128-bit float support for user mode
[qemu] / fpu / softfloat-native.h
1 /* Native implementation of soft float functions */
2 #include <math.h>
3
4 #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
5 #include <ieeefp.h>
6 #define fabsf(f) ((float)fabs(f))
7 #else
8 #include <fenv.h>
9 #endif
10
11 /*
12  * Define some C99-7.12.3 classification macros and
13  *        some C99-.12.4 for Solaris systems OS less than 10,
14  *        or Solaris 10 systems running GCC 3.x or less.
15  *   Solaris 10 with GCC4 does not need these macros as they
16  *   are defined in <iso/math_c99.h> with a compiler directive
17  */
18 #if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) && (__GNUC__ <= 4)))
19 /*
20  * C99 7.12.3 classification macros
21  * and
22  * C99 7.12.14 comparison macros
23  *
24  * ... do not work on Solaris 10 using GNU CC 3.4.x.
25  * Try to workaround the missing / broken C99 math macros.
26  */
27
28 #define isnormal(x)             (fpclass(x) >= FP_NZERO)
29 #define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
30 #define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
31 #define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
32 #define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
33 #define isunordered(x,y)        unordered(x, y)
34 #endif
35
36 #if defined(__sun__) && !defined(NEED_LIBSUNMATH)
37
38 #ifndef isnan
39 # define isnan(x) \
40     (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
41      : sizeof (x) == sizeof (double) ? isnan_d (x) \
42      : isnan_f (x))
43 static inline int isnan_f  (float       x) { return x != x; }
44 static inline int isnan_d  (double      x) { return x != x; }
45 static inline int isnan_ld (long double x) { return x != x; }
46 #endif
47
48 #ifndef isinf
49 # define isinf(x) \
50     (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
51      : sizeof (x) == sizeof (double) ? isinf_d (x) \
52      : isinf_f (x))
53 static inline int isinf_f  (float       x) { return isnan (x - x); }
54 static inline int isinf_d  (double      x) { return isnan (x - x); }
55 static inline int isinf_ld (long double x) { return isnan (x - x); }
56 #endif
57 #endif
58
59 typedef float float32;
60 typedef double float64;
61 #ifdef FLOATX80
62 typedef long double floatx80;
63 #endif
64
65 typedef union {
66     float32 f;
67     uint32_t i;
68 } float32u;
69 typedef union {
70     float64 f;
71     uint64_t i;
72 } float64u;
73 #ifdef FLOATX80
74 typedef union {
75     floatx80 f;
76     struct {
77         uint64_t low;
78         uint16_t high;
79     } i;
80 } floatx80u;
81 #endif
82
83 /*----------------------------------------------------------------------------
84 | Software IEC/IEEE floating-point rounding mode.
85 *----------------------------------------------------------------------------*/
86 #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
87 enum {
88     float_round_nearest_even = FP_RN,
89     float_round_down         = FP_RM,
90     float_round_up           = FP_RP,
91     float_round_to_zero      = FP_RZ
92 };
93 #elif defined(__arm__)
94 enum {
95     float_round_nearest_even = 0,
96     float_round_down         = 1,
97     float_round_up           = 2,
98     float_round_to_zero      = 3
99 };
100 #else
101 enum {
102     float_round_nearest_even = FE_TONEAREST,
103     float_round_down         = FE_DOWNWARD,
104     float_round_up           = FE_UPWARD,
105     float_round_to_zero      = FE_TOWARDZERO
106 };
107 #endif
108
109 typedef struct float_status {
110     signed char float_rounding_mode;
111 #ifdef FLOATX80
112     signed char floatx80_rounding_precision;
113 #endif
114 } float_status;
115
116 void set_float_rounding_mode(int val STATUS_PARAM);
117 #ifdef FLOATX80
118 void set_floatx80_rounding_precision(int val STATUS_PARAM);
119 #endif
120
121 /*----------------------------------------------------------------------------
122 | Software IEC/IEEE integer-to-floating-point conversion routines.
123 *----------------------------------------------------------------------------*/
124 float32 int32_to_float32( int STATUS_PARAM);
125 float32 uint32_to_float32( unsigned int STATUS_PARAM);
126 float64 int32_to_float64( int STATUS_PARAM);
127 float64 uint32_to_float64( unsigned int STATUS_PARAM);
128 #ifdef FLOATX80
129 floatx80 int32_to_floatx80( int STATUS_PARAM);
130 #endif
131 #ifdef FLOAT128
132 float128 int32_to_float128( int STATUS_PARAM);
133 #endif
134 float32 int64_to_float32( int64_t STATUS_PARAM);
135 float32 uint64_to_float32( uint64_t STATUS_PARAM);
136 float64 int64_to_float64( int64_t STATUS_PARAM);
137 float64 uint64_to_float64( uint64_t v STATUS_PARAM);
138 #ifdef FLOATX80
139 floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
140 #endif
141 #ifdef FLOAT128
142 float128 int64_to_float128( int64_t STATUS_PARAM);
143 #endif
144
145 /*----------------------------------------------------------------------------
146 | Software IEC/IEEE single-precision conversion routines.
147 *----------------------------------------------------------------------------*/
148 int float32_to_int32( float32  STATUS_PARAM);
149 int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
150 unsigned int float32_to_uint32( float32 a STATUS_PARAM);
151 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
152 int64_t float32_to_int64( float32  STATUS_PARAM);
153 int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
154 float64 float32_to_float64( float32  STATUS_PARAM);
155 #ifdef FLOATX80
156 floatx80 float32_to_floatx80( float32  STATUS_PARAM);
157 #endif
158 #ifdef FLOAT128
159 float128 float32_to_float128( float32  STATUS_PARAM);
160 #endif
161
162 /*----------------------------------------------------------------------------
163 | Software IEC/IEEE single-precision operations.
