ETRAX-FS: Process outgoing DMA channels until EOL.
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27
28 #include "etraxfs_dma.h"
29
30 #define D(x)
31
32 #define RW_DATA           0x0
33 #define RW_SAVED_DATA     0x58
34 #define RW_SAVED_DATA_BUF 0x5c
35 #define RW_GROUP          0x60
36 #define RW_GROUP_DOWN     0x7c
37 #define RW_CMD            0x80
38 #define RW_CFG            0x84
39 #define RW_STAT           0x88
40 #define RW_INTR_MASK      0x8c
41 #define RW_ACK_INTR       0x90
42 #define R_INTR            0x94
43 #define R_MASKED_INTR     0x98
44 #define RW_STREAM_CMD     0x9c
45
46 #define DMA_REG_MAX   0x100
47
48 /* descriptors */
49
50 // ------------------------------------------------------------ dma_descr_group
51 typedef struct dma_descr_group {
52   struct dma_descr_group       *next;
53   unsigned                      eol        : 1;
54   unsigned                      tol        : 1;
55   unsigned                      bol        : 1;
56   unsigned                                 : 1;
57   unsigned                      intr       : 1;
58   unsigned                                 : 2;
59   unsigned                      en         : 1;
60   unsigned                                 : 7;
61   unsigned                      dis        : 1;
62   unsigned                      md         : 16;
63   struct dma_descr_group       *up;
64   union {
65     struct dma_descr_context   *context;
66     struct dma_descr_group     *group;
67   }                             down;
68 } dma_descr_group;
69
70 // ---------------------------------------------------------- dma_descr_context
71 typedef struct dma_descr_context {
72   struct dma_descr_context     *next;
73   unsigned                      eol        : 1;
74   unsigned                                 : 3;
75   unsigned                      intr       : 1;
76   unsigned                                 : 1;
77   unsigned                      store_mode : 1;
78   unsigned                      en         : 1;
79   unsigned                                 : 7;
80   unsigned                      dis        : 1;
81   unsigned                      md0        : 16;
82   unsigned                      md1;
83   unsigned                      md2;
84   unsigned                      md3;
85   unsigned                      md4;
86   struct dma_descr_data        *saved_data;
87   char                         *saved_data_buf;
88 } dma_descr_context;
89
90 // ------------------------------------------------------------- dma_descr_data
91 typedef struct dma_descr_data {
92   struct dma_descr_data        *next;
93   char                         *buf;
94   unsigned                      eol        : 1;
95   unsigned                                 : 2;
96   unsigned                      out_eop    : 1;
97   unsigned                      intr       : 1;
98   unsigned                      wait       : 1;
99   unsigned                                 : 2;
100   unsigned                                 : 3;
101   unsigned                      in_eop     : 1;
102   unsigned                                 : 4;
103   unsigned                      md         : 16;
104   char                         *after;
105 } dma_descr_data;
106
107 /* Constants */
108 enum {
109   regk_dma_ack_pkt                         = 0x00000100,
110   regk_dma_anytime                         = 0x00000001,
111   regk_dma_array                           = 0x00000008,
112   regk_dma_burst                           = 0x00000020,
113   regk_dma_client                          = 0x00000002,
114   regk_dma_copy_next                       = 0x00000010,
115   regk_dma_copy_up                         = 0x00000020,
116   regk_dma_data_at_eol                     = 0x00000001,
117   regk_dma_dis_c                           = 0x00000010,
118   regk_dma_dis_g                           = 0x00000020,
119   regk_dma_idle                            = 0x00000001,
120   regk_dma_intern                          = 0x00000004,
121   regk_dma_load_c                          = 0x00000200,
122   regk_dma_load_c_n                        = 0x00000280,
123   regk_dma_load_c_next                     = 0x00000240,
124   regk_dma_load_d                          = 0x00000140,
125   regk_dma_load_g                          = 0x00000300,
126   regk_dma_load_g_down                     = 0x000003c0,
127   regk_dma_load_g_next                     = 0x00000340,
128   regk_dma_load_g_up                       = 0x00000380,
129   regk_dma_next_en                         = 0x00000010,
130   regk_dma_next_pkt                        = 0x00000010,
131   regk_dma_no                              = 0x00000000,
132   regk_dma_only_at_wait                    = 0x00000000,
133   regk_dma_restore                         = 0x00000020,
134   regk_dma_rst                             = 0x00000001,
135   regk_dma_running                         = 0x00000004,
136   regk_dma_rw_cfg_default                  = 0x00000000,
137   regk_dma_rw_cmd_default                  = 0x00000000,
138   regk_dma_rw_intr_mask_default            = 0x00000000,
