Solaris/SPARC host port (Ben Taylor)
[qemu] / fpu / softfloat-native.c
1 /* Native implementation of soft float functions. Only a single status
2    context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5
6 void set_float_rounding_mode(int val STATUS_PARAM)
7 {
8     STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10     fpsetround(val);
11 #elif defined(__arm__)
12     /* nothing to do */
13 #else
14     fesetround(val);
15 #endif
16 }
17
18 #ifdef FLOATX80
19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 {
21     STATUS(floatx80_rounding_precision) = val;
22 }
23 #endif
24
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d)                ((int32_t)rint(d))
27 #define llrint(d)               ((int64_t)rint(d))
28 #define lrintf(f)               ((int32_t)rint(f))
29 #define llrintf(f)              ((int64_t)rint(f))
30 #define sqrtf(f)                ((float)sqrt(f))
31 #define remainderf(fa, fb)      ((float)remainder(fa, fb))
32 #define rintf(f)                ((float)rint(f))
33 #endif
34
35 #if defined(__powerpc__)
36
37 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
38 double qemu_rint(double x)
39 {
40     double y = 4503599627370496.0;
41     if (fabs(x) >= y)
42         return x;
43     if (x < 0) 
44         y = -y;
45     y = (x + y) - y;
46     if (y == 0.0)
47         y = copysign(y, x);
48     return y;
49 }
50
51 #define rint qemu_rint
52 #endif
53
54 /*----------------------------------------------------------------------------
55 | Software IEC/IEEE integer-to-floating-point conversion routines.
56 *----------------------------------------------------------------------------*/
57 float32 int32_to_float32(int v STATUS_PARAM)
58 {
59     return (float32)v;
60 }
61
62 float64 int32_to_float64(int v STATUS_PARAM)
63 {
64     return (float64)v;
65 }
66
67 #ifdef FLOATX80
68 floatx80 int32_to_floatx80(int v STATUS_PARAM)
69 {
70     return (floatx80)v;
71 }
72 #endif
73 float32 int64_to_float32( int64_t v STATUS_PARAM)
74 {
75     return (float32)v;
76 }
77 float64 int64_to_float64( int64_t v STATUS_PARAM)
78 {
79     return (float64)v;
80 }
81 #ifdef FLOATX80
82 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
83 {
84     return (floatx80)v;
85 }
86 #endif
87
88 /* XXX: this code implements the x86 behaviour, not the IEEE one.  */
89 #if HOST_LONG_BITS == 32
90 static inline int long_to_int32(long a)
91 {
92     return a;
93 }
94 #else
95 static inline int long_to_int32(long a)
96 {
97     if (a != (int32_t)a) 
98         a = 0x80000000;
99     return a;
100 }
101 #endif
102
103 /*----------------------------------------------------------------------------
104 | Software IEC/IEEE single-precision conversion routines.
105 *----------------------------------------------------------------------------*/
106 int float32_to_int32( float32 a STATUS_PARAM)
107 {
108     return long_to_int32(lrintf(a));
109 }
110 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
111 {
112     return (int)a;
113 }
114 int64_t float32_to_int64( float32 a STATUS_PARAM)
115 {
116     return llrintf(a);
117 }
118
119 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
120 {
121     return (int64_t)a;
122 }
123
124 float64 float32_to_float64( float32 a STATUS_PARAM)
125 {
126     return a;
127 }
128 #ifdef FLOATX80
129 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
130 {
131     return a;
132 }
133 #endif
134
135 /*----------------------------------------------------------------------------
136 | Software IEC/IEEE single-precision operations.
137 *----------------------------------------------------------------------------*/
138 float32 float32_round_to_int( float32 a STATUS_PARAM)
139 {
140     return rintf(a);
141 }
142
143 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
144 {
145     return remainderf(a, b);
146 }
147
148 float32 float32_sqrt( float32 a STATUS_PARAM)
149 {
150     return sqrtf(a);
151 }
152 char float32_compare( float32 a, float32 b STATUS_PARAM )
153 {
154     if (a < b) {
155         return -1;
156     } else if (a == b) {
157         return 0;
158     } else if (a > b) {
159         return 1;
160     } else {
161         return 2;
162     }
163 }
164 char float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
165 {
166     if (isless(a, b)) {
167         return -1;
168     } else if (a == b) {
169         return 0;
170     } else if (isgreater(a, b)) {
171         return 1;
172     } else {
173         return 2;
174     }
175 }
176 char float32_is_signaling_nan( float32 a1)
177 {
178     float32u u;
179     uint32_t a;
180     u.f = a1;
181     a = u.i;
182     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
183 }
184
185 /*----------------------------------------------------------------------------
186 | Software IEC/IEEE double-precision conversion routines.