164 *----------------------------------------------------------------------------*/
165 float32 float32_round_to_int( float32  STATUS_PARAM);
166 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
167 {
168     return a + b;
169 }
170 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
171 {
172     return a - b;
173 }
174 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
175 {
176     return a * b;
177 }
178 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
179 {
180     return a / b;
181 }
182 float32 float32_rem( float32, float32  STATUS_PARAM);
183 float32 float32_sqrt( float32  STATUS_PARAM);
184 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
185 {
186     return a == b;
187 }
188 INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
189 {
190     return a <= b;
191 }
192 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
193 {
194     return a < b;
195 }
196 INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
197 {
198     return a <= b && a >= b;
199 }
200 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
201 {
202     return islessequal(a, b);
203 }
204 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
205 {
206     return isless(a, b);
207 }
208 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
209 {
210     return isunordered(a, b);
211
212 }
213 int float32_compare( float32, float32 STATUS_PARAM );
214 int float32_compare_quiet( float32, float32 STATUS_PARAM );
215 int float32_is_signaling_nan( float32 );
216
217 INLINE float32 float32_abs(float32 a)
218 {
219     return fabsf(a);
220 }
221
222 INLINE float32 float32_chs(float32 a)
223 {
224     return -a;
225 }
226
227 INLINE float32 float32_scalbn(float32 a, int n)
228 {
229     return scalbnf(a, n);
230 }
231
232 /*----------------------------------------------------------------------------
233 | Software IEC/IEEE double-precision conversion routines.
234 *----------------------------------------------------------------------------*/
235 int float64_to_int32( float64 STATUS_PARAM );
236 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
237 unsigned int float64_to_uint32( float64 STATUS_PARAM );
238 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
239 int64_t float64_to_int64( float64 STATUS_PARAM );
240 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
241 uint64_t float64_to_uint64( float64 STATUS_PARAM );
242 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
243 float32 float64_to_float32( float64 STATUS_PARAM );
244 #ifdef FLOATX80
245 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
246 #endif
247 #ifdef FLOAT128
248 float128 float64_to_float128( float64 STATUS_PARAM );
249 #endif
250
251 /*----------------------------------------------------------------------------
252 | Software IEC/IEEE double-precision operations.
253 *----------------------------------------------------------------------------*/
254 float64 float64_round_to_int( float64 STATUS_PARAM );
255 float64 float64_trunc_to_int( float64 STATUS_PARAM );
256 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
257 {
258     return a + b;
259 }
260 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
261 {
262     return a - b;
263 }
264 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
265 {
266     return a * b;
267 }
268 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
269 {
270     return a / b;
271 }
272 float64 float64_rem( float64, float64 STATUS_PARAM );
273 float64 float64_sqrt( float64 STATUS_PARAM );
274 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
275 {
276     return a == b;
277 }
278 INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
279 {
280     return a <= b;
281 }
282 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
283 {
284     return a < b;
285 }
286 INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
287 {
288     return a <= b && a >= b;
289 }
290 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
291 {
292     return islessequal(a, b);
293 }
294 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
295 {
296     return isless(a, b);
297
298 }
299 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
300 {
301     return isunordered(a, b);
302
303 }
304 int float64_compare( float64, float64 STATUS_PARAM );
305 int float64_compare_quiet( float64, float64 STATUS_PARAM );
306 int float64_is_signaling_nan( float64 );
307 int float64_is_nan( float64 );
308
309 INLINE float64 float64_abs(float64 a)
310 {
311     return fabs(a);
312 }
313
314 INLINE float64 float64_chs(float64 a)
315 {
316     return -a;
317 }
318
319 INLINE float64 float64_scalbn(float64 a, int n)
320 {
321     return scalbn(a, n);
322 }
323
324 #ifdef FLOATX80
325
326 /*----------------------------------------------------------------------------
327 | Software IEC/IEEE extended double-precision conversion routines.
328 *----------------------------------------------------------------------------*/
329 int floatx80_to_int32( floatx80 STATUS_PARAM );
330 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
331 int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
332 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
333 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
334 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
335 #ifdef FLOAT128
336 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
337 #endif
338
339 /*----------------------------------------------------------------------------
340 | Software IEC/IEEE extended double-precision operations.
341 *----------------------------------------------------------------------------*/
342 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
343 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
344 {
345     return a + b;
346 }
347 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
348 {
349     return a - b;
350 }
351 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
352 {
353     return a * b;
354 }
355 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
356 {
357     return a / b;
358 }
359 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
360 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
361 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
362 {
363     return a == b;
364 }
365 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
366 {
367     return a <= b;
368 }
369 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
370 {
371     return a < b;
372 }
373 INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
374 {
375     return a <= b && a >= b;
376 }
377 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
378 {
379     return islessequal(a, b);
380 }
381 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
382 {
383     return isless(a, b);
384
385 }
386 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
387 {
388     return isunordered(a, b);
389
390 }
391 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
392 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
393 int floatx80_is_signaling_nan( floatx80 );
394
395 INLINE floatx80 floatx80_abs(floatx80 a)
396 {
397     return fabsl(a);
398 }
399
400 INLINE floatx80 floatx80_chs(floatx80 a)
401 {
402     return -a;
403 }
404
405 INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
406 {
407     return scalbnl(a, n);
408 }
409
410 #endif