Update to 2.0.0 tree from current Fremantle build
[opencv] / src / cv / cvoptflowlk.cpp
diff --git a/src/cv/cvoptflowlk.cpp b/src/cv/cvoptflowlk.cpp
new file mode 100644 (file)
index 0000000..065bfc8
--- /dev/null
@@ -0,0 +1,611 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+#include "_cv.h"
+
+typedef struct
+{
+    float xx;
+    float xy;
+    float yy;
+    float xt;
+    float yt;
+}
+icvDerProduct;
+
+
+#define CONV( A, B, C)  ((float)( A +  (B<<1)  + C ))
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name: icvCalcOpticalFlowLK_8u32fR ( Lucas & Kanade method )
+//    Purpose: calculate Optical flow for 2 images using Lucas & Kanade algorithm
+//    Context:
+//    Parameters:
+//            imgA,         // pointer to first frame ROI
+//            imgB,         // pointer to second frame ROI
+//            imgStep,      // width of single row of source images in bytes
+//            imgSize,      // size of the source image ROI
+//            winSize,      // size of the averaging window used for grouping
+//            velocityX,    // pointer to horizontal and
+//            velocityY,    // vertical components of optical flow ROI
+//            velStep       // width of single row of velocity frames in bytes
+//
+//    Returns: CV_OK         - all ok
+//             CV_OUTOFMEM_ERR  - insufficient memory for function work
+//             CV_NULLPTR_ERR - if one of input pointers is NULL
+//             CV_BADSIZE_ERR   - wrong input sizes interrelation
+//
+//    Notes:  1.Optical flow to be computed for every pixel in ROI
+//            2.For calculating spatial derivatives we use 3x3 Sobel operator.
+//            3.We use the following border mode.
+//              The last row or column is replicated for the border
+//              ( IPL_BORDER_REPLICATE in IPL ).
+//
+//
+//F*/
+static CvStatus CV_STDCALL
+icvCalcOpticalFlowLK_8u32fR( uchar * imgA,
+                             uchar * imgB,
+                             int imgStep,
+                             CvSize imgSize,
+                             CvSize winSize,
+                             float *velocityX,
+                             float *velocityY, int velStep )
+{
+    /* Loops indexes */
+    int i, j, k;
+
+    /* Gaussian separable kernels */
+    float GaussX[16];
+    float GaussY[16];
+    float *KerX;
+    float *KerY;
+
+    /* Buffers for Sobel calculations */
+    float *MemX[2];
+    float *MemY[2];
+
+    float ConvX, ConvY;
+    float GradX, GradY, GradT;
+
+    int winWidth = winSize.width;
+    int winHeight = winSize.height;
+
+    int imageWidth = imgSize.width;
+    int imageHeight = imgSize.height;
+
+    int HorRadius = (winWidth - 1) >> 1;
+    int VerRadius = (winHeight - 1) >> 1;
+
+    int PixelLine;
+    int ConvLine;
+
+    int BufferAddress;
+
+    int BufferHeight = 0;
+    int BufferWidth;
+    int BufferSize;
+
+    /* buffers derivatives product */
+    icvDerProduct *II;
+
+    /* buffers for gaussian horisontal convolution */
+    icvDerProduct *WII;
+
+    /* variables for storing number of first pixel of image line */
+    int Line1;
+    int Line2;
+    int Line3;
+
+    /* we must have 2*2 linear system coeffs
+       | A1B2  B1 |  {u}   {C1}   {0}
+       |          |  { } + {  } = { }
+       | A2  A1B2 |  {v}   {C2}   {0}
+     */
+    float A1B2, A2, B1, C1, C2;
+
+    int pixNumber;
+
+    /* auxiliary */
+    int NoMem = 0;
+
+    velStep /= sizeof(velocityX[0]);
+
+    /* Checking bad arguments */
+    if( imgA == NULL )
+        return CV_NULLPTR_ERR;
+    if( imgB == NULL )
+        return CV_NULLPTR_ERR;
+
+    if( imageHeight < winHeight )
+        return CV_BADSIZE_ERR;
+    if( imageWidth < winWidth )
+        return CV_BADSIZE_ERR;
+
+    if( winHeight >= 16 )
+        return CV_BADSIZE_ERR;
+    if( winWidth >= 16 )
+        return CV_BADSIZE_ERR;
+
+    if( !(winHeight & 1) )
+        return CV_BADSIZE_ERR;
+    if( !(winWidth & 1) )
+        return CV_BADSIZE_ERR;
+
+    BufferHeight = winHeight;
+    BufferWidth = imageWidth;
