }
+    else
+        seq_thread[0] = seq;
+
+    if( CV_MAT_CN(img->type) > 1 )
+    {
+        cvCvtColor( img, temp, CV_BGR2GRAY );
+        img = temp;
+    }
+
+    if( flags & CV_HAAR_FIND_BIGGEST_OBJECT )
+        flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);
+
+    if( flags & CV_HAAR_SCALE_IMAGE )
+    {
+        CvSize win_size0 = cascade->orig_window_size;
+#ifdef HAVE_IPP
+        int use_ipp = cascade->hid_cascade->ipp_stages != 0;
+
+        if( use_ipp )
+            CV_CALL( norm_img = cvCreateMat( img->rows, img->cols, CV_32FC1 ));
+#endif
+        CV_CALL( img_small = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 ));
+
+        for( factor = 1; ; factor *= scale_factor )
+        {
+            int strip_count, strip_size;
+            int ystep = factor > 2. ? 1 : 2;
+            CvSize win_size = { cvRound(win_size0.width*factor),
+                                cvRound(win_size0.height*factor) };
+            CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };
+            CvSize sz1 = { sz.width - win_size0.width, sz.height - win_size0.height };
+#ifdef HAVE_IPP
+            IppiRect equ_rect = { icv_object_win_border, icv_object_win_border,
+                win_size0.width - icv_object_win_border*2,
+                win_size0.height - icv_object_win_border*2 };
+#endif
+            CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;
+            CvMat* _tilted = 0;
+
+            if( sz1.width <= 0 || sz1.height <= 0 )
+                break;
+            if( win_size.width < min_size.width || win_size.height < min_size.height )
+                continue;
+
+            img1 = cvMat( sz.height, sz.width, CV_8UC1, img_small->data.ptr );
+            sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );
+            sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );
+            if( tilted )
+            {
+                tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );
+                _tilted = &tilted1;
+            }
+            norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, norm_img ? norm_img->data.ptr : 0 );
+            mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );
+
+            cvResize( img, &img1, CV_INTER_LINEAR );
+            cvIntegral( &img1, &sum1, &sqsum1, _tilted );
+
+            if( max_threads > 1 )
+            {
+                strip_count = MAX(MIN(sz1.height/ystep, max_threads*3), 1);
+                strip_size = (sz1.height + strip_count - 1)/strip_count;
+                strip_size = (strip_size / ystep)*ystep;
+            }
+            else
+            {
+                strip_count = 1;
+                strip_size = sz1.height;
+            }
+
+#ifdef HAVE_IPP
+            if( use_ipp )
+            {
+                for( i = 0; i <= sz.height; i++ )
+                {
+                    const int* isum = (int*)(sum1.data.ptr + sum1.step*i);
+                    float* fsum = (float*)isum;
+                    const int FLT_DELTA = -(1 << 24);
+                    int j;
+                    for( j = 0; j <= sz.width; j++ )
+                        fsum[j] = (float)(isum[j] + FLT_DELTA);
+                }
+            }
+            else
+#endif
+                cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. );
+
+        #ifdef _OPENMP
+            #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
+        #endif
+            for( i = 0; i < strip_count; i++ )
+            {
+                int thread_id = cvGetThreadNum();
+                int positive = 0;
+                int y1 = i*strip_size, y2 = (i+1)*strip_size/* - ystep + 1*/;
+                CvSize ssz;
+                int x, y;
+                if( i == strip_count - 1 || y2 > sz1.height )
+                    y2 = sz1.height;
+                ssz = cvSize(sz1.width, y2 - y1);
+
+#ifdef HAVE_IPP
+                if( use_ipp )
+                {
+                    ippiRectStdDev_32f_C1R(
+                        (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
+                        (double*)(sqsum1.data.ptr + y1*sqsum1.step), sqsum1.step,
+                        (float*)(norm1.data.ptr + y1*norm1.step), norm1.step,
+                        ippiSize(ssz.width, ssz.height), equ_rect );
+
+                    positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);
+                    memset( mask1.data.ptr + y1*mask1.step, ystep == 1, mask1.height*mask1.step);
+                    
+                    if( ystep > 1 )
+                    {
+                        for( y = y1, positive = 0; y < y2; y += ystep )
+                            for( x = 0; x < ssz.width; x += ystep )
+                                mask1.data.ptr[mask1.step*y + x] = (uchar)1;
+                    }
+
+                    for( int j = 0; j < cascade->count; j++ )
+                    {
+                        if( ippiApplyHaarClassifier_32f_C1R(
+                            (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
+                            (float*)(norm1.data.ptr + y1*norm1.step), norm1.step,
+                            mask1.data.ptr + y1*mask1.step, mask1.step,
+                            ippiSize(ssz.width, ssz.height), &positive,
+                            cascade->hid_cascade->stage_classifier[j].threshold,
+                            (IppiHaarClassifier_32f*)cascade->hid_cascade->ipp_stages[j]) < 0 )
+                        {
+                            positive = 0;
+                            break;
+                        }
+                        if( positive <= 0 )
+                            break;
+                    }
+                }
+                else
+#endif
+                {
+                    for( y = y1, positive = 0; y < y2; y += ystep )
+                        for( x = 0; x < ssz.width; x += ystep )
+                        {
+                            mask1.data.ptr[mask1.step*y + x] =
+                                cvRunHaarClassifierCascade( cascade, cvPoint(x,y), 0 ) > 0;
+                            positive += mask1.data.ptr[mask1.step*y + x];
+                        }
+                }
+
+                if( positive > 0 )
+                {
+                    for( y = y1; y < y2; y += ystep )
+                        for( x = 0; x < ssz.width; x += ystep )
+                            if( mask1.data.ptr[mask1.step*y + x] != 0 )
+                            {
+                                CvRect obj_rect = { cvRound(x*factor), cvRound(y*factor),
+                                                    win_size.width, win_size.height };
+                                cvSeqPush( seq_thread[thread_id], &obj_rect );
+                            }
+                }
+            }
+
+            // gather the results
+            if( max_threads > 1 )
+                for( i = 0; i < max_threads; i++ )
+                {
+                    CvSeq* s = seq_thread[i];
+                    int j, total = s->total;
+                    CvSeqBlock* b = s->first;
+                    for( j = 0; j < total; j += b->count, b = b->next )
+                        cvSeqPushMulti( seq, b->data, b->count );
+                }
+        }
+    }
+    else
+    {
+        int n_factors = 0;
+        CvRect scan_roi_rect = {0,0,0,0};
+        bool is_found = false, scan_roi = false;
