Make DMA bottom-half driven (v2)
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
29
30 #include "etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA           0x0
35 #define RW_SAVED_DATA     0x58
36 #define RW_SAVED_DATA_BUF 0x5c
37 #define RW_GROUP          0x60
38 #define RW_GROUP_DOWN     0x7c
39 #define RW_CMD            0x80
40 #define RW_CFG            0x84
41 #define RW_STAT           0x88
42 #define RW_INTR_MASK      0x8c
43 #define RW_ACK_INTR       0x90
44 #define R_INTR            0x94
45 #define R_MASKED_INTR     0x98
46 #define RW_STREAM_CMD     0x9c
47
48 #define DMA_REG_MAX   0x100
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54   struct dma_descr_group       *next;
55   unsigned                      eol        : 1;
56   unsigned                      tol        : 1;
57   unsigned                      bol        : 1;
58   unsigned                                 : 1;
59   unsigned                      intr       : 1;
60   unsigned                                 : 2;
61   unsigned                      en         : 1;
62   unsigned                                 : 7;
63   unsigned                      dis        : 1;
64   unsigned                      md         : 16;
65   struct dma_descr_group       *up;
66   union {
67     struct dma_descr_context   *context;
68     struct dma_descr_group     *group;
69   }                             down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74   struct dma_descr_context     *next;
75   unsigned                      eol        : 1;
76   unsigned                                 : 3;
77   unsigned                      intr       : 1;
78   unsigned                                 : 1;
79   unsigned                      store_mode : 1;
80   unsigned                      en         : 1;
81   unsigned                                 : 7;
82   unsigned                      dis        : 1;
83   unsigned                      md0        : 16;
84   unsigned                      md1;
85   unsigned                      md2;
86   unsigned                      md3;
87   unsigned                      md4;
88   struct dma_descr_data        *saved_data;
89   char                         *saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94   struct dma_descr_data        *next;
95   char                         *buf;
96   unsigned                      eol        : 1;
97   unsigned                                 : 2;
98   unsigned                      out_eop    : 1;
99   unsigned                      intr       : 1;
100   unsigned                      wait       : 1;
101   unsigned                                 : 2;
102   unsigned                                 : 3;
103   unsigned                      in_eop     : 1;
104   unsigned                                 : 4;
105   unsigned                      md         : 16;
106   char                         *after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111   regk_dma_ack_pkt                         = 0x00000100,
112   regk_dma_anytime                         = 0x00000001,
113   regk_dma_array                           = 0x00000008,
114   regk_dma_burst                           = 0x00000020,
115   regk_dma_client                          = 0x00000002,
116   regk_dma_copy_next                       = 0x00000010,
117   regk_dma_copy_up                         = 0x00000020,
118   regk_dma_data_at_eol                     = 0x00000001,
119   regk_dma_dis_c                           = 0x00000010,
120   regk_dma_dis_g                           = 0x00000020,
121   regk_dma_idle                            = 0x00000001,
122   regk_dma_intern                          = 0x00000004,
123   regk_dma_load_c                          = 0x00000200,
124   regk_dma_load_c_n                        = 0x00000280,
125   regk_dma_load_c_next                     = 0x00000240,
126   regk_dma_load_d                          = 0x00000140,
127   regk_dma_load_g                          = 0x00000300,
128   regk_dma_load_g_down                     = 0x000003c0,
129   regk_dma_load_g_next                     = 0x00000340,
130   regk_dma_load_g_up                       = 0x00000380,
131   regk_dma_next_en                         = 0x00000010,
132   regk_dma_next_pkt                        = 0x00000010,
133   regk_dma_no                              = 0x00000000,
134   regk_dma_only_at_wait                    = 0x00000000,
135   regk_dma_restore                         = 0x00000020,
136   regk_dma_rst                             = 0x00000001,
137   regk_dma_running                         = 0x00000004,
138   regk_dma_rw_cfg_default                  = 0x00000000,
139   regk_dma_rw_cmd_default                  = 0x00000000,
140   regk_dma_rw_intr_mask_default            = 0x00000000,