+
+    /****************************************************************************************/
+    /* Computing Gaussian coeffs                                                            */
+    /****************************************************************************************/
+    GaussX[0] = 1;
+    GaussY[0] = 1;
+    for( i = 1; i < winWidth; i++ )
+    {
+        GaussX[i] = 1;
+        for( j = i - 1; j > 0; j-- )
+        {
+            GaussX[j] += GaussX[j - 1];
+        }
+    }
+    for( i = 1; i < winHeight; i++ )
+    {
+        GaussY[i] = 1;
+        for( j = i - 1; j > 0; j-- )
+        {
+            GaussY[j] += GaussY[j - 1];
+        }
+    }
+    KerX = &GaussX[HorRadius];
+    KerY = &GaussY[VerRadius];
+
+    /****************************************************************************************/
+    /* Allocating memory for all buffers                                                    */
+    /****************************************************************************************/
+    for( k = 0; k < 2; k++ )
+    {
+        MemX[k] = (float *) cvAlloc( (imgSize.height) * sizeof( float ));
+
+        if( MemX[k] == NULL )
+            NoMem = 1;
+        MemY[k] = (float *) cvAlloc( (imgSize.width) * sizeof( float ));
+
+        if( MemY[k] == NULL )
+            NoMem = 1;
+    }
+
+    BufferSize = BufferHeight * BufferWidth;
+
+    II = (icvDerProduct *) cvAlloc( BufferSize * sizeof( icvDerProduct ));
+    WII = (icvDerProduct *) cvAlloc( BufferSize * sizeof( icvDerProduct ));
+
+
+    if( (II == NULL) || (WII == NULL) )
+        NoMem = 1;
+
+    if( NoMem )
+    {
+        for( k = 0; k < 2; k++ )
+        {
+            if( MemX[k] )
+                cvFree( &MemX[k] );
+
+            if( MemY[k] )
+                cvFree( &MemY[k] );
+        }
+        if( II )
+            cvFree( &II );
+        if( WII )
+            cvFree( &WII );
+
+        return CV_OUTOFMEM_ERR;
+    }
+
+    /****************************************************************************************/
+    /*        Calculate first line of memX and memY                                         */
+    /****************************************************************************************/
+    MemY[0][0] = MemY[1][0] = CONV( imgA[0], imgA[0], imgA[1] );
+    MemX[0][0] = MemX[1][0] = CONV( imgA[0], imgA[0], imgA[imgStep] );
+
+    for( j = 1; j < imageWidth - 1; j++ )
+    {
+        MemY[0][j] = MemY[1][j] = CONV( imgA[j - 1], imgA[j], imgA[j + 1] );
+    }
+
+    pixNumber = imgStep;
+    for( i = 1; i < imageHeight - 1; i++ )
+    {
+        MemX[0][i] = MemX[1][i] = CONV( imgA[pixNumber - imgStep],
+                                        imgA[pixNumber], imgA[pixNumber + imgStep] );
+        pixNumber += imgStep;
+    }
+
+    MemY[0][imageWidth - 1] =
+        MemY[1][imageWidth - 1] = CONV( imgA[imageWidth - 2],
+                                        imgA[imageWidth - 1], imgA[imageWidth - 1] );
+
+    MemX[0][imageHeight - 1] =
+        MemX[1][imageHeight - 1] = CONV( imgA[pixNumber - imgStep],
+                                         imgA[pixNumber], imgA[pixNumber] );
+
+
+    /****************************************************************************************/
+    /*    begin scan image, calc derivatives and solve system                               */
+    /****************************************************************************************/
+
+    PixelLine = -VerRadius;
+    ConvLine = 0;
+    BufferAddress = -BufferWidth;
+
+    while( PixelLine < imageHeight )
+    {
+        if( ConvLine < imageHeight )
+        {
+            /*Here we calculate derivatives for line of image */
+            int address;
+
+            i = ConvLine;
+            int L1 = i - 1;
+            int L2 = i;
+            int L3 = i + 1;
+
+            int memYline = L3 & 1;
+
+            if( L1 < 0 )
+                L1 = 0;
+            if( L3 >= imageHeight )
+                L3 = imageHeight - 1;
+
+            BufferAddress += BufferWidth;