187 *----------------------------------------------------------------------------*/
188 int float64_to_int32( float64 a STATUS_PARAM)
189 {
190     return long_to_int32(lrint(a));
191 }
192 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
193 {
194     return (int)a;
195 }
196 int64_t float64_to_int64( float64 a STATUS_PARAM)
197 {
198     return llrint(a);
199 }
200 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
201 {
202     return (int64_t)a;
203 }
204 float32 float64_to_float32( float64 a STATUS_PARAM)
205 {
206     return a;
207 }
208 #ifdef FLOATX80
209 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
210 {
211     return a;
212 }
213 #endif
214 #ifdef FLOAT128
215 float128 float64_to_float128( float64 a STATUS_PARAM)
216 {
217     return a;
218 }
219 #endif
220
221 /*----------------------------------------------------------------------------
222 | Software IEC/IEEE double-precision operations.
223 *----------------------------------------------------------------------------*/
224 float64 float64_round_to_int( float64 a STATUS_PARAM )
225 {
226 #if defined(__arm__)
227     switch(STATUS(float_rounding_mode)) {
228     default:
229     case float_round_nearest_even:
230         asm("rndd %0, %1" : "=f" (a) : "f"(a));
231         break;
232     case float_round_down:
233         asm("rnddm %0, %1" : "=f" (a) : "f"(a));
234         break;
235     case float_round_up:
236         asm("rnddp %0, %1" : "=f" (a) : "f"(a));
237         break;
238     case float_round_to_zero:
239         asm("rnddz %0, %1" : "=f" (a) : "f"(a));
240         break;
241     }
242 #else
243     return rint(a);
244 #endif
245 }
246
247 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
248 {
249     return remainder(a, b);
250 }
251
252 float64 float64_sqrt( float64 a STATUS_PARAM)
253 {
254     return sqrt(a);
255 }
256 char float64_compare( float64 a, float64 b STATUS_PARAM )
257 {
258     if (a < b) {
259         return -1;
260     } else if (a == b) {
261         return 0;
262     } else if (a > b) {
263         return 1;
264     } else {
265         return 2;
266     }
267 }
268 char float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
269 {
270     if (isless(a, b)) {
271         return -1;
272     } else if (a == b) {
273         return 0;
274     } else if (isgreater(a, b)) {
275         return 1;
276     } else {
277         return 2;
278     }
279 }
280 char float64_is_signaling_nan( float64 a1)
281 {
282     float64u u;
283     uint64_t a;
284     u.f = a1;
285     a = u.i;
286     return
287            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
288         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
289
290 }
291
292 #ifdef FLOATX80
293
294 /*----------------------------------------------------------------------------
295 | Software IEC/IEEE extended double-precision conversion routines.
296 *----------------------------------------------------------------------------*/
297 int floatx80_to_int32( floatx80 a STATUS_PARAM)
298 {
299     return long_to_int32(lrintl(a));
300 }
301 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
302 {
303     return (int)a;
304 }
305 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
306 {
307     return llrintl(a);
308 }
309 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
310 {
311     return (int64_t)a;
312 }
313 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
314 {
315     return a;
316 }
317 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
318 {
319     return a;
320 }
321
322 /*----------------------------------------------------------------------------
323 | Software IEC/IEEE extended double-precision operations.
324 *----------------------------------------------------------------------------*/
325 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
326 {
327     return rintl(a);
328 }
329 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
330 {
331     return remainderl(a, b);
332 }
333 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
334 {
335     return sqrtl(a);
336 }
337 char floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
338 {
339     if (a < b) {
340         return -1;
341     } else if (a == b) {
342         return 0;
343     } else if (a > b) {
344         return 1;
345     } else {
346         return 2;
347     }
348 }
349 char floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
350 {
351     if (isless(a, b)) {
352         return -1;
353     } else if (a == b) {
354         return 0;
355     } else if (isgreater(a, b)) {
356         return 1;
357     } else {
358         return 2;
359     }
360 }
361 char floatx80_is_signaling_nan( floatx80 a1)
362 {
363     floatx80u u;
364     u.f = a1;
365     return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
366 }
367
368 #endif