+
+        cvIntegral( img, sum, sqsum, tilted );
+
+        if( do_canny_pruning )
+        {
+            sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
+            cvCanny( img, temp, 0, 50, 3 );
+            cvIntegral( temp, sumcanny );
+        }
+
+        if( (unsigned)split_stage >= (unsigned)cascade->count ||
+            cascade->hid_cascade->is_tree )
+        {
+            split_stage = cascade->count;
+            npass = 1;
+        }
+
+        for( n_factors = 0, factor = 1;
+             factor*cascade->orig_window_size.width < img->cols - 10 &&
+             factor*cascade->orig_window_size.height < img->rows - 10;
+             n_factors++, factor *= scale_factor )
+            ;
+
+        if( find_biggest_object )
+        {
+            scale_factor = 1./scale_factor;
+            factor *= scale_factor;
+            big_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
+        }
+        else
+            factor = 1;
+
+        for( ; n_factors-- > 0 && !is_found; factor *= scale_factor )
+        {
+            const double ystep = MAX( 2, factor );
+            CvSize win_size = { cvRound( cascade->orig_window_size.width * factor ),
+                                cvRound( cascade->orig_window_size.height * factor )};
+            CvRect equ_rect = { 0, 0, 0, 0 };
+            int *p0 = 0, *p1 = 0, *p2 = 0, *p3 = 0;
+            int *pq0 = 0, *pq1 = 0, *pq2 = 0, *pq3 = 0;
+            int pass, stage_offset = 0;
+            int start_x = 0, start_y = 0;
+            int end_x = cvRound((img->cols - win_size.width) / ystep);
+            int end_y = cvRound((img->rows - win_size.height) / ystep);
+
+            if( win_size.width < min_size.width || win_size.height < min_size.height )
+            {
+                if( find_biggest_object )
+                    break;
+                continue;
+            }
+
+            cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );
+            cvZero( temp );
+
+            if( do_canny_pruning )
+            {
+                equ_rect.x = cvRound(win_size.width*0.15);
+                equ_rect.y = cvRound(win_size.height*0.15);
+                equ_rect.width = cvRound(win_size.width*0.7);
+                equ_rect.height = cvRound(win_size.height*0.7);
+
+                p0 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step) + equ_rect.x;
+                p1 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step)
+                            + equ_rect.x + equ_rect.width;
+                p2 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step) + equ_rect.x;
+                p3 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step)
+                            + equ_rect.x + equ_rect.width;
+
+                pq0 = (int*)(sum->data.ptr + equ_rect.y*sum->step) + equ_rect.x;
+                pq1 = (int*)(sum->data.ptr + equ_rect.y*sum->step)
+                            + equ_rect.x + equ_rect.width;
+                pq2 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step) + equ_rect.x;
+                pq3 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step)
+                            + equ_rect.x + equ_rect.width;
+            }
+
+            if( scan_roi )
+            {
+                //adjust start_height and stop_height
+                start_y = cvRound(scan_roi_rect.y / ystep);
+                end_y = cvRound((scan_roi_rect.y + scan_roi_rect.height - win_size.height) / ystep);
+
+                start_x = cvRound(scan_roi_rect.x / ystep);
+                end_x = cvRound((scan_roi_rect.x + scan_roi_rect.width - win_size.width) / ystep);
+            }
+
+            cascade->hid_cascade->count = split_stage;
+
+            for( pass = 0; pass < npass; pass++ )
+            {
+            #ifdef _OPENMP
+                #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
+            #endif
+                for( int _iy = start_y; _iy < end_y; _iy++ )
+                {
+                    int thread_id = cvGetThreadNum();
+                    int iy = cvRound(_iy*ystep);
+                    int _ix, _xstep = 1;
+                    uchar* mask_row = temp->data.ptr + temp->step * iy;
+
+                    for( _ix = start_x; _ix < end_x; _ix += _xstep )
+                    {
+                        int ix = cvRound(_ix*ystep); // it really should be ystep
+
+                        if( pass == 0 )
+                        {
+                            int result;
+                            _xstep = 2;
+
+                            if( do_canny_pruning )
+                            {
+                                int offset;
+                                int s, sq;
+
+                                offset = iy*(sum->step/sizeof(p0[0])) + ix;
+                                s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
+                                sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
+                                if( s < 100 || sq < 20 )
+                                    continue;
+                            }
+
+                            result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy), 0 );
+                            if( result > 0 )
+                            {
+                                if( pass < npass - 1 )
+                                    mask_row[ix] = 1;
+                                else
+                                {
+                                    CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
+                                    cvSeqPush( seq_thread[thread_id], &rect );
+                                }
+                            }
+                            if( result < 0 )
+                                _xstep = 1;
+                        }
+                        else if( mask_row[ix] )
+                        {
+                            int result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy),
+                                                                     stage_offset );
+                            if( result > 0 )
+                            {
+                                if( pass == npass - 1 )
+                                {
+                                    CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
+                                    cvSeqPush( seq_thread[thread_id], &rect );
+                                }
+                            }
+                            else
+                                mask_row[ix] = 0;
+                        }
+                    }
+                }
+                stage_offset = cascade->hid_cascade->count;
+                cascade->hid_cascade->count = cascade->count;
+            }
+
+            // gather the results
+            if( max_threads > 1 )
+                   for( i = 0; i < max_threads; i++ )
+                   {
+                           CvSeq* s = seq_thread[i];
+                    int j, total = s->total;
+                    CvSeqBlock* b = s->first;
+                    for( j = 0; j < total; j += b->count, b = b->next )
+                        cvSeqPushMulti( seq, b->data, b->count );
+                   }
+
+            if( find_biggest_object )
+            {
+                CvSeq* bseq = min_neighbors > 0 ? big_seq : seq;
+                
