header cleaning: don't include smp_lock.h when not used
[h-e-n] / arch / sparc / kernel / smp.c
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35
36 int smp_num_cpus = 1;
37 volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
38 unsigned char boot_cpu_id = 0;
39 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
40 int smp_activated = 0;
41 volatile int __cpu_number_map[NR_CPUS];
42 volatile int __cpu_logical_map[NR_CPUS];
43
44 cpumask_t cpu_online_map = CPU_MASK_NONE;
45 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
46 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
47
48 /* The only guaranteed locking primitive available on all Sparc
49  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
50  * places the current byte at the effective address into dest_reg and
51  * places 0xff there afterwards.  Pretty lame locking primitive
52  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
53  * instruction which is much better...
54  */
55
56 /* Used to make bitops atomic */
57 unsigned char bitops_spinlock = 0;
58
59 void __cpuinit smp_store_cpu_info(int id)
60 {
61         int cpu_node;
62
63         cpu_data(id).udelay_val = loops_per_jiffy;
64
65         cpu_find_by_mid(id, &cpu_node);
66         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
67                                                      "clock-frequency", 0);
68         cpu_data(id).prom_node = cpu_node;
69         cpu_data(id).mid = cpu_get_hwmid(cpu_node);
70
71         /* this is required to tune the scheduler correctly */
72         /* is it possible to have CPUs with different cache sizes? */
73         if (id == boot_cpu_id) {
74                 int cache_line,cache_nlines;
75                 cache_line = 0x20;
76                 cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
77                 cache_nlines = 0x8000;
78                 cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
79                 max_cache_size = cache_line * cache_nlines;
80         }
81         if (cpu_data(id).mid < 0)
82                 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
83 }
84
85 void __init smp_cpus_done(unsigned int max_cpus)
86 {
87         extern void smp4m_smp_done(void);
88         extern void smp4d_smp_done(void);
89         unsigned long bogosum = 0;
90         int cpu, num;
91
92         for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
93                 if (cpu_online(cpu)) {
94                         num++;
95                         bogosum += cpu_data(cpu).udelay_val;
96                 }
97
98         printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
99                 num, bogosum/(500000/HZ),
100                 (bogosum/(5000/HZ))%100);
101
102         switch(sparc_cpu_model) {
103         case sun4:
104                 printk("SUN4\n");
105                 BUG();
106                 break;
107         case sun4c:
108                 printk("SUN4C\n");
109                 BUG();
110                 break;
111         case sun4m:
112                 smp4m_smp_done();
113                 break;
114         case sun4d:
115                 smp4d_smp_done();
116                 break;
117         case sun4e:
118                 printk("SUN4E\n");
119                 BUG();
120                 break;
121         case sun4u:
122                 printk("SUN4U\n");
123                 BUG();
124                 break;
125         default:
126                 printk("UNKNOWN!\n");
127                 BUG();
128                 break;
129         };
130 }
131
132 void cpu_panic(void)
133 {
134         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135         panic("SMP bolixed\n");
136 }
137
138 struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
139
140 void smp_send_reschedule(int cpu)
141 {
142         /* See sparc64 */
143 }
144
145 void smp_send_stop(void)
146 {
147 }
148
149 void smp_flush_cache_all(void)
150 {
151         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
152         local_flush_cache_all();
153 }
154
155 void smp_flush_tlb_all(void)
156 {
157         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
158         local_flush_tlb_all();
159 }
160
161 void smp_flush_cache_mm(struct mm_struct *mm)
162 {
163         if(mm->context != NO_CONTEXT) {
164                 cpumask_t cpu_mask = mm->cpu_vm_mask;
165                 cpu_clear(smp_processor_id(), cpu_mask);
166                 if (!cpus_empty(cpu_mask))