+            BufferAddress -= ((BufferAddress >= BufferSize) ? 0xffffffff : 0) & BufferSize;
+
+            address = BufferAddress;
+
+            Line1 = L1 * imgStep;
+            Line2 = L2 * imgStep;
+            Line3 = L3 * imgStep;
+
+            /* Process first pixel */
+            ConvX = CONV( imgA[Line1 + 1], imgA[Line2 + 1], imgA[Line3 + 1] );
+            ConvY = CONV( imgA[Line3], imgA[Line3], imgA[Line3 + 1] );
+
+            GradY = ConvY - MemY[memYline][0];
+            GradX = ConvX - MemX[1][L2];
+
+            MemY[memYline][0] = ConvY;
+            MemX[1][L2] = ConvX;
+
+            GradT = (float) (imgB[Line2] - imgA[Line2]);
+
+            II[address].xx = GradX * GradX;
+            II[address].xy = GradX * GradY;
+            II[address].yy = GradY * GradY;
+            II[address].xt = GradX * GradT;
+            II[address].yt = GradY * GradT;
+            address++;
+            /* Process middle of line */
+            for( j = 1; j < imageWidth - 1; j++ )
+            {
+                ConvX = CONV( imgA[Line1 + j + 1], imgA[Line2 + j + 1], imgA[Line3 + j + 1] );
+                ConvY = CONV( imgA[Line3 + j - 1], imgA[Line3 + j], imgA[Line3 + j + 1] );
+
+                GradY = ConvY - MemY[memYline][j];
+                GradX = ConvX - MemX[(j - 1) & 1][L2];
+
+                MemY[memYline][j] = ConvY;
+                MemX[(j - 1) & 1][L2] = ConvX;
+
+                GradT = (float) (imgB[Line2 + j] - imgA[Line2 + j]);
+
+                II[address].xx = GradX * GradX;
+                II[address].xy = GradX * GradY;
+                II[address].yy = GradY * GradY;
+                II[address].xt = GradX * GradT;
+                II[address].yt = GradY * GradT;
+
+                address++;
+            }
+            /* Process last pixel of line */
+            ConvX = CONV( imgA[Line1 + imageWidth - 1], imgA[Line2 + imageWidth - 1],
+                          imgA[Line3 + imageWidth - 1] );
+
+            ConvY = CONV( imgA[Line3 + imageWidth - 2], imgA[Line3 + imageWidth - 1],
+                          imgA[Line3 + imageWidth - 1] );
+
+
+            GradY = ConvY - MemY[memYline][imageWidth - 1];
+            GradX = ConvX - MemX[(imageWidth - 2) & 1][L2];
+
+            MemY[memYline][imageWidth - 1] = ConvY;
+
+            GradT = (float) (imgB[Line2 + imageWidth - 1] - imgA[Line2 + imageWidth - 1]);
+
+            II[address].xx = GradX * GradX;
+            II[address].xy = GradX * GradY;
+            II[address].yy = GradY * GradY;
+            II[address].xt = GradX * GradT;
+            II[address].yt = GradY * GradT;
+            address++;
+
+            /* End of derivatives for line */
+
+            /****************************************************************************************/
+            /* ---------Calculating horizontal convolution of processed line----------------------- */
+            /****************************************************************************************/
+            address -= BufferWidth;
+            /* process first HorRadius pixels */
+            for( j = 0; j < HorRadius; j++ )
+            {
+                int jj;
+
+                WII[address].xx = 0;
+                WII[address].xy = 0;
+                WII[address].yy = 0;
+                WII[address].xt = 0;
+                WII[address].yt = 0;
+
+                for( jj = -j; jj <= HorRadius; jj++ )
+                {
+                    float Ker = KerX[jj];
+
+                    WII[address].xx += II[address + jj].xx * Ker;
+                    WII[address].xy += II[address + jj].xy * Ker;
+                    WII[address].yy += II[address + jj].yy * Ker;
+                    WII[address].xt += II[address + jj].xt * Ker;
+                    WII[address].yt += II[address + jj].yt * Ker;
+                }
+                address++;
+            }
+            /* process inner part of line */
+            for( j = HorRadius; j < imageWidth - HorRadius; j++ )
+            {
+                int jj;