+                if( min_neighbors > 0 && !scan_roi )
+                {
+                    // group retrieved rectangles in order to filter out noise
+                    int ncomp = cvSeqPartition( seq, 0, &idx_seq, is_equal, 0 );
+                    CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
+                    memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
+
+                #if VERY_ROUGH_SEARCH
+                    if( rough_search )
+                    {
+                        for( i = 0; i < seq->total; i++ )
+                        {
+                            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
+                            int idx = *(int*)cvGetSeqElem( idx_seq, i );
+                            assert( (unsigned)idx < (unsigned)ncomp );
+
+                            comps[idx].neighbors++;
+                            comps[idx].rect.x += r1.x;
+                            comps[idx].rect.y += r1.y;
+                            comps[idx].rect.width += r1.width;
+                            comps[idx].rect.height += r1.height;
+                        }
+
+                        // calculate average bounding box
+                        for( i = 0; i < ncomp; i++ )
+                        {
+                            int n = comps[i].neighbors;
+                            if( n >= min_neighbors )
+                            {
+                                CvAvgComp comp;
+                                comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
+                                comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
+                                comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
+                                comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
+                                comp.neighbors = n;
+                                cvSeqPush( bseq, &comp );
+                            }
+                        }
+                    }
+                    else
+                #endif
+                    {
+                        for( i = 0 ; i <= ncomp; i++ )
+                            comps[i].rect.x = comps[i].rect.y = INT_MAX;
+
+                        // count number of neighbors
+                        for( i = 0; i < seq->total; i++ )
+                        {
+                            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
+                            int idx = *(int*)cvGetSeqElem( idx_seq, i );
+                            assert( (unsigned)idx < (unsigned)ncomp );
+
+                            comps[idx].neighbors++;
+
+                            // rect.width and rect.height will store coordinate of right-bottom corner
+                            comps[idx].rect.x = MIN(comps[idx].rect.x, r1.x);
+                            comps[idx].rect.y = MIN(comps[idx].rect.y, r1.y);
+                            comps[idx].rect.width = MAX(comps[idx].rect.width, r1.x+r1.width-1);
+                            comps[idx].rect.height = MAX(comps[idx].rect.height, r1.y+r1.height-1);
+                        }
+
+                        // calculate enclosing box
+                        for( i = 0; i < ncomp; i++ )
+                        {
+                            int n = comps[i].neighbors;
+                            if( n >= min_neighbors )
+                            {
+                                CvAvgComp comp;
+                                int t;
+                                double min_scale = rough_search ? 0.6 : 0.4;
+                                comp.rect.x = comps[i].rect.x;
+                                comp.rect.y = comps[i].rect.y;
+                                comp.rect.width = comps[i].rect.width - comps[i].rect.x + 1;
+                                comp.rect.height = comps[i].rect.height - comps[i].rect.y + 1;
+
+                                // update min_size
+                                t = cvRound( comp.rect.width*min_scale );
+                                min_size.width = MAX( min_size.width, t );
+
+                                t = cvRound( comp.rect.height*min_scale );
+                                min_size.height = MAX( min_size.height, t );
+
+                                //expand the box by 20% because we could miss some neighbours
+                                //see 'is_equal' function
+                            #if 1
+                                int offset = cvRound(comp.rect.width * 0.2);
+                                int right = MIN( img->cols-1, comp.rect.x+comp.rect.width-1 + offset );
+                                int bottom = MIN( img->rows-1, comp.rect.y+comp.rect.height-1 + offset);
+                                comp.rect.x = MAX( comp.rect.x - offset, 0 );
+                                comp.rect.y = MAX( comp.rect.y - offset, 0 );
+                                comp.rect.width = right - comp.rect.x + 1;
+                                comp.rect.height = bottom - comp.rect.y + 1;
+                            #endif
+
+                                comp.neighbors = n;
+                                cvSeqPush( bseq, &comp );
+                            }
+                        }
+                    }
+
+                    cvFree( &comps );
+                }
+
+                // extract the biggest rect
+                if( bseq->total > 0 )
+                {
+                    int max_area = 0;
+                    for( i = 0; i < bseq->total; i++ )
+                    {
+                        CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( bseq, i );
+                        int area = comp->rect.width * comp->rect.height;
+                        if( max_area < area )
+                        {
+                            max_area = area;
+                            result_comp.rect = comp->rect;
+                            result_comp.neighbors = bseq == seq ? 1 : comp->neighbors;
+                        }
+                    }
+
+                    //Prepare information for further scanning inside the biggest rectangle
+
+                #if VERY_ROUGH_SEARCH
+                    // change scan ranges to roi in case of required
+                    if( !rough_search && !scan_roi )
+                    {
+                        scan_roi = true;
+                        scan_roi_rect = result_comp.rect;
+                        cvClearSeq(bseq);
+                    }
+                    else if( rough_search )
+                        is_found = true;
+                #else
+                    if( !scan_roi )
+                    {
+                        scan_roi = true;
+                        scan_roi_rect = result_comp.rect;
+                        cvClearSeq(bseq);
+                    }
+                #endif
+                }
+            }
+        }
+    }
+
+    if( min_neighbors == 0 && !find_biggest_object )
+    {
+        for( i = 0; i < seq->total; i++ )
+        {
+            CvRect* rect = (CvRect*)cvGetSeqElem( seq, i );
+            CvAvgComp comp;
+            comp.rect = *rect;
+            comp.neighbors = 1;
+            cvSeqPush( result_seq, &comp );
+        }
+    }
+
+    if( min_neighbors != 0
+#if VERY_ROUGH_SEARCH        
+        && (!find_biggest_object || !rough_search)
+#endif        