141   regk_dma_rw_stat_default                 = 0x00000101,
142   regk_dma_rw_stream_cmd_default           = 0x00000000,
143   regk_dma_save_down                       = 0x00000020,
144   regk_dma_save_up                         = 0x00000020,
145   regk_dma_set_reg                         = 0x00000050,
146   regk_dma_set_w_size1                     = 0x00000190,
147   regk_dma_set_w_size2                     = 0x000001a0,
148   regk_dma_set_w_size4                     = 0x000001c0,
149   regk_dma_stopped                         = 0x00000002,
150   regk_dma_store_c                         = 0x00000002,
151   regk_dma_store_descr                     = 0x00000000,
152   regk_dma_store_g                         = 0x00000004,
153   regk_dma_store_md                        = 0x00000001,
154   regk_dma_sw                              = 0x00000008,
155   regk_dma_update_down                     = 0x00000020,
156   regk_dma_yes                             = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161         RST = 1,
162         STOPPED = 2,
163         RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168         int regmap;
169         qemu_irq *irq;
170         struct etraxfs_dma_client *client;
171
172
173         /* Internal status.  */
174         int stream_cmd_src;
175         enum dma_ch_state state;
176
177         unsigned int input : 1;
178         unsigned int eol : 1;
179
180         struct dma_descr_group current_g;
181         struct dma_descr_context current_c;
182         struct dma_descr_data current_d;
183
184         /* Controll registers.  */
185         uint32_t regs[DMA_REG_MAX];
186 };
187
188 struct fs_dma_ctrl
189 {
190         CPUState *env;
191         target_phys_addr_t base;
192
193         int nr_channels;
194         struct fs_dma_channel *channels;
195
196         QEMUBH *bh;
197 };
198
199 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
200 {
201         return ctrl->channels[c].regs[reg];
202 }
203
204 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
205 {
206         return channel_reg(ctrl, c, RW_CFG) & 2;
207 }
208
209 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
210 {
211         return (channel_reg(ctrl, c, RW_CFG) & 1)
212                 && ctrl->channels[c].client;
213 }
214
215 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
216 {
217         /* Every channel has a 0x2000 ctrl register map.  */
218         return (addr - base) >> 13;
219 }
220
221 #ifdef USE_THIS_DEAD_CODE
222 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
223 {
224         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
225
226         /* Load and decode. FIXME: handle endianness.  */
227         cpu_physical_memory_read (addr, 
228                                   (void *) &ctrl->channels[c].current_g, 
229                                   sizeof ctrl->channels[c].current_g);
230 }
231
232 static void dump_c(int ch, struct dma_descr_context *c)
233 {
234         printf("%s ch=%d\n", __func__, ch);
235         printf("next=%p\n", c->next);
236         printf("saved_data=%p\n", c->saved_data);
237         printf("saved_data_buf=%p\n", c->saved_data_buf);
238         printf("eol=%x\n", (uint32_t) c->eol);
239 }
240
241 static void dump_d(int ch, struct dma_descr_data *d)
242 {
243         printf("%s ch=%d\n", __func__, ch);
244         printf("next=%p\n", d->next);
245         printf("buf=%p\n", d->buf);
246         printf("after=%p\n", d->after);
247         printf("intr=%x\n", (uint32_t) d->intr);
248         printf("out_eop=%x\n", (uint32_t) d->out_eop);
249         printf("in_eop=%x\n", (uint32_t) d->in_eop);
250         printf("eol=%x\n", (uint32_t) d->eol);
251 }
252 #endif
253
254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
255 {
256         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
257
258         /* Load and decode. FIXME: handle endianness.  */
259         cpu_physical_memory_read (addr, 
260                                   (void *) &ctrl->channels[c].current_c, 
261                                   sizeof ctrl->channels[c].current_c);
262
263         D(dump_c(c, &ctrl->channels[c].current_c));
264         /* I guess this should update the current pos.  */
265         ctrl->channels[c].regs[RW_SAVED_DATA] =
266                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
267         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
268                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
269 }
270
271 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
272 {
273         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
274
275         /* Load and decode. FIXME: handle endianness.  */
276         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