167                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
168                 local_flush_cache_mm(mm);
169         }
170 }
171
172 void smp_flush_tlb_mm(struct mm_struct *mm)
173 {
174         if(mm->context != NO_CONTEXT) {
175                 cpumask_t cpu_mask = mm->cpu_vm_mask;
176                 cpu_clear(smp_processor_id(), cpu_mask);
177                 if (!cpus_empty(cpu_mask)) {
178                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
179                         if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
180                                 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
181                 }
182                 local_flush_tlb_mm(mm);
183         }
184 }
185
186 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
187                            unsigned long end)
188 {
189         struct mm_struct *mm = vma->vm_mm;
190
191         if (mm->context != NO_CONTEXT) {
192                 cpumask_t cpu_mask = mm->cpu_vm_mask;
193                 cpu_clear(smp_processor_id(), cpu_mask);
194                 if (!cpus_empty(cpu_mask))
195                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
196                 local_flush_cache_range(vma, start, end);
197         }
198 }
199
200 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
201                          unsigned long end)
202 {
203         struct mm_struct *mm = vma->vm_mm;
204
205         if (mm->context != NO_CONTEXT) {
206                 cpumask_t cpu_mask = mm->cpu_vm_mask;
207                 cpu_clear(smp_processor_id(), cpu_mask);
208                 if (!cpus_empty(cpu_mask))
209                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
210                 local_flush_tlb_range(vma, start, end);
211         }
212 }
213
214 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
215 {
216         struct mm_struct *mm = vma->vm_mm;
217
218         if(mm->context != NO_CONTEXT) {
219                 cpumask_t cpu_mask = mm->cpu_vm_mask;
220                 cpu_clear(smp_processor_id(), cpu_mask);
221                 if (!cpus_empty(cpu_mask))
222                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
223                 local_flush_cache_page(vma, page);
224         }
225 }
226
227 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
228 {
229         struct mm_struct *mm = vma->vm_mm;
230
231         if(mm->context != NO_CONTEXT) {
232                 cpumask_t cpu_mask = mm->cpu_vm_mask;
233                 cpu_clear(smp_processor_id(), cpu_mask);
234                 if (!cpus_empty(cpu_mask))
235                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
236                 local_flush_tlb_page(vma, page);
237         }
238 }
239
240 void smp_reschedule_irq(void)
241 {
242         set_need_resched();
243 }
244
245 void smp_flush_page_to_ram(unsigned long page)
246 {
247         /* Current theory is that those who call this are the one's
248          * who have just dirtied their cache with the pages contents
249          * in kernel space, therefore we only run this on local cpu.
250          *
251          * XXX This experiment failed, research further... -DaveM
252          */
253 #if 1
254         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
255 #endif
256         local_flush_page_to_ram(page);
257 }
258
259 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
260 {
261         cpumask_t cpu_mask = mm->cpu_vm_mask;
262         cpu_clear(smp_processor_id(), cpu_mask);
263         if (!cpus_empty(cpu_mask))
264                 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
265         local_flush_sig_insns(mm, insn_addr);
266 }
267
268 extern unsigned int lvl14_resolution;
269
270 /* /proc/profile writes can call this, don't __init it please. */
271 static DEFINE_SPINLOCK(prof_setup_lock);
272
273 int setup_profiling_timer(unsigned int multiplier)
274 {
275         int i;
276         unsigned long flags;
277
278         /* Prevent level14 ticker IRQ flooding. */
279         if((!multiplier) || (lvl14_resolution / multiplier) < 500)
280                 return -EINVAL;
281
282         spin_lock_irqsave(&prof_setup_lock, flags);
283         for_each_possible_cpu(i) {
284                 load_profile_irq(i, lvl14_resolution / multiplier);
285                 prof_multiplier(i) = multiplier;
286         }
287         spin_unlock_irqrestore(&prof_setup_lock, flags);
288
289         return 0;