+        )
+    {
+        // group retrieved rectangles in order to filter out noise
+        int ncomp = cvSeqPartition( seq, 0, &idx_seq, is_equal, 0 );
+        CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
+        memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
+
+        // count number of neighbors
+        for( i = 0; i < seq->total; i++ )
+        {
+            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
+            int idx = *(int*)cvGetSeqElem( idx_seq, i );
+            assert( (unsigned)idx < (unsigned)ncomp );
+
+            comps[idx].neighbors++;
+
+            comps[idx].rect.x += r1.x;
+            comps[idx].rect.y += r1.y;
+            comps[idx].rect.width += r1.width;
+            comps[idx].rect.height += r1.height;
+        }
+
+        // calculate average bounding box
+        for( i = 0; i < ncomp; i++ )
+        {
+            int n = comps[i].neighbors;
+            if( n >= min_neighbors )
+            {
+                CvAvgComp comp;
+                comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
+                comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
+                comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
+                comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
+                comp.neighbors = comps[i].neighbors;
+
+                cvSeqPush( seq2, &comp );
+            }
+        }
+
+        if( !find_biggest_object )
+        {
+            // filter out small face rectangles inside large face rectangles
+            for( i = 0; i < seq2->total; i++ )
+            {
+                CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i );
+                int j, flag = 1;
+
+                for( j = 0; j < seq2->total; j++ )
+                {
+                    CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
+                    int distance = cvRound( r2.rect.width * 0.2 );
+
+                    if( i != j &&
+                        r1.rect.x >= r2.rect.x - distance &&
+                        r1.rect.y >= r2.rect.y - distance &&
+                        r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
+                        r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
+                        (r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
+                    {
+                        flag = 0;
+                        break;
+                    }
+                }
+
+                if( flag )
+                    cvSeqPush( result_seq, &r1 );
+            }
+        }
+        else
+        {
+            int max_area = 0;
+            for( i = 0; i < seq2->total; i++ )
+            {
+                CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( seq2, i );
+                int area = comp->rect.width * comp->rect.height;
+                if( max_area < area )
+                {
+                    max_area = area;
+                    result_comp = *comp;
+                }                
+            }
+        }
+    }
+
+    if( find_biggest_object && result_comp.rect.width > 0 )
+        cvSeqPush( result_seq, &result_comp );
+
+    __END__;
+
+    if( max_threads > 1 )
+           for( i = 0; i < max_threads; i++ )
+           {
+                   if( seq_thread[i] )
+                cvReleaseMemStorage( &seq_thread[i]->storage );
+           }
+
+    cvReleaseMemStorage( &temp_storage );
+    cvReleaseMat( &sum );
+    cvReleaseMat( &sqsum );
+    cvReleaseMat( &tilted );
+    cvReleaseMat( &temp );
+    cvReleaseMat( &sumcanny );
+    cvReleaseMat( &norm_img );
+    cvReleaseMat( &img_small );
+    cvFree( &comps );
+
+    return result_seq;
+}
+
+
+static CvHaarClassifierCascade*
+icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
+{
+    int i;
+    CvHaarClassifierCascade* cascade = icvCreateHaarClassifierCascade(n);
+    cascade->orig_window_size = orig_window_size;
+
+    for( i = 0; i < n; i++ )
+    {
+        int j, count, l;
+        float threshold = 0;
+        const char* stage = input_cascade[i];
+        int dl = 0;
+
+        /* tree links */
+        int parent = -1;
+        int next = -1;
+
+        sscanf( stage, "%d%n", &count, &dl );
+        stage += dl;
+
+        assert( count > 0 );
+        cascade->stage_classifier[i].count = count;
+        cascade->stage_classifier[i].classifier =
+            (CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0]));
+
+        for( j = 0; j < count; j++ )
+        {
+            CvHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
+            int k, rects = 0;
+            char str[100];
+
+            sscanf( stage, "%d%n", &classifier->count, &dl );
+            stage += dl;
+
+            classifier->haar_feature = (CvHaarFeature*) cvAlloc(
+                classifier->count * ( sizeof( *classifier->haar_feature ) +
+                                      sizeof( *classifier->threshold ) +
+                                      sizeof( *classifier->left ) +
+                                      sizeof( *classifier->right ) ) +
+                (classifier->count + 1) * sizeof( *classifier->alpha ) );
+            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
+            classifier->left = (int*) (classifier->threshold + classifier->count);
+            classifier->right = (int*) (classifier->left + classifier->count);
+            classifier->alpha = (float*) (classifier->right + classifier->count);
+
+            for( l = 0; l < classifier->count; l++ )
+            {
+                sscanf( stage, "%d%n", &rects, &dl );
+                stage += dl;
+
+                assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
+
+                for( k = 0; k < rects; k++ )
+                {
+                    CvRect r;
+                    int band = 0;
+                    sscanf( stage, "%d%d%d%d%d%f%n",
+                            &r.x, &r.y, &r.width, &r.height, &band,
+                            &(classifier->haar_feature[l].rect[k].weight), &dl );
+                    stage += dl;
+                    classifier->haar_feature[l].rect[k].r = r;
+                }
+                sscanf( stage, "%s%n", str, &dl );
+                stage += dl;
+
+                classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;
+
+                for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ )
+                {
+                    memset( classifier->haar_feature[l].rect + k, 0,
+                            sizeof(classifier->haar_feature[l].rect[k]) );
+                }
+
+                sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]),
+                                       &(classifier->left[l]),
+                                       &(classifier->right[l]), &dl );
+                stage += dl;
+            }
+            for( l = 0; l <= classifier->count; l++ )
+            {
+                sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl );
+                stage += dl;
+            }
+        }
+
+        sscanf( stage, "%f%n", &threshold, &dl );
+        stage += dl;
+
+        cascade->stage_classifier[i].threshold = threshold;
+
+        /* load tree links */
+        if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 )
+        {
+            parent = i - 1;
+            next = -1;
