Update to 2.0.0 tree from current Fremantle build
[opencv] / src / cv / cvrotcalipers.cpp
diff --git a/src/cv/cvrotcalipers.cpp b/src/cv/cvrotcalipers.cpp
new file mode 100644 (file)
index 0000000..a6564e1
--- /dev/null
@@ -0,0 +1,474 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+#include "_cv.h"
+
+typedef struct
+{
+    int bottom;
+    int left;
+    float height;
+    float width;
+    float base_a;
+    float base_b;
+}
+icvMinAreaState;
+
+#define CV_CALIPERS_MAXHEIGHT      0
+#define CV_CALIPERS_MINAREARECT    1
+#define CV_CALIPERS_MAXDIST        2
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//    Name:    icvRotatingCalipers
+//    Purpose:
+//      Rotating calipers algorithm with some applications
+//
+//    Context:
+//    Parameters:
+//      points      - convex hull vertices ( any orientation )
+//      n           - number of vertices
+//      mode        - concrete application of algorithm 
+//                    can be  CV_CALIPERS_MAXDIST   or   
+//                            CV_CALIPERS_MINAREARECT  
+//      left, bottom, right, top - indexes of extremal points
+//      out         - output info.
+//                    In case CV_CALIPERS_MAXDIST it points to float value - 
+//                    maximal height of polygon.
+//                    In case CV_CALIPERS_MINAREARECT
+//                    ((CvPoint2D32f*)out)[0] - corner 
+//                    ((CvPoint2D32f*)out)[1] - vector1
+//                    ((CvPoint2D32f*)out)[0] - corner2
+//                      
+//                      ^
+//                      |
+//              vector2 |
+//                      |
+//                      |____________\
+//                    corner         /
+//                               vector1
+//
+//    Returns:
+//    Notes:
+//F*/
+
+/* we will use usual cartesian coordinates */
+static void
+icvRotatingCalipers( CvPoint2D32f* points, int n, int mode, float* out )
+{
+    float minarea = FLT_MAX;
+    float max_dist = 0;
+    char buffer[32];
+    int i, k;
+    CvPoint2D32f* vect = (CvPoint2D32f*)cvAlloc( n * sizeof(vect[0]) );
+    float* inv_vect_length = (float*)cvAlloc( n * sizeof(inv_vect_length[0]) );
+    int left = 0, bottom = 0, right = 0, top = 0;
+    int seq[4] = { -1, -1, -1, -1 };
+
+    /* rotating calipers sides will always have coordinates    
+       (a,b) (-b,a) (-a,-b) (b, -a)     
+     */
+    /* this is a first base bector (a,b) initialized by (1,0) */
+    float orientation = 0;
+    float base_a;
+    float base_b = 0;
+
+    float left_x, right_x, top_y, bottom_y;
+    CvPoint2D32f pt0 = points[0];
+    
+    left_x = right_x = pt0.x;
+    top_y = bottom_y = pt0.y;
+    
+    for( i = 0; i < n; i++ )
+    {
+        double dx, dy;
+        
+        if( pt0.x < left_x )
+            left_x = pt0.x, left = i;
+
+        if( pt0.x > right_x )
+            right_x = pt0.x, right = i;
+
+        if( pt0.y > top_y )
+            top_y = pt0.y, top = i;
+
+        if( pt0.y < bottom_y )
+            bottom_y = pt0.y, bottom = i;
+
+        CvPoint2D32f pt = points[(i+1) & (i+1 < n ? -1 : 0)];
+        
+        dx = pt.x - pt0.x;
+        dy = pt.y - pt0.y;
+
+        vect[i].x = (float)dx;
+        vect[i].y = (float)dy;
+        inv_vect_length[i] = (float)(1./sqrt(dx*dx + dy*dy));
+
+        pt0 = pt;
+    }
+
+    //cvbInvSqrt( inv_vect_length, inv_vect_length, n );
+
+    /* find convex hull orientation */
+    {
+        double ax = vect[n-1].x;
+        double ay = vect[n-1].y;
+        
+        for( i = 0; i < n; i++ )
+        {
+            double bx = vect[i].x;
+            double by = vect[i].y;
+
+            double convexity = ax * by - ay * bx;
+
+            if( convexity != 0 )
+            {
+                orientation = (convexity > 0) ? 1.f : (-1.f);
+                break;
+            }
+            ax = bx;
+            ay = by;
+        }
+        assert( orientation != 0 );
+    }
+    base_a = orientation;
+
+/*****************************************************************************************/
+/*                         init calipers position                                        */
+    seq[0] = bottom;
+    seq[1] = right;
+    seq[2] = top;
+    seq[3] = left;
+/*****************************************************************************************/
+/*                         Main loop - evaluate angles and rotate calipers               */
+
+    /* all of edges will be checked while rotating calipers by 90 degrees */
+    for( k = 0; k < n; k++ )