290 }
291
292 void __init smp_prepare_cpus(unsigned int max_cpus)
293 {
294         extern void __init smp4m_boot_cpus(void);
295         extern void __init smp4d_boot_cpus(void);
296         int i, cpuid, extra;
297
298         printk("Entering SMP Mode...\n");
299
300         extra = 0;
301         for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
302                 if (cpuid >= NR_CPUS)
303                         extra++;
304         }
305         /* i = number of cpus */
306         if (extra && max_cpus > i - extra)
307                 printk("Warning: NR_CPUS is too low to start all cpus\n");
308
309         smp_store_cpu_info(boot_cpu_id);
310
311         switch(sparc_cpu_model) {
312         case sun4:
313                 printk("SUN4\n");
314                 BUG();
315                 break;
316         case sun4c:
317                 printk("SUN4C\n");
318                 BUG();
319                 break;
320         case sun4m:
321                 smp4m_boot_cpus();
322                 break;
323         case sun4d:
324                 smp4d_boot_cpus();
325                 break;
326         case sun4e:
327                 printk("SUN4E\n");
328                 BUG();
329                 break;
330         case sun4u:
331                 printk("SUN4U\n");
332                 BUG();
333                 break;
334         default:
335                 printk("UNKNOWN!\n");
336                 BUG();
337                 break;
338         };
339 }
340
341 /* Set this up early so that things like the scheduler can init
342  * properly.  We use the same cpu mask for both the present and
343  * possible cpu map.
344  */
345 void __init smp_setup_cpu_possible_map(void)
346 {
347         int instance, mid;
348
349         instance = 0;
350         while (!cpu_find_by_instance(instance, NULL, &mid)) {
351                 if (mid < NR_CPUS) {
352                         cpu_set(mid, phys_cpu_present_map);
353                         cpu_set(mid, cpu_present_map);
354                 }
355                 instance++;
356         }
357 }
358
359 void __init smp_prepare_boot_cpu(void)
360 {
361         int cpuid = hard_smp_processor_id();
362
363         if (cpuid >= NR_CPUS) {
364                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
365                 prom_halt();
366         }
367         if (cpuid != 0)
368                 printk("boot cpu id != 0, this could work but is untested\n");
369
370         current_thread_info()->cpu = cpuid;
371         cpu_set(cpuid, cpu_online_map);
372         cpu_set(cpuid, phys_cpu_present_map);
373 }
374
375 int __cpuinit __cpu_up(unsigned int cpu)
376 {
377         extern int __cpuinit smp4m_boot_one_cpu(int);
378         extern int __cpuinit smp4d_boot_one_cpu(int);
379         int ret=0;
380
381         switch(sparc_cpu_model) {
382         case sun4:
383                 printk("SUN4\n");
384                 BUG();
385                 break;
386         case sun4c:
387                 printk("SUN4C\n");
388                 BUG();
389                 break;
390         case sun4m:
391                 ret = smp4m_boot_one_cpu(cpu);
392                 break;
393         case sun4d:
394                 ret = smp4d_boot_one_cpu(cpu);
395                 break;
396         case sun4e:
397                 printk("SUN4E\n");
398                 BUG();
399                 break;
400         case sun4u:
401                 printk("SUN4U\n");
402                 BUG();
403                 break;
404         default:
405                 printk("UNKNOWN!\n");
406                 BUG();
407                 break;
408         };
409
410         if (!ret) {
411                 cpu_set(cpu, smp_commenced_mask);
412                 while (!cpu_online(cpu))
413                         mb();
414         }
415         return ret;
416 }
417
418 void smp_bogo(struct seq_file *m)
419 {
420         int i;
421         
422         for_each_online_cpu(i) {
423                 seq_printf(m,
424                            "Cpu%dBogo\t: %lu.%02lu\n",
425                            i,
426                            cpu_data(i).udelay_val/(500000/HZ),
427                            (cpu_data(i).udelay_val/(5000/HZ))%100);
428         }
429 }
430
431 void smp_info(struct seq_file *m)
432 {
433         int i;
434
435         seq_printf(m, "State:\n");
436         for_each_online_cpu(i)
437                 seq_printf(m, "CPU%d\t\t: online\n", i);
438 }