+        }
+        stage += dl;
+
+        cascade->stage_classifier[i].parent = parent;
+        cascade->stage_classifier[i].next = next;
+        cascade->stage_classifier[i].child = -1;
+
+        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
+        {
+            cascade->stage_classifier[parent].child = i;
+        }
+    }
+
+    return cascade;
+}
+
+#ifndef _MAX_PATH
+#define _MAX_PATH 1024
+#endif
+
+CV_IMPL CvHaarClassifierCascade*
+cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size )
+{
+    const char** input_cascade = 0;
+    CvHaarClassifierCascade *cascade = 0;
+
+    CV_FUNCNAME( "cvLoadHaarClassifierCascade" );
+
+    __BEGIN__;
+
+    int i, n;
+    const char* slash;
+    char name[_MAX_PATH];
+    int size = 0;
+    char* ptr = 0;
+
+    if( !directory )
+        CV_ERROR( CV_StsNullPtr, "Null path is passed" );
+
+    n = (int)strlen(directory)-1;
+    slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/";
+
+    /* try to read the classifier from directory */
+    for( n = 0; ; n++ )
+    {
+        sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n );
+        FILE* f = fopen( name, "rb" );
+        if( !f )
+            break;
+        fseek( f, 0, SEEK_END );
+        size += ftell( f ) + 1;
+        fclose(f);
+    }
+
+    if( n == 0 && slash[0] )
+    {
+        CV_CALL( cascade = (CvHaarClassifierCascade*)cvLoad( directory ));
+        EXIT;
+    }
+    else if( n == 0 )
+        CV_ERROR( CV_StsBadArg, "Invalid path" );
+
+    size += (n+1)*sizeof(char*);
+    CV_CALL( input_cascade = (const char**)cvAlloc( size ));
+    ptr = (char*)(input_cascade + n + 1);
+
+    for( i = 0; i < n; i++ )
+    {
+        sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i );
+        FILE* f = fopen( name, "rb" );
+        if( !f )
+            CV_ERROR( CV_StsError, "" );
+        fseek( f, 0, SEEK_END );
+        size = ftell( f );
+        fseek( f, 0, SEEK_SET );
+        fread( ptr, 1, size, f );
+        fclose(f);
+        input_cascade[i] = ptr;
+        ptr += size;
+        *ptr++ = '\0';
+    }
+
+    input_cascade[n] = 0;
+    cascade = icvLoadCascadeCART( input_cascade, n, orig_window_size );
+
+    __END__;
+
+    if( input_cascade )
+        cvFree( &input_cascade );
+
+    if( cvGetErrStatus() < 0 )
+        cvReleaseHaarClassifierCascade( &cascade );
+
+    return cascade;
+}
+
+
+CV_IMPL void
+cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade )
+{
+    if( _cascade && *_cascade )
+    {
+        int i, j;
+        CvHaarClassifierCascade* cascade = *_cascade;
+
+        for( i = 0; i < cascade->count; i++ )
+        {
+            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
+                cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature );
+            cvFree( &cascade->stage_classifier[i].classifier );
+        }
+        icvReleaseHidHaarClassifierCascade( &cascade->hid_cascade );
+        cvFree( _cascade );
+    }
+}
+
+
+/****************************************************************************************\
+*                                  Persistence functions                                 *
+\****************************************************************************************/
+
+/* field names */
+
+#define ICV_HAAR_SIZE_NAME            "size"
+#define ICV_HAAR_STAGES_NAME          "stages"
+#define ICV_HAAR_TREES_NAME             "trees"
+#define ICV_HAAR_FEATURE_NAME             "feature"
+#define ICV_HAAR_RECTS_NAME                 "rects"
+#define ICV_HAAR_TILTED_NAME                "tilted"
+#define ICV_HAAR_THRESHOLD_NAME           "threshold"
+#define ICV_HAAR_LEFT_NODE_NAME           "left_node"
+#define ICV_HAAR_LEFT_VAL_NAME            "left_val"
+#define ICV_HAAR_RIGHT_NODE_NAME          "right_node"
+#define ICV_HAAR_RIGHT_VAL_NAME           "right_val"
+#define ICV_HAAR_STAGE_THRESHOLD_NAME   "stage_threshold"
+#define ICV_HAAR_PARENT_NAME            "parent"
+#define ICV_HAAR_NEXT_NAME              "next"
+
+static int
+icvIsHaarClassifier( const void* struct_ptr )
+{
+    return CV_IS_HAAR_CLASSIFIER( struct_ptr );
+}
+
+static void*
+icvReadHaarClassifier( CvFileStorage* fs, CvFileNode* node )
+{
+    CvHaarClassifierCascade* cascade = NULL;
+
+    CV_FUNCNAME( "cvReadHaarClassifier" );
+
+    __BEGIN__;
+
+    char buf[256];
+    CvFileNode* seq_fn = NULL; /* sequence */
+    CvFileNode* fn = NULL;
+    CvFileNode* stages_fn = NULL;
+    CvSeqReader stages_reader;
+    int n;
+    int i, j, k, l;
+    int parent, next;
+
+    CV_CALL( stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME ) );
+    if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) )
+        CV_ERROR( CV_StsError, "Invalid stages node" );
+
+    n = stages_fn->data.seq->total;
+    CV_CALL( cascade = icvCreateHaarClassifierCascade(n) );
+
+    /* read size */
+    CV_CALL( seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME ) );
+    if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 )
+        CV_ERROR( CV_StsError, "size node is not a valid sequence." );
+    CV_CALL( fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 0 ) );
+    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
+        CV_ERROR( CV_StsError, "Invalid size node: width must be positive integer" );
+    cascade->orig_window_size.width = fn->data.i;
+    CV_CALL( fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 1 ) );
+    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
+        CV_ERROR( CV_StsError, "Invalid size node: height must be positive integer" );
+    cascade->orig_window_size.height = fn->data.i;
+
+    CV_CALL( cvStartReadSeq( stages_fn->data.seq, &stages_reader ) );
+    for( i = 0; i < n; ++i )
+    {
+        CvFileNode* stage_fn;
+        CvFileNode* trees_fn;
+        CvSeqReader trees_reader;
+
+        stage_fn = (CvFileNode*) stages_reader.ptr;
+        if( !CV_NODE_IS_MAP( stage_fn->tag ) )
+        {
+            sprintf( buf, "Invalid stage %d", i );
+            CV_ERROR( CV_StsError, buf );
+        }
+
+        CV_CALL( trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME ) );
+        if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag )
+            || trees_fn->data.seq->total <= 0 )
+        {
+            sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i );
+            CV_ERROR( CV_StsError, buf );
+        }
+
+        CV_CALL( cascade->stage_classifier[i].classifier =
+            (CvHaarClassifier*) cvAlloc( trees_fn->data.seq->total
+                * sizeof( cascade->stage_classifier[i].classifier[0] ) ) );
+        for( j = 0; j < trees_fn->data.seq->total; ++j )
+        {
+            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
+        }
+        cascade->stage_classifier[i].count = trees_fn->data.seq->total;
+
+        CV_CALL( cvStartReadSeq( trees_fn->data.seq, &trees_reader ) );
+        for( j = 0; j < trees_fn->data.seq->total; ++j )
+        {
+            CvFileNode* tree_fn;
+            CvSeqReader tree_reader;
+            CvHaarClassifier* classifier;
+            int last_idx;
+
+            classifier = &cascade->stage_classifier[i].classifier[j];
+            tree_fn = (CvFileNode*) trees_reader.ptr;
+            if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 )
+            {
+                sprintf( buf, "Tree node is not a valid sequence."