277         cpu_physical_memory_read (addr,
278                                   (void *) &ctrl->channels[c].current_d, 
279                                   sizeof ctrl->channels[c].current_d);
280
281         D(dump_d(c, &ctrl->channels[c].current_d));
282         ctrl->channels[c].regs[RW_DATA] = addr;
283 }
284
285 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
286 {
287         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
288
289         /* Encode and store. FIXME: handle endianness.  */
290         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
291         D(dump_d(c, &ctrl->channels[c].current_d));
292         cpu_physical_memory_write (addr,
293                                   (void *) &ctrl->channels[c].current_c,
294                                   sizeof ctrl->channels[c].current_c);
295 }
296
297 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
298 {
299         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
300
301         /* Encode and store. FIXME: handle endianness.  */
302         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
303         cpu_physical_memory_write (addr,
304                                   (void *) &ctrl->channels[c].current_d, 
305                                   sizeof ctrl->channels[c].current_d);
306 }
307
308 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
309 {
310         /* FIXME:  */
311 }
312
313 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
314 {
315         if (ctrl->channels[c].client)
316         {
317                 ctrl->channels[c].eol = 0;
318                 ctrl->channels[c].state = RUNNING;
319         } else
320                 printf("WARNING: starting DMA ch %d with no client\n", c);
321 }
322
323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
324 {
325         if (!channel_en(ctrl, c) 
326             || channel_stopped(ctrl, c)
327             || ctrl->channels[c].state != RUNNING
328             /* Only reload the current data descriptor if it has eol set.  */
329             || !ctrl->channels[c].current_d.eol) {
330                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
331                          c, ctrl->channels[c].state,
332                          channel_stopped(ctrl, c),
333                          channel_en(ctrl,c),
334                          ctrl->channels[c].eol));
335                 D(dump_d(c, &ctrl->channels[c].current_d));
336                 return;
337         }
338
339         /* Reload the current descriptor.  */
340         channel_load_d(ctrl, c);
341
342         /* If the current descriptor cleared the eol flag and we had already
343            reached eol state, do the continue.  */
344         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
345                 D(printf("continue %d ok %p\n", c,
346                          ctrl->channels[c].current_d.next));
347                 ctrl->channels[c].regs[RW_SAVED_DATA] =
348                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
349                 channel_load_d(ctrl, c);
350                 channel_start(ctrl, c);
351         }
352         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
353                 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
354 }
355
356 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
357 {
358         unsigned int cmd = v & ((1 << 10) - 1);
359
360         D(printf("%s ch=%d cmd=%x\n",
361                  __func__, c, cmd));
362         if (cmd & regk_dma_load_d) {
363                 channel_load_d(ctrl, c);
364                 if (cmd & regk_dma_burst)
365                         channel_start(ctrl, c);
366         }
367
368         if (cmd & regk_dma_load_c) {
369                 channel_load_c(ctrl, c);
370                 channel_start(ctrl, c);
371         }
372 }
373
374 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
375 {
376         D(printf("%s %d\n", __func__, c));
377         ctrl->channels[c].regs[R_INTR] &=
378                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
379
380         ctrl->channels[c].regs[R_MASKED_INTR] =
381                 ctrl->channels[c].regs[R_INTR]
382                 & ctrl->channels[c].regs[RW_INTR_MASK];
383
384         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
385                  c,
386                  ctrl->channels[c].regs[R_MASKED_INTR]));
387
388         if (ctrl->channels[c].regs[R_MASKED_INTR])
389                 qemu_irq_raise(ctrl->channels[c].irq[0]);
390         else
391                 qemu_irq_lower(ctrl->channels[c].irq[0]);
392 }
393
394 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
395 {
396         uint32_t len;
397         uint32_t saved_data_buf;