+    {
+        /* sinus of minimal angle */
+        /*float sinus;*/
+
+        /* compute cosine of angle between calipers side and polygon edge */
+        /* dp - dot product */
+        float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y;
+        float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y;
+        float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y;
+        float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y;
+
+        float cosalpha = dp0 * inv_vect_length[seq[0]];
+        float maxcos = cosalpha;
+
+        /* number of calipers edges, that has minimal angle with edge */
+        int main_element = 0;
+
+        /* choose minimal angle */
+        cosalpha = dp1 * inv_vect_length[seq[1]];
+        maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos;
+        cosalpha = dp2 * inv_vect_length[seq[2]];
+        maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos;
+        cosalpha = dp3 * inv_vect_length[seq[3]];
+        maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos;
+
+        /*rotate calipers*/
+        {
+            //get next base
+            int pindex = seq[main_element];
+            float lead_x = vect[pindex].x*inv_vect_length[pindex];
+            float lead_y = vect[pindex].y*inv_vect_length[pindex];
+            switch( main_element )
+            {
+            case 0:
+                base_a = lead_x;
+                base_b = lead_y;
+                break;
+            case 1:
+                base_a = lead_y; 
+                base_b = -lead_x;
+                break;
+            case 2:
+                base_a = -lead_x;
+                base_b = -lead_y;
+                break;
+            case 3:
+                base_a = -lead_y;
+                base_b = lead_x;
+                break;
+            default: assert(0);
+            }
+        }                        
+        /* change base point of main edge */
+        seq[main_element] += 1;
+        seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element];
+
+        
+        switch (mode)
+        {
+        case CV_CALIPERS_MAXHEIGHT:
+            {
+                /* now main element lies on edge alligned to calipers side */
+
+                /* find opposite element i.e. transform  */
+                /* 0->2, 1->3, 2->0, 3->1                */
+                int opposite_el = main_element ^ 2;
+
+                float dx = points[seq[opposite_el]].x - points[seq[main_element]].x;
+                float dy = points[seq[opposite_el]].y - points[seq[main_element]].y;
+                float dist;
+
+                if( main_element & 1 )
+                    dist = (float)fabs(dx * base_a + dy * base_b);
+                else
+                    dist = (float)fabs(dx * (-base_b) + dy * base_a);
+
+                if( dist > max_dist )
+                    max_dist = dist;
+
+                break;
+            }
+        case CV_CALIPERS_MINAREARECT:
+            /* find area of rectangle */
+            {
+                float height;
+                float area;
+
+                /* find vector left-right */
+                float dx = points[seq[1]].x - points[seq[3]].x;
+                float dy = points[seq[1]].y - points[seq[3]].y;
+
+                /* dotproduct */
+                float width = dx * base_a + dy * base_b;
+
+                /* find vector left-right */
+                dx = points[seq[2]].x - points[seq[0]].x;
+                dy = points[seq[2]].y - points[seq[0]].y;
+
+                /* dotproduct */
+                height = -dx * base_b + dy * base_a;
+
+                area = width * height;
+                if( area <= minarea )
+                {
+                    float *buf = (float *) buffer;
+
+                    minarea = area;
+                    /* leftist point */
+                    ((int *) buf)[0] = seq[3];
+                    buf[1] = base_a;
+                    buf[2] = width;
+                    buf[3] = base_b;
+                    buf[4] = height;
+                    /* bottom point */
+                    ((int *) buf)[5] = seq[0];
+                    buf[6] = area;
+                }
+                break;
+            }
+        }                       /*switch */
+    }                           /* for */
+
+    switch (mode)
+    {
+    case CV_CALIPERS_MINAREARECT:
+        {
+            float *buf = (float *) buffer;
+
+            float A1 = buf[1];
+            float B1 = buf[3];
+
+            float A2 = -buf[3];