+                         " (stage %d, tree %d)", i, j );
+                CV_ERROR( CV_StsError, buf );
+            }
+
+            classifier->count = tree_fn->data.seq->total;
+            CV_CALL( classifier->haar_feature = (CvHaarFeature*) cvAlloc(
+                classifier->count * ( sizeof( *classifier->haar_feature ) +
+                                      sizeof( *classifier->threshold ) +
+                                      sizeof( *classifier->left ) +
+                                      sizeof( *classifier->right ) ) +
+                (classifier->count + 1) * sizeof( *classifier->alpha ) ) );
+            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
+            classifier->left = (int*) (classifier->threshold + classifier->count);
+            classifier->right = (int*) (classifier->left + classifier->count);
+            classifier->alpha = (float*) (classifier->right + classifier->count);
+
+            CV_CALL( cvStartReadSeq( tree_fn->data.seq, &tree_reader ) );
+            for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k )
+            {
+                CvFileNode* node_fn;
+                CvFileNode* feature_fn;
+                CvFileNode* rects_fn;
+                CvSeqReader rects_reader;
+
+                node_fn = (CvFileNode*) tree_reader.ptr;
+                if( !CV_NODE_IS_MAP( node_fn->tag ) )
+                {
+                    sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)",
+                             k, i, j );
+                    CV_ERROR( CV_StsError, buf );
+                }
+                CV_CALL( feature_fn = cvGetFileNodeByName( fs, node_fn,
+                    ICV_HAAR_FEATURE_NAME ) );
+                if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) )
+                {
+                    sprintf( buf, "Feature node is not a valid map. "
+                             "(stage %d, tree %d, node %d)", i, j, k );
+                    CV_ERROR( CV_StsError, buf );
+                }
+                CV_CALL( rects_fn = cvGetFileNodeByName( fs, feature_fn,
+                    ICV_HAAR_RECTS_NAME ) );
+                if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag )
+                    || rects_fn->data.seq->total < 1
+                    || rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX )
+                {
+                    sprintf( buf, "Rects node is not a valid sequence. "
+                             "(stage %d, tree %d, node %d)", i, j, k );
+                    CV_ERROR( CV_StsError, buf );
+                }
+                CV_CALL( cvStartReadSeq( rects_fn->data.seq, &rects_reader ) );
+                for( l = 0; l < rects_fn->data.seq->total; ++l )
+                {
+                    CvFileNode* rect_fn;
+                    CvRect r;
+
+                    rect_fn = (CvFileNode*) rects_reader.ptr;
+                    if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 )
+                    {
+                        sprintf( buf, "Rect %d is not a valid sequence. "
+                                 "(stage %d, tree %d, node %d)", l, i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+
+                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 );
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
+                    {
+                        sprintf( buf, "x coordinate must be non-negative integer. "
+                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    r.x = fn->data.i;
+                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 );
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
+                    {
+                        sprintf( buf, "y coordinate must be non-negative integer. "
+                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    r.y = fn->data.i;
+                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 );
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
+                        || r.x + fn->data.i > cascade->orig_window_size.width )
+                    {
+                        sprintf( buf, "width must be positive integer and "
+                                 "(x + width) must not exceed window width. "
+                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    r.width = fn->data.i;
+                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 );
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
+                        || r.y + fn->data.i > cascade->orig_window_size.height )
+                    {
+                        sprintf( buf, "height must be positive integer and "
+                                 "(y + height) must not exceed window height. "
+                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    r.height = fn->data.i;
+                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 );
+                    if( !CV_NODE_IS_REAL( fn->tag ) )
+                    {
+                        sprintf( buf, "weight must be real number. "
+                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+
+                    classifier->haar_feature[k].rect[l].weight = (float) fn->data.f;
+                    classifier->haar_feature[k].rect[l].r = r;
+
+                    CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader );
+                } /* for each rect */
+                for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l )
+                {
+                    classifier->haar_feature[k].rect[l].weight = 0;
+                    classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 );
+                }
+
+                CV_CALL( fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME));
+                if( !fn || !CV_NODE_IS_INT( fn->tag ) )
+                {
+                    sprintf( buf, "tilted must be 0 or 1. "
+                             "(stage %d, tree %d, node %d)", i, j, k );
+                    CV_ERROR( CV_StsError, buf );
+                }
+                classifier->haar_feature[k].tilted = ( fn->data.i != 0 );
+                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME));
+                if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
+                {
+                    sprintf( buf, "threshold must be real number. "
+                             "(stage %d, tree %d, node %d)", i, j, k );
+                    CV_ERROR( CV_StsError, buf );
+                }
+                classifier->threshold[k] = (float) fn->data.f;
+                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME));
+                if( fn )
+                {
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
+                        || fn->data.i >= tree_fn->data.seq->total )
+                    {
+                        sprintf( buf, "left node must be valid node number. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    /* left node */