+                float Ker0 = KerX[0];
+
+                WII[address].xx = 0;
+                WII[address].xy = 0;
+                WII[address].yy = 0;
+                WII[address].xt = 0;
+                WII[address].yt = 0;
+
+                for( jj = 1; jj <= HorRadius; jj++ )
+                {
+                    float Ker = KerX[jj];
+
+                    WII[address].xx += (II[address - jj].xx + II[address + jj].xx) * Ker;
+                    WII[address].xy += (II[address - jj].xy + II[address + jj].xy) * Ker;
+                    WII[address].yy += (II[address - jj].yy + II[address + jj].yy) * Ker;
+                    WII[address].xt += (II[address - jj].xt + II[address + jj].xt) * Ker;
+                    WII[address].yt += (II[address - jj].yt + II[address + jj].yt) * Ker;
+                }
+                WII[address].xx += II[address].xx * Ker0;
+                WII[address].xy += II[address].xy * Ker0;
+                WII[address].yy += II[address].yy * Ker0;
+                WII[address].xt += II[address].xt * Ker0;
+                WII[address].yt += II[address].yt * Ker0;
+
+                address++;
+            }
+            /* process right side */
+            for( j = imageWidth - HorRadius; j < imageWidth; j++ )
+            {
+                int jj;
+
+                WII[address].xx = 0;
+                WII[address].xy = 0;
+                WII[address].yy = 0;
+                WII[address].xt = 0;
+                WII[address].yt = 0;
+
+                for( jj = -HorRadius; jj < imageWidth - j; jj++ )
+                {
+                    float Ker = KerX[jj];
+
+                    WII[address].xx += II[address + jj].xx * Ker;
+                    WII[address].xy += II[address + jj].xy * Ker;
+                    WII[address].yy += II[address + jj].yy * Ker;
+                    WII[address].xt += II[address + jj].xt * Ker;
+                    WII[address].yt += II[address + jj].yt * Ker;
+                }
+                address++;
+            }
+        }
+
+        /****************************************************************************************/
+        /*  Calculating velocity line                                                           */
+        /****************************************************************************************/
+        if( PixelLine >= 0 )
+        {
+            int USpace;
+            int BSpace;
+            int address;
+
+            if( PixelLine < VerRadius )
+                USpace = PixelLine;
+            else
+                USpace = VerRadius;
+
+            if( PixelLine >= imageHeight - VerRadius )
+                BSpace = imageHeight - PixelLine - 1;
+            else
+                BSpace = VerRadius;
+
+            address = ((PixelLine - USpace) % BufferHeight) * BufferWidth;
+            for( j = 0; j < imageWidth; j++ )
+            {
+                int addr = address;
+
+                A1B2 = 0;
+                A2 = 0;
+                B1 = 0;
+                C1 = 0;
+                C2 = 0;
+
+                for( i = -USpace; i <= BSpace; i++ )
+                {
+                    A2 += WII[addr + j].xx * KerY[i];
+                    A1B2 += WII[addr + j].xy * KerY[i];
+                    B1 += WII[addr + j].yy * KerY[i];
+                    C2 += WII[addr + j].xt * KerY[i];
+                    C1 += WII[addr + j].yt * KerY[i];
+
+                    addr += BufferWidth;
+                    addr -= ((addr >= BufferSize) ? 0xffffffff : 0) & BufferSize;
+                }
+                /****************************************************************************************\
+                * Solve Linear System                                                                    *
+                \****************************************************************************************/
+                {
+                    float delta = (A1B2 * A1B2 - A2 * B1);
+
+                    if( delta )
+                    {