139   regk_dma_rw_stat_default                 = 0x00000101,
140   regk_dma_rw_stream_cmd_default           = 0x00000000,
141   regk_dma_save_down                       = 0x00000020,
142   regk_dma_save_up                         = 0x00000020,
143   regk_dma_set_reg                         = 0x00000050,
144   regk_dma_set_w_size1                     = 0x00000190,
145   regk_dma_set_w_size2                     = 0x000001a0,
146   regk_dma_set_w_size4                     = 0x000001c0,
147   regk_dma_stopped                         = 0x00000002,
148   regk_dma_store_c                         = 0x00000002,
149   regk_dma_store_descr                     = 0x00000000,
150   regk_dma_store_g                         = 0x00000004,
151   regk_dma_store_md                        = 0x00000001,
152   regk_dma_sw                              = 0x00000008,
153   regk_dma_update_down                     = 0x00000020,
154   regk_dma_yes                             = 0x00000001
155 };
156
157 enum dma_ch_state
158 {
159         RST = 1,
160         STOPPED = 2,
161         RUNNING = 4
162 };
163
164 struct fs_dma_channel
165 {
166         int regmap;
167         qemu_irq *irq;
168         struct etraxfs_dma_client *client;
169
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         CPUState *env;
189         target_phys_addr_t base;
190
191         int nr_channels;
192         struct fs_dma_channel *channels;
193 };
194
195 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196 {
197         return ctrl->channels[c].regs[reg];
198 }
199
200 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201 {
202         return channel_reg(ctrl, c, RW_CFG) & 2;
203 }
204
205 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206 {
207         return (channel_reg(ctrl, c, RW_CFG) & 1)
208                 && ctrl->channels[c].client;
209 }
210
211 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212 {
213         /* Every channel has a 0x2000 ctrl register map.  */
214         return (addr - base) >> 13;
215 }
216
217 #ifdef USE_THIS_DEAD_CODE
218 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
219 {
220         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
221
222         /* Load and decode. FIXME: handle endianness.  */
223         cpu_physical_memory_read (addr, 
224                                   (void *) &ctrl->channels[c].current_g, 
225                                   sizeof ctrl->channels[c].current_g);
226 }
227
228 static void dump_c(int ch, struct dma_descr_context *c)
229 {
230         printf("%s ch=%d\n", __func__, ch);
231         printf("next=%p\n", c->next);
232         printf("saved_data=%p\n", c->saved_data);
233         printf("saved_data_buf=%p\n", c->saved_data_buf);
234         printf("eol=%x\n", (uint32_t) c->eol);
235 }
236
237 static void dump_d(int ch, struct dma_descr_data *d)
238 {
239         printf("%s ch=%d\n", __func__, ch);
240         printf("next=%p\n", d->next);
241         printf("buf=%p\n", d->buf);
242         printf("after=%p\n", d->after);
243         printf("intr=%x\n", (uint32_t) d->intr);
244         printf("out_eop=%x\n", (uint32_t) d->out_eop);
245         printf("in_eop=%x\n", (uint32_t) d->in_eop);
246         printf("eol=%x\n", (uint32_t) d->eol);
247 }
248 #endif
249
250 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
251 {
252         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
253
254         /* Load and decode. FIXME: handle endianness.  */
255         cpu_physical_memory_read (addr, 
256                                   (void *) &ctrl->channels[c].current_c, 
257                                   sizeof ctrl->channels[c].current_c);
258
259         D(dump_c(c, &ctrl->channels[c].current_c));
260         /* I guess this should update the current pos.  */
261         ctrl->channels[c].regs[RW_SAVED_DATA] =
262                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
263         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
264                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
265 }
266
267 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
268 {
269         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
270
271         /* Load and decode. FIXME: handle endianness.  */
272         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
273         cpu_physical_memory_read (addr,
274                                   (void *) &ctrl->channels[c].current_d, 
275                                   sizeof ctrl->channels[c].current_d);
276
277         D(dump_d(c, &ctrl->channels[c].current_d));
278         ctrl->channels[c].regs[RW_DATA] = addr;
279 }
280
281 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
282 {
283         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
284
285         /* Encode and store. FIXME: handle endianness.  */
286         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
287         D(dump_d(c, &ctrl->channels[c].current_d));
288         cpu_physical_memory_write (addr,
289                                   (void *) &ctrl->channels[c].current_c,
290                                   sizeof ctrl->channels[c].current_c);
291 }
292
293 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
294 {
295         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
296
297         /* Encode and store. FIXME: handle endianness.  */
298         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
299         cpu_physical_memory_write (addr,
300                                   (void *) &ctrl->channels[c].current_d, 
301                                   sizeof ctrl->channels[c].current_d);
302 }
303
304 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
305 {
306         /* FIXME:  */
307 }
308
309 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
310 {
311         if (ctrl->channels[c].client)
312         {
313                 ctrl->channels[c].eol = 0;
314                 ctrl->channels[c].state = RUNNING;
315         } else
316                 printf("WARNING: starting DMA ch %d with no client\n", c);
317 }
318
319 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
320 {
321         if (!channel_en(ctrl, c) 
322             || channel_stopped(ctrl, c)
323             || ctrl->channels[c].state != RUNNING
324             /* Only reload the current data descriptor if it has eol set.  */
325             || !ctrl->channels[c].current_d.eol) {
326                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
327                          c, ctrl->channels[c].state,
328                          channel_stopped(ctrl, c),
329                          channel_en(ctrl,c),
330                          ctrl->channels[c].eol));
331                 D(dump_d(c, &ctrl->channels[c].current_d));
332                 return;
333         }
334
335         /* Reload the current descriptor.  */
336         channel_load_d(ctrl, c);
337
338         /* If the current descriptor cleared the eol flag and we had already
339            reached eol state, do the continue.  */
340         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
341                 D(printf("continue %d ok %p\n", c,
342                          ctrl->channels[c].current_d.next));
343                 ctrl->channels[c].regs[RW_SAVED_DATA] =
344                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
345                 channel_load_d(ctrl, c);
346                 channel_start(ctrl, c);
347         }
348         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
349                 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
350 }
351
352 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
353 {
354         unsigned int cmd = v & ((1 << 10) - 1);
355
356         D(printf("%s ch=%d cmd=%x\n",
357                  __func__, c, cmd));
358         if (cmd & regk_dma_load_d) {
359                 channel_load_d(ctrl, c);
360                 if (cmd & regk_dma_burst)
361                         channel_start(ctrl, c);
362         }
363
364         if (cmd & regk_dma_load_c) {
365                 channel_load_c(ctrl, c);
366                 channel_start(ctrl, c);
367         }
368 }
369
370 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
371 {
372         D(printf("%s %d\n", __func__, c));
373         ctrl->channels[c].regs[R_INTR] &=
374                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
375
376         ctrl->channels[c].regs[R_MASKED_INTR] =
377                 ctrl->channels[c].regs[R_INTR]
378                 & ctrl->channels[c].regs[RW_INTR_MASK];
379
380         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
381                  c,
382                  ctrl->channels[c].regs[R_MASKED_INTR]));
383
384         if (ctrl->channels[c].regs[R_MASKED_INTR])
385                 qemu_irq_raise(ctrl->channels[c].irq[0]);
386         else
387                 qemu_irq_lower(ctrl->channels[c].irq[0]);
388 }
389
390 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
391 {
392         uint32_t len;
393         uint32_t saved_data_buf;
394         unsigned char buf[2 * 1024];
395
396         while (ctrl->channels[c].eol != 1) {
397                 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
398
399                 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
400                          c,
401                          (uint32_t)ctrl->channels[c].current_d.buf,
402                          (uint32_t)ctrl->channels[c].current_d.after,
403                          saved_data_buf));
404
405                 len = (uint32_t)ctrl->channels[c].current_d.after;
406                 len -= saved_data_buf;
407
408                 if (len > sizeof buf)
409                         len = sizeof buf;
410                 cpu_physical_memory_read (saved_data_buf, buf, len);
411
412                 D(printf("channel %d pushes %x %u bytes\n", c, 
413                          saved_data_buf, len));
414
415                 if (ctrl->channels[c].client->client.push)
416                         ctrl->channels[c].client->client.push(
417                                 ctrl->channels[c].client->client.opaque,
418                                 buf, len);
419                 else
420                         printf("WARNING: DMA ch%d dataloss,"
421                                " no attached client.\n", c);
422
423                 saved_data_buf += len;
424
425                 if (saved_data_buf ==
426                     (uint32_t)ctrl->channels[c].current_d.after) {
427                         /* Done. Step to next.  */
428                         if (ctrl->channels[c].current_d.out_eop) {
429                                 /* TODO: signal eop to the client.  */
430                                 D(printf("signal eop\n"));
431                         }
432                         if (ctrl->channels[c].current_d.intr) {
433                                 /* TODO: signal eop to the client.  */
434                                 /* data intr.  */
435                                 D(printf("signal intr\n"));
436                                 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
437                                 channel_update_irq(ctrl, c);
438                         }
439                         if (ctrl->channels[c].current_d.eol) {
440                                 D(printf("channel %d EOL\n", c));
441                                 ctrl->channels[c].eol = 1;
442
443                                 /* Mark the context as disabled.  */
444                                 ctrl->channels[c].current_c.dis = 1;
445                                 channel_store_c(ctrl, c);
446
447                                 channel_stop(ctrl, c);
448                         } else {
449                                 ctrl->channels[c].regs[RW_SAVED_DATA] =
450                                         (uint32_t)ctrl->channels[c].current_d.next;
451                                 /* Load new descriptor.  */
452                                 channel_load_d(ctrl, c);
453                                 saved_data_buf = (uint32_t)(unsigned long)
454                                         ctrl->channels[c].current_d.buf;
455                         }
456
457                         channel_store_d(ctrl, c);
458                         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
459                                                         saved_data_buf;
460                         D(dump_d(c, &ctrl->channels[c].current_d));
461                 }
462                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
463         }
464 }
465
466 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
467                               unsigned char *buf, int buflen, int eop)
468 {
469         uint32_t len;
470         uint32_t saved_data_buf;
471
472         if (ctrl->channels[c].eol == 1)
473                 return 0;
474
475         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
476         len = (uint32_t)ctrl->channels[c].current_d.after;
477         len -= saved_data_buf;
478         
479         if (len > buflen)
480                 len = buflen;
481
482         cpu_physical_memory_write (saved_data_buf, buf, len);
483         saved_data_buf += len;
484
485         if (saved_data_buf ==
486             (uint32_t)ctrl->channels[c].current_d.after
487             || eop) {
488                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
489
490                 D(printf("in dscr end len=%d\n", 
491                          ctrl->channels[c].current_d.after
492                          - ctrl->channels[c].current_d.buf));
493                 ctrl->channels[c].current_d.after = 
494                         (void *)(unsigned long) saved_data_buf;
495
496                 /* Done. Step to next.  */
497                 if (ctrl->channels[c].current_d.intr) {
498                         /* TODO: signal eop to the client.  */
499                         /* data intr.  */
500                         ctrl->channels[c].regs[R_INTR] |= 3;
501                 }
502                 if (eop) {
503                         ctrl->channels[c].current_d.in_eop = 1;
504                         ctrl->channels[c].regs[R_INTR] |= 8;
505                 }
506                 if (r_intr != ctrl->channels[c].regs[R_INTR])
507                         channel_update_irq(ctrl, c);
508
509                 channel_store_d(ctrl, c);
510                 D(dump_d(c, &ctrl->channels[c].current_d));
511
512                 if (ctrl->channels[c].current_d.eol) {
513                         D(printf("channel %d EOL\n", c));
514                         ctrl->channels[c].eol = 1;
515
516                         /* Mark the context as disabled.  */
517                         ctrl->channels[c].current_c.dis = 1;
518                         channel_store_c(ctrl, c);
519
520                         channel_stop(ctrl, c);
521                 } else {
522                         ctrl->channels[c].regs[RW_SAVED_DATA] =
523                                 (uint32_t)ctrl->channels[c].current_d.next;
524                         /* Load new descriptor.  */
525                         channel_load_d(ctrl, c);
526                         saved_data_buf = (uint32_t