+                    classifier->left[k] = fn->data.i;
+                }
+                else
+                {
+                    CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,
+                        ICV_HAAR_LEFT_VAL_NAME ) );
+                    if( !fn )
+                    {
+                        sprintf( buf, "left node or left value must be specified. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    if( !CV_NODE_IS_REAL( fn->tag ) )
+                    {
+                        sprintf( buf, "left value must be real number. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    /* left value */
+                    if( last_idx >= classifier->count + 1 )
+                    {
+                        sprintf( buf, "Tree structure is broken: too many values. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    classifier->left[k] = -last_idx;
+                    classifier->alpha[last_idx++] = (float) fn->data.f;
+                }
+                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,ICV_HAAR_RIGHT_NODE_NAME));
+                if( fn )
+                {
+                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
+                        || fn->data.i >= tree_fn->data.seq->total )
+                    {
+                        sprintf( buf, "right node must be valid node number. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    /* right node */
+                    classifier->right[k] = fn->data.i;
+                }
+                else
+                {
+                    CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,
+                        ICV_HAAR_RIGHT_VAL_NAME ) );
+                    if( !fn )
+                    {
+                        sprintf( buf, "right node or right value must be specified. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    if( !CV_NODE_IS_REAL( fn->tag ) )
+                    {
+                        sprintf( buf, "right value must be real number. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    /* right value */
+                    if( last_idx >= classifier->count + 1 )
+                    {
+                        sprintf( buf, "Tree structure is broken: too many values. "
+                                 "(stage %d, tree %d, node %d)", i, j, k );
+                        CV_ERROR( CV_StsError, buf );
+                    }
+                    classifier->right[k] = -last_idx;
+                    classifier->alpha[last_idx++] = (float) fn->data.f;
+                }
+
+                CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader );
+            } /* for each node */
+            if( last_idx != classifier->count + 1 )
+            {
+                sprintf( buf, "Tree structure is broken: too few values. "
+                         "(stage %d, tree %d)", i, j );
+                CV_ERROR( CV_StsError, buf );
+            }
+
+            CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader );
+        } /* for each tree */
+
+        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME));
+        if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
+        {
+            sprintf( buf, "stage threshold must be real number. (stage %d)", i );
+            CV_ERROR( CV_StsError, buf );
+        }
+        cascade->stage_classifier[i].threshold = (float) fn->data.f;
+
+        parent = i - 1;
+        next = -1;
+
+        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME ) );
+        if( !fn || !CV_NODE_IS_INT( fn->tag )
+            || fn->data.i < -1 || fn->data.i >= cascade->count )
+        {
+            sprintf( buf, "parent must be integer number. (stage %d)", i );
+            CV_ERROR( CV_StsError, buf );
+        }
+        parent = fn->data.i;
+        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME ) );
+        if( !fn || !CV_NODE_IS_INT( fn->tag )
+            || fn->data.i < -1 || fn->data.i >= cascade->count )
+        {
+            sprintf( buf, "next must be integer number. (stage %d)", i );
+            CV_ERROR( CV_StsError, buf );
+        }
+        next = fn->data.i;
+
+        cascade->stage_classifier[i].parent = parent;
+        cascade->stage_classifier[i].next = next;
+        cascade->stage_classifier[i].child = -1;
+
+        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
+        {
+            cascade->stage_classifier[parent].child = i;
+        }
+
+        CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader );
+    } /* for each stage */
+
+    __END__;
+
+    if( cvGetErrStatus() < 0 )
+    {
+        cvReleaseHaarClassifierCascade( &cascade );
+        cascade = NULL;
+    }
+
+    return cascade;
+}
+
+static void
+icvWriteHaarClassifier( CvFileStorage* fs, const char* name, const void* struct_ptr,
+                        CvAttrList attributes )
+{
+    CV_FUNCNAME( "cvWriteHaarClassifier" );
+
+    __BEGIN__;
+
+    int i, j, k, l;
+    char buf[256];
+    const CvHaarClassifierCascade* cascade = (const CvHaarClassifierCascade*) struct_ptr;
+
+    /* TODO: parameters check */
+
+    CV_CALL( cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes ) );
+
+    CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW ) );
+    CV_CALL( cvWriteInt( fs, NULL, cascade->orig_window_size.width ) );
+    CV_CALL( cvWriteInt( fs, NULL, cascade->orig_window_size.height ) );
+    CV_CALL( cvEndWriteStruct( fs ) ); /* size */
+
+    CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ ) );
+    for( i = 0; i < cascade->count; ++i )
+    {
+        CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_MAP ) );
+        sprintf( buf, "stage %d", i );
+        CV_CALL( cvWriteComment( fs, buf, 1 ) );
+
+        CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ ) );
+
+        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
+        {
+            CvHaarClassifier* tree = &cascade->stage_classifier[i].classifier[j];
+
+            CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_SEQ ) );
+            sprintf( buf, "tree %d", j );
+            CV_CALL( cvWriteComment( fs, buf, 1 ) );
+
+            for( k = 0; k < tree->count; ++k )
+            {
+                CvHaarFeature* feature = &tree->haar_feature[k];
+
+                CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_MAP ) );
+                if( k )
+                {
+                    sprintf( buf, "node %d", k );
+                }
+                else
+                {
+                    sprintf( buf, "root node" );
+                }
+                CV_CALL( cvWriteComment( fs, buf, 1 ) );
+
+                CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP ) );
+
+                CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ ) );
+                for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l )
+                {
+                    CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW ) );