+                        /* system is not singular - solving by Kramer method */
+                        float deltaX;
+                        float deltaY;
+                        float Idelta = 8 / delta;
+
+                        deltaX = -(C1 * A1B2 - C2 * B1);
+                        deltaY = -(A1B2 * C2 - A2 * C1);
+
+                        velocityX[j] = deltaX * Idelta;
+                        velocityY[j] = deltaY * Idelta;
+                    }
+                    else
+                    {
+                        /* singular system - find optical flow in gradient direction */
+                        float Norm = (A1B2 + A2) * (A1B2 + A2) + (B1 + A1B2) * (B1 + A1B2);
+
+                        if( Norm )
+                        {
+                            float IGradNorm = 8 / Norm;
+                            float temp = -(C1 + C2) * IGradNorm;
+
+                            velocityX[j] = (A1B2 + A2) * temp;
+                            velocityY[j] = (B1 + A1B2) * temp;
+
+                        }
+                        else
+                        {
+                            velocityX[j] = 0;
+                            velocityY[j] = 0;
+                        }
+                    }
+                }
+                /****************************************************************************************\
+                * End of Solving Linear System                                                           *
+                \****************************************************************************************/
+            }                   /*for */
+            velocityX += velStep;
+            velocityY += velStep;
+        }                       /*for */
+        PixelLine++;
+        ConvLine++;
+    }
+
+    /* Free memory */
+    for( k = 0; k < 2; k++ )
+    {
+        cvFree( &MemX[k] );
+        cvFree( &MemY[k] );
+    }
+    cvFree( &II );
+    cvFree( &WII );
+
+    return CV_OK;
+} /*icvCalcOpticalFlowLK_8u32fR*/
+
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name:    cvCalcOpticalFlowLK
+//    Purpose: Optical flow implementation
+//    Context: 
+//    Parameters:
+//             srcA, srcB - source image
+//             velx, vely - destination image
+//    Returns:
+//
+//    Notes:
+//F*/
+CV_IMPL void
+cvCalcOpticalFlowLK( const void* srcarrA, const void* srcarrB, CvSize winSize,
+                     void* velarrx, void* velarry )
+{
+    CV_FUNCNAME( "cvCalcOpticalFlowLK" );
+
+    __BEGIN__;
+
+    CvMat stubA, *srcA = (CvMat*)srcarrA;
+    CvMat stubB, *srcB = (CvMat*)srcarrB;
+    CvMat stubx, *velx = (CvMat*)velarrx;
+    CvMat stuby, *vely = (CvMat*)velarry;
+
+    CV_CALL( srcA = cvGetMat( srcA, &stubA ));
+    CV_CALL( srcB = cvGetMat( srcB, &stubB ));
+
+    CV_CALL( velx = cvGetMat( velx, &stubx ));
+    CV_CALL( vely = cvGetMat( vely, &stuby ));
+
+    if( !CV_ARE_TYPES_EQ( srcA, srcB ))
+        CV_ERROR( CV_StsUnmatchedFormats, "Source images have different formats" );
+
+    if( !CV_ARE_TYPES_EQ( velx, vely ))
+        CV_ERROR( CV_StsUnmatchedFormats, "Destination images have different formats" );
+
+    if( !CV_ARE_SIZES_EQ( srcA, srcB ) ||
+        !CV_ARE_SIZES_EQ( velx, vely ) ||
+        !CV_ARE_SIZES_EQ( srcA, velx ))
+        CV_ERROR( CV_StsUnmatchedSizes, "" );
+
+    if( CV_MAT_TYPE( srcA->type ) != CV_8UC1 ||
+        CV_MAT_TYPE( velx->type ) != CV_32FC1 )
+        CV_ERROR( CV_StsUnsupportedFormat, "Source images must have 8uC1 type and "
+                                           "destination images must have 32fC1 type" );
+
+    if( srcA->step != srcB->step || velx->step != vely->step )
+        CV_ERROR( CV_BadStep, "source and destination images have different step" );
+
+    IPPI_CALL( icvCalcOpticalFlowLK_8u32fR( (uchar*)srcA->data.ptr, (uchar*)srcB->data.ptr,
+                                            srcA->step, cvGetMatSize( srcA ), winSize,
+                                            velx->data.fl, vely->data.fl, velx->step ));
+
+    __END__;
+}
+
+/* End of file. */