398         unsigned char buf[2 * 1024];
399
400         while (ctrl->channels[c].eol != 1) {
401                 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
402
403                 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
404                          c,
405                          (uint32_t)ctrl->channels[c].current_d.buf,
406                          (uint32_t)ctrl->channels[c].current_d.after,
407                          saved_data_buf));
408
409                 len = (uint32_t)ctrl->channels[c].current_d.after;
410                 len -= saved_data_buf;
411
412                 if (len > sizeof buf)
413                         len = sizeof buf;
414                 cpu_physical_memory_read (saved_data_buf, buf, len);
415
416                 D(printf("channel %d pushes %x %u bytes\n", c, 
417                          saved_data_buf, len));
418
419                 if (ctrl->channels[c].client->client.push)
420                         ctrl->channels[c].client->client.push(
421                                 ctrl->channels[c].client->client.opaque,
422                                 buf, len);
423                 else
424                         printf("WARNING: DMA ch%d dataloss,"
425                                " no attached client.\n", c);
426
427                 saved_data_buf += len;
428
429                 if (saved_data_buf ==
430                     (uint32_t)ctrl->channels[c].current_d.after) {
431                         /* Done. Step to next.  */
432                         if (ctrl->channels[c].current_d.out_eop) {
433                                 /* TODO: signal eop to the client.  */
434                                 D(printf("signal eop\n"));
435                         }
436                         if (ctrl->channels[c].current_d.intr) {
437                                 /* TODO: signal eop to the client.  */
438                                 /* data intr.  */
439                                 D(printf("signal intr\n"));
440                                 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
441                                 channel_update_irq(ctrl, c);
442                         }
443                         if (ctrl->channels[c].current_d.eol) {
444                                 D(printf("channel %d EOL\n", c));
445                                 ctrl->channels[c].eol = 1;
446
447                                 /* Mark the context as disabled.  */
448                                 ctrl->channels[c].current_c.dis = 1;
449                                 channel_store_c(ctrl, c);
450
451                                 channel_stop(ctrl, c);
452                         } else {
453                                 ctrl->channels[c].regs[RW_SAVED_DATA] =
454                                         (uint32_t)ctrl->channels[c].current_d.next;
455                                 /* Load new descriptor.  */
456                                 channel_load_d(ctrl, c);
457                                 saved_data_buf = (uint32_t)(unsigned long)
458                                         ctrl->channels[c].current_d.buf;
459                         }
460
461                         channel_store_d(ctrl, c);
462                         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
463                                                         saved_data_buf;
464                         D(dump_d(c, &ctrl->channels[c].current_d));
465                 }
466                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
467         }
468 }
469
470 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
471                               unsigned char *buf, int buflen, int eop)
472 {
473         uint32_t len;
474         uint32_t saved_data_buf;
475
476         if (ctrl->channels[c].eol == 1)
477                 return 0;
478
479         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
480         len = (uint32_t)ctrl->channels[c].current_d.after;
481         len -= saved_data_buf;
482         
483         if (len > buflen)
484                 len = buflen;
485
486         cpu_physical_memory_write (saved_data_buf, buf, len);
487         saved_data_buf += len;
488
489         if (saved_data_buf ==
490             (uint32_t)ctrl->channels[c].current_d.after
491             || eop) {
492                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
493
494                 D(printf("in dscr end len=%d\n", 
495                          ctrl->channels[c].current_d.after
496                          - ctrl->channels[c].current_d.buf));
497                 ctrl->channels[c].current_d.after = 
498                         (void *)(unsigned long) saved_data_buf;
499