+                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.x ) );
+                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.y ) );
+                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.width ) );
+                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.height ) );
+                    CV_CALL( cvWriteReal( fs, NULL, feature->rect[l].weight ) );
+                    CV_CALL( cvEndWriteStruct( fs ) ); /* rect */
+                }
+                CV_CALL( cvEndWriteStruct( fs ) ); /* rects */
+                CV_CALL( cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted ) );
+                CV_CALL( cvEndWriteStruct( fs ) ); /* feature */
+
+                CV_CALL( cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]) );
+
+                if( tree->left[k] > 0 )
+                {
+                    CV_CALL( cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] ) );
+                }
+                else
+                {
+                    CV_CALL( cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME,
+                        tree->alpha[-tree->left[k]] ) );
+                }
+
+                if( tree->right[k] > 0 )
+                {
+                    CV_CALL( cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] ) );
+                }
+                else
+                {
+                    CV_CALL( cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME,
+                        tree->alpha[-tree->right[k]] ) );
+                }
+
+                CV_CALL( cvEndWriteStruct( fs ) ); /* split */
+            }
+
+            CV_CALL( cvEndWriteStruct( fs ) ); /* tree */
+        }
+
+        CV_CALL( cvEndWriteStruct( fs ) ); /* trees */
+
+        CV_CALL( cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME,
+                              cascade->stage_classifier[i].threshold) );
+
+        CV_CALL( cvWriteInt( fs, ICV_HAAR_PARENT_NAME,
+                              cascade->stage_classifier[i].parent ) );
+        CV_CALL( cvWriteInt( fs, ICV_HAAR_NEXT_NAME,
+                              cascade->stage_classifier[i].next ) );
+
+        CV_CALL( cvEndWriteStruct( fs ) ); /* stage */
+    } /* for each stage */
+
+    CV_CALL( cvEndWriteStruct( fs ) ); /* stages */
+    CV_CALL( cvEndWriteStruct( fs ) ); /* root */
+
+    __END__;
+}
+
+static void*
+icvCloneHaarClassifier( const void* struct_ptr )
+{
+    CvHaarClassifierCascade* cascade = NULL;
+
+    CV_FUNCNAME( "cvCloneHaarClassifier" );
+
+    __BEGIN__;
+
+    int i, j, k, n;
+    const CvHaarClassifierCascade* cascade_src =
+        (const CvHaarClassifierCascade*) struct_ptr;
+
+    n = cascade_src->count;
+    CV_CALL( cascade = icvCreateHaarClassifierCascade(n) );
+    cascade->orig_window_size = cascade_src->orig_window_size;
+
+    for( i = 0; i < n; ++i )
+    {
+        cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent;
+        cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next;
+        cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child;
+        cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold;
+
+        cascade->stage_classifier[i].count = 0;
+        CV_CALL( cascade->stage_classifier[i].classifier =
+            (CvHaarClassifier*) cvAlloc( cascade_src->stage_classifier[i].count
+                * sizeof( cascade->stage_classifier[i].classifier[0] ) ) );
+
+        cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count;
+
+        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
+        {
+            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
+        }
+
+        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
+        {
+            const CvHaarClassifier* classifier_src =
+                &cascade_src->stage_classifier[i].classifier[j];
+            CvHaarClassifier* classifier =
+                &cascade->stage_classifier[i].classifier[j];
+
+            classifier->count = classifier_src->count;
+            CV_CALL( classifier->haar_feature = (CvHaarFeature*) cvAlloc(
+                classifier->count * ( sizeof( *classifier->haar_feature ) +
+                                      sizeof( *classifier->threshold ) +
+                                      sizeof( *classifier->left ) +
+                                      sizeof( *classifier->right ) ) +
+                (classifier->count + 1) * sizeof( *classifier->alpha ) ) );
+            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
+            classifier->left = (int*) (classifier->threshold + classifier->count);
+            classifier->right = (int*) (classifier->left + classifier->count);
+            classifier->alpha = (float*) (classifier->right + classifier->count);
+            for( k = 0; k < classifier->count; ++k )
+            {
+                classifier->haar_feature[k] = classifier_src->haar_feature[k];
+                classifier->threshold[k] = classifier_src->threshold[k];
+                classifier->left[k] = classifier_src->left[k];
+                classifier->right[k] = classifier_src->right[k];
+                classifier->alpha[k] = classifier_src->alpha[k];
+            }
+            classifier->alpha[classifier->count] =
+                classifier_src->alpha[classifier->count];
+        }
+    }
+
+    __END__;
+
+    return cascade;
+}
+
+
+CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier,
+                  (CvReleaseFunc)cvReleaseHaarClassifierCascade,
+                  icvReadHaarClassifier, icvWriteHaarClassifier,
+                  icvCloneHaarClassifier );
+
+#if 0
+namespace cv
+{
+
+HaarClassifierCascade::HaarClassifierCascade() {}
+HaarClassifierCascade::HaarClassifierCascade(const String& filename)
+{ load(filename); }
+    
+bool HaarClassifierCascade::load(const String& filename)
+{
+    cascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
+    return (CvHaarClassifierCascade*)cascade != 0;
+}
+
+void HaarClassifierCascade::detectMultiScale( const Mat& image,
+                       Vector<Rect>& objects, double scaleFactor,
+                       int minNeighbors, int flags,
+                       Size minSize )
+{
+    MemStorage storage(cvCreateMemStorage(0));
+    CvMat _image = image;
+    CvSeq* _objects = cvHaarDetectObjects( &_image, cascade, storage, scaleFactor,
+                                           minNeighbors, flags, minSize );
+    Seq<Rect>(_objects).copyTo(objects);
+}
+
+int HaarClassifierCascade::runAt(Point pt, int startStage, int) const
+{
+    return cvRunHaarClassifierCascade(cascade, pt, startStage);
+}
+
+void HaarClassifierCascade::setImages( const Mat& sum, const Mat& sqsum,
+                                       const Mat& tilted, double scale )
+{
+    CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
+    cvSetImagesForHaarClassifierCascade( cascade, &_sum, &_sqsum, &_tilted, scale );
+}
+
+}
+#endif
+
+/* End of file. */