+            float B2 = buf[1];
+
+            float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1;
+            float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2;
+
+            float idet = 1.f / (A1 * B2 - A2 * B1);
+
+            float px = (C1 * B2 - C2 * B1) * idet;
+            float py = (A1 * C2 - A2 * C1) * idet;
+
+            out[0] = px;
+            out[1] = py;
+
+            out[2] = A1 * buf[2];
+            out[3] = B1 * buf[2];
+
+            out[4] = A2 * buf[4];
+            out[5] = B2 * buf[4];
+        }
+        break;
+    case CV_CALIPERS_MAXHEIGHT:
+        {
+            out[0] = max_dist;
+        }
+        break;
+    }
+
+    cvFree( &vect );
+    cvFree( &inv_vect_length );
+}
+
+
+CV_IMPL  CvBox2D
+cvMinAreaRect2( const CvArr* array, CvMemStorage* storage )
+{
+    CvMemStorage* temp_storage = 0;
+    CvBox2D box;
+    CvPoint2D32f* points = 0;
+    
+    CV_FUNCNAME( "cvMinAreaRect2" );
+
+    memset(&box, 0, sizeof(box));
+
+    __BEGIN__;
+
+    int i, n;
+    CvSeqReader reader;
+    CvContour contour_header;
+    CvSeqBlock block;
+    CvSeq* ptseq = (CvSeq*)array;
+    CvPoint2D32f out[3];
+
+    if( CV_IS_SEQ(ptseq) )
+    {
+        if( !CV_IS_SEQ_POINT_SET(ptseq) &&
+            (CV_SEQ_KIND(ptseq) != CV_SEQ_KIND_CURVE || !CV_IS_SEQ_CONVEX(ptseq) ||
+            CV_SEQ_ELTYPE(ptseq) != CV_SEQ_ELTYPE_PPOINT ))
+            CV_ERROR( CV_StsUnsupportedFormat,
+                "Input sequence must consist of 2d points or pointers to 2d points" );
+        if( !storage )
+            storage = ptseq->storage;
+    }
+    else
+    {
+        CV_CALL( ptseq = cvPointSeqFromMat(
+            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
+    }
+
+    if( storage )
+    {
+        CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
+    }
+    else
+    {
+        CV_CALL( temp_storage = cvCreateMemStorage(1 << 10));
+    }
+
+    if( !CV_IS_SEQ_CONVEX( ptseq ))
+    {
+        CV_CALL( ptseq = cvConvexHull2( ptseq, temp_storage, CV_CLOCKWISE, 1 ));
+    }
+    else if( !CV_IS_SEQ_POINT_SET( ptseq ))
+    {
+        CvSeqWriter writer;
+        
+        if( !CV_IS_SEQ(ptseq->v_prev) || !CV_IS_SEQ_POINT_SET(ptseq->v_prev))
+            CV_ERROR( CV_StsBadArg,
+            "Convex hull must have valid pointer to point sequence stored in v_prev" );
+        cvStartReadSeq( ptseq, &reader );
+        cvStartWriteSeq( CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CONVEX|CV_SEQ_ELTYPE(ptseq->v_prev),
+                         sizeof(CvContour), CV_ELEM_SIZE(ptseq->v_prev->flags),
+                         temp_storage, &writer );
+            
+        for( i = 0; i < ptseq->total; i++ )
+        {
+            CvPoint pt = **(CvPoint**)(reader.ptr);
+            CV_WRITE_SEQ_ELEM( pt, writer );
+        }
+
+        ptseq = cvEndWriteSeq( &writer );
+    }
+
+    n = ptseq->total;
+
+    CV_CALL( points = (CvPoint2D32f*)cvAlloc( n*sizeof(points[0]) ));
+    cvStartReadSeq( ptseq, &reader );
+
+    if( CV_SEQ_ELTYPE( ptseq ) == CV_32SC2 )
+    {
+        for( i = 0; i < n; i++ )
+        {
+            CvPoint pt;
+            CV_READ_SEQ_ELEM( pt, reader );
+            points[i].x = (float)pt.x;
+            points[i].y = (float)pt.y;
+        }
+    }
+    else
+    {
+        for( i = 0; i < n; i++ )
+        {
+            CV_READ_SEQ_ELEM( points[i], reader );
+        }
+    }
+    
+    if( n > 2 )
+    {
+        icvRotatingCalipers( points, n, CV_CALIPERS_MINAREARECT, (float*)out );
+        box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
+        box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
+        box.size.height = (float)sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
+        box.size.width = (float)sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
+        box.angle = (float)atan2( -(double)out[1].y, (double)out[1].x );
+    }
+    else if( n == 2 )
+    {
+        box.center.x = (points[0].x + points[1].x)*0.5f;
+        box.center.y = (points[0].y + points[1].y)*0.5f;
+        double dx = points[1].x - points[0].x;
+        double dy = points[1].y - points[0].y;
+        box.size.height = (float)sqrt(dx*dx + dy*dy);
+        box.size.width = 0;
+        box.angle = (float)atan2( -dy, dx );
+    }
+    else
+    {
+        if( n == 1 )
+            box.center = points[0];
+    }
+
+    box.angle = (float)(box.angle*180/CV_PI);
+
+    __END__; 
+
+    cvReleaseMemStorage( &temp_storage );
+    cvFree( &points );
+
+    return box;
+}
+