avoid using char when it is not necessary
[qemu] / fpu / softfloat-native.c
1 /* Native implementation of soft float functions. Only a single status
2    context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5
6 void set_float_rounding_mode(int val STATUS_PARAM)
7 {
8     STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10     fpsetround(val);
11 #elif defined(__arm__)
12     /* nothing to do */
13 #else
14     fesetround(val);
15 #endif
16 }
17
18 #ifdef FLOATX80
19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 {
21     STATUS(floatx80_rounding_precision) = val;
22 }
23 #endif
24
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d)                ((int32_t)rint(d))
27 #define llrint(d)               ((int64_t)rint(d))
28 #define lrintf(f)               ((int32_t)rint(f))
29 #define llrintf(f)              ((int64_t)rint(f))
30 #define sqrtf(f)                ((float)sqrt(f))
31 #define remainderf(fa, fb)      ((float)remainder(fa, fb))
32 #define rintf(f)                ((float)rint(f))
33 #endif
34
35 #if defined(__powerpc__)
36
37 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
38 double qemu_rint(double x)
39 {
40     double y = 4503599627370496.0;
41     if (fabs(x) >= y)
42         return x;
43     if (x < 0) 
44         y = -y;
45     y = (x + y) - y;
46     if (y == 0.0)
47         y = copysign(y, x);
48     return y;
49 }
50
51 #define rint qemu_rint
52 #endif
53
54 /*----------------------------------------------------------------------------
55 | Software IEC/IEEE integer-to-floating-point conversion routines.
56 *----------------------------------------------------------------------------*/
57 float32 int32_to_float32(int v STATUS_PARAM)
58 {
59     return (float32)v;
60 }
61
62 float64 int32_to_float64(int v STATUS_PARAM)
63 {
64     return (float64)v;
65 }
66
67 #ifdef FLOATX80
68 floatx80 int32_to_floatx80(int v STATUS_PARAM)
69 {
70     return (floatx80)v;
71 }
72 #endif
73 float32 int64_to_float32( int64_t v STATUS_PARAM)
74 {
75     return (float32)v;
76 }
77 float64 int64_to_float64( int64_t v STATUS_PARAM)
78 {
79     return (float64)v;
80 }
81 #ifdef FLOATX80
82 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
83 {
84     return (floatx80)v;
85 }
86 #endif
87
88 /* XXX: this code implements the x86 behaviour, not the IEEE one.  */
89 #if HOST_LONG_BITS == 32
90 static inline int long_to_int32(long a)
91 {
92     return a;
93 }
94 #else
95 static inline int long_to_int32(long a)
96 {
97     if (a != (int32_t)a) 
98         a = 0x80000000;
99     return a;
100 }
101 #endif
102
103 /*----------------------------------------------------------------------------
104 | Software IEC/IEEE single-precision conversion routines.
105 *----------------------------------------------------------------------------*/
106 int float32_to_int32( float32 a STATUS_PARAM)
107 {
108     return long_to_int32(lrintf(a));
109 }
110 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
111 {
112     return (int)a;
113 }
114 int64_t float32_to_int64( float32 a STATUS_PARAM)
115 {
116     return llrintf(a);
117 }
118
119 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
120 {
121     return (int64_t)a;
122 }
123
124 float64 float32_to_float64( float32 a STATUS_PARAM)
125 {
126     return a;
127 }
128 #ifdef FLOATX80
129 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
130 {
131     return a;
132 }
133 #endif
134
135 /*----------------------------------------------------------------------------
136 | Software IEC/IEEE single-precision operations.
137 *----------------------------------------------------------------------------*/
138 float32 float32_round_to_int( float32 a STATUS_PARAM)
139 {
140     return rintf(a);
141 }
142
143 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
144 {
145     return remainderf(a, b);
146 }
147
148 float32 float32_sqrt( float32 a STATUS_PARAM)
149 {
150     return sqrtf(a);
151 }
152 int float32_compare( float32 a, float32 b STATUS_PARAM )
153 {
154     if (a < b) {
155         return -1;
156     } else if (a == b) {
157         return 0;
158     } else if (a > b) {
159         return 1;
160     } else {
161         return 2;
162     }
163 }
164 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
165 {
166     if (isless(a, b)) {
167         return -1;
168     } else if (a == b) {
169         return 0;
170     } else if (isgreater(a, b)) {
171         return 1;
172     } else {
173         return 2;
174     }
175 }
176 int float32_is_signaling_nan( float32 a1)
177 {
178     float32u u;
179     uint32_t a;
180     u.f = a1;
181     a = u.i;
182     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
183 }
184
185 /*----------------------------------------------------------------------------
186 | Software IEC/IEEE double-precision conversion routines.