500                 /* Done. Step to next.  */
501                 if (ctrl->channels[c].current_d.intr) {
502                         /* TODO: signal eop to the client.  */
503                         /* data intr.  */
504                         ctrl->channels[c].regs[R_INTR] |= 3;
505                 }
506                 if (eop) {
507                         ctrl->channels[c].current_d.in_eop = 1;
508                         ctrl->channels[c].regs[R_INTR] |= 8;
509                 }
510                 if (r_intr != ctrl->channels[c].regs[R_INTR])
511                         channel_update_irq(ctrl, c);
512
513                 channel_store_d(ctrl, c);
514                 D(dump_d(c, &ctrl->channels[c].current_d));
515
516                 if (ctrl->channels[c].current_d.eol) {
517                         D(printf("channel %d EOL\n", c));
518                         ctrl->channels[c].eol = 1;
519
520                         /* Mark the context as disabled.  */
521                         ctrl->channels[c].current_c.dis = 1;
522                         channel_store_c(ctrl, c);
523
524                         channel_stop(ctrl, c);
525                 } else {
526                         ctrl->channels[c].regs[RW_SAVED_DATA] =
527                                 (uint32_t)ctrl->channels[c].current_d.next;
528                         /* Load new descriptor.  */
529                         channel_load_d(ctrl, c);
530                         saved_data_buf = (uint32_t)
531                                 ctrl->channels[c].current_d.buf;
532                 }
533         }
534
535         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
536         return len;
537 }
538
539 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
540 {
541         if (ctrl->channels[c].client->client.pull)
542                 ctrl->channels[c].client->client.pull(
543                         ctrl->channels[c].client->client.opaque);
544 }
545
546 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
547 {
548         struct fs_dma_ctrl *ctrl = opaque;
549         CPUState *env = ctrl->env;
550         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
551                   addr);
552         return 0;
553 }
554
555 static uint32_t
556 dma_readl (void *opaque, target_phys_addr_t addr)
557 {
558         struct fs_dma_ctrl *ctrl = opaque;
559         int c;
560         uint32_t r = 0;
561
562         /* Make addr relative to this instances base.  */
563         c = fs_channel(ctrl->base, addr);
564         addr &= 0x1fff;
565         switch (addr)
566         {
567                 case RW_STAT:
568                         r = ctrl->channels[c].state & 7;
569                         r |= ctrl->channels[c].eol << 5;
570                         r |= ctrl->channels[c].stream_cmd_src << 8;
571                         break;
572
573                 default:
574                         r = ctrl->channels[c].regs[addr];
575                         D(printf ("%s c=%d addr=%x\n",
576                                   __func__, c, addr));
577                         break;
578         }
579         return r;
580 }
581
582 static void
583 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
584 {
585         struct fs_dma_ctrl *ctrl = opaque;
586         CPUState *env = ctrl->env;
587         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
588                   addr);
589 }
590
591 static void
592 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
593 {
594         if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
595                 if (ctrl->channels[c].regs[RW_CFG] & 2)
596                         ctrl->channels[c].state = STOPPED;
597                 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
598                         ctrl->channels[c].state = RST;
599         }
600 }
601
602 static void
603 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
604 {
605         struct fs_dma_ctrl *ctrl = opaque;
606         int c;
607
608         /* Make addr relative to this instances base.  */
609         c = fs_channel(ctrl->base, addr);
610         addr &= 0x1fff;
611         switch (addr)
612         {
613                 case RW_DATA:
614                         ctrl->channels[c].regs[addr] = value;
615                         break;
616
617                 case RW_CFG:
618                         ctrl->channels[c].regs[addr] = value;
619                         dma_update_state(ctrl, c);
620                         break;
621                 case RW_CMD:
622                         /* continue.  */
623                         if (value & ~1)
624                                 printf("Invalid store to ch=%d RW_CMD %x\n",
625                                        c, value);
626                         ctrl->channels[c].regs[addr] = value;
627                         channel_continue(ctrl, c);
628                         break;
629
630                 case RW_SAVED_DATA:
631                 case RW_SAVED_DATA_BUF:
632                 case RW_GROUP:
633                 case RW_GROUP_DOWN:
634                         ctrl->channels[c].regs[addr] = value;
635                         break;
636
637                 case RW_ACK_INTR:
638                 case RW_INTR_MASK:
639                         ctrl->channels[c].regs[addr] = value;
640                         channel_update_irq(ctrl, c);
641                         if (addr == RW_ACK_INTR)
642                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
643                         break;
644
645                 case RW_STREAM_CMD:
646                         if (value & ~1023)
647                                 printf("Invalid store to ch=%d "
648                                        "RW_STREAMCMD %x\n",
649                                        c, value);
650                         ctrl->channels[c].regs[addr] = value;
651                         D(printf("stream_cmd ch=%d\n", c));
652                         channel_stream_cmd(ctrl, c, value);
653                         break;
654
655                 default:
656                         D(printf ("%s c=%d %x %x\n", __func__, c, addr));
657                         break;
658         }
659 }
660
661 static CPUReadMemoryFunc *dma_read[] = {
662         &dma_rinvalid,
663         &dma_rinvalid,
664         &dma_readl,
665 };
666
667 static CPUWriteMemoryFunc *dma_write[] = {
668         &dma_winvalid,
669         &dma_winvalid,
670         &dma_writel,
671 };
672
673 void etraxfs_dmac_run(void *opaque)
674 {
675         struct fs_dma_ctrl *ctrl = opaque;
676         int i;
677         int p = 0;
678
679         for (i = 0; 
680              i < ctrl->nr_channels;
681              i++)
682         {
683                 if (ctrl->channels[i].state == RUNNING)
684                 {
685                         p++;
686                         if (ctrl->channels[i].input)
687                                 channel_in_run(ctrl, i);
688                         else
689                                 channel_out_run(ctrl, i);
690                 }
691         }
692 }
693
694 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
695                        void *buf, int len, int eop)
696 {
697         return channel_in_process(client->ctrl, client->channel, 
698                                   buf, len, eop);
699 }
700
701 /* Connect an IRQ line with a channel.  */
702 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
703 {
704         struct fs_dma_ctrl *ctrl = opaque;
705         ctrl->channels[c].irq = line;
706         ctrl->channels[c].input = input;
707 }
708
709 void etraxfs_dmac_connect_client(void *opaque, int c, 
710                                  struct etraxfs_dma_client *cl)
711 {
712         struct fs_dma_ctrl *ctrl = opaque;
713         cl->ctrl = ctrl;
714         cl->channel = c;
715         ctrl->channels[c].client = cl;
716 }
717
718
719 static void DMA_run(void *opaque)
720 {
721     struct fs_dma_ctrl *etraxfs_dmac = opaque;
722     if (vm_running)
723         etraxfs_dmac_run(etraxfs_dmac);
724     qemu_bh_schedule_idle(etraxfs_dmac->bh);
725 }
726
727 void *etraxfs_dmac_init(CPUState *env, 
728                         target_phys_addr_t base, int nr_channels)
729 {
730         struct fs_dma_ctrl *ctrl = NULL;
731         int i;
732
733         ctrl = qemu_mallocz(sizeof *ctrl);
734         if (!ctrl)
735                 return NULL;
736
737         ctrl->bh = qemu_bh_new(DMA_run, ctrl);
738         qemu_bh_schedule_idle(ctrl->bh);
739
740         ctrl->base = base;
741         ctrl->env = env;
742         ctrl->nr_channels = nr_channels;
743         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
744         if (!ctrl->channels)
745                 goto err;
746
747         for (i = 0; i < nr_channels; i++)
748         {
749                 ctrl->channels[i].regmap = cpu_register_io_memory(0,
750                                                                   dma_read, 
751                                                                   dma_write, 
752                                                                   ctrl);
753                 cpu_register_physical_memory (base + i * 0x2000,
754                                               sizeof ctrl->channels[i].regs, 
755                                               ctrl->channels[i].regmap);
756         }
757
758         return ctrl;
759   err:
760         qemu_free(ctrl->channels);
761         qemu_free(ctrl);
762         return NULL;
763 }