187 *----------------------------------------------------------------------------*/
188 int float64_to_int32( float64 a STATUS_PARAM)
189 {
190     return long_to_int32(lrint(a));
191 }
192 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
193 {
194     return (int)a;
195 }
196 int64_t float64_to_int64( float64 a STATUS_PARAM)
197 {
198     return llrint(a);
199 }
200 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
201 {
202     return (int64_t)a;
203 }
204 float32 float64_to_float32( float64 a STATUS_PARAM)
205 {
206     return a;
207 }
208 #ifdef FLOATX80
209 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
210 {
211     return a;
212 }
213 #endif
214 #ifdef FLOAT128
215 float128 float64_to_float128( float64 a STATUS_PARAM)
216 {
217     return a;
218 }
219 #endif
220
221 /*----------------------------------------------------------------------------
222 | Software IEC/IEEE double-precision operations.
223 *----------------------------------------------------------------------------*/
224 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
225 {
226     return trunc(a);
227 }
228
229 float64 float64_round_to_int( float64 a STATUS_PARAM )
230 {
231 #if defined(__arm__)
232     switch(STATUS(float_rounding_mode)) {
233     default:
234     case float_round_nearest_even:
235         asm("rndd %0, %1" : "=f" (a) : "f"(a));
236         break;
237     case float_round_down:
238         asm("rnddm %0, %1" : "=f" (a) : "f"(a));
239         break;
240     case float_round_up:
241         asm("rnddp %0, %1" : "=f" (a) : "f"(a));
242         break;
243     case float_round_to_zero:
244         asm("rnddz %0, %1" : "=f" (a) : "f"(a));
245         break;
246     }
247 #else
248     return rint(a);
249 #endif
250 }
251
252 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
253 {
254     return remainder(a, b);
255 }
256
257 float64 float64_sqrt( float64 a STATUS_PARAM)
258 {
259     return sqrt(a);
260 }
261 int float64_compare( float64 a, float64 b STATUS_PARAM )
262 {
263     if (a < b) {
264         return -1;
265     } else if (a == b) {
266         return 0;
267     } else if (a > b) {
268         return 1;
269     } else {
270         return 2;
271     }
272 }
273 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
274 {
275     if (isless(a, b)) {
276         return -1;
277     } else if (a == b) {
278         return 0;
279     } else if (isgreater(a, b)) {
280         return 1;
281     } else {
282         return 2;
283     }
284 }
285 int float64_is_signaling_nan( float64 a1)
286 {
287     float64u u;
288     uint64_t a;
289     u.f = a1;
290     a = u.i;
291     return
292            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
293         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
294
295 }
296
297 int float64_is_nan( float64 a1 )
298 {
299     float64u u;
300     uint64_t a;
301     u.f = a1;
302     a = u.i;
303
304     return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
305
306 }
307
308 #ifdef FLOATX80
309
310 /*----------------------------------------------------------------------------
311 | Software IEC/IEEE extended double-precision conversion routines.
312 *----------------------------------------------------------------------------*/
313 int floatx80_to_int32( floatx80 a STATUS_PARAM)
314 {
315     return long_to_int32(lrintl(a));
316 }
317 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
318 {
319     return (int)a;
320 }
321 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
322 {
323     return llrintl(a);
324 }
325 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
326 {
327     return (int64_t)a;
328 }
329 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
330 {
331     return a;
332 }
333 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
334 {
335     return a;
336 }
337
338 /*----------------------------------------------------------------------------
339 | Software IEC/IEEE extended double-precision operations.
340 *----------------------------------------------------------------------------*/
341 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
342 {
343     return rintl(a);
344 }
345 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
346 {
347     return remainderl(a, b);
348 }
349 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
350 {
351     return sqrtl(a);
352 }
353 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
354 {
355     if (a < b) {
356         return -1;
357     } else if (a == b) {
358         return 0;
359     } else if (a > b) {
360         return 1;
361     } else {
362         return 2;
363     }
364 }
365 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
366 {
367     if (isless(a, b)) {
368         return -1;
369     } else if (a == b) {
370         return 0;
371     } else if (isgreater(a, b)) {
372         return 1;
373     } else {
374         return 2;
375     }
376 }
377 int floatx80_is_signaling_nan( floatx80 a1)
378 {
379     floatx80u u;
380     u.f = a1;
381     return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
382 }
383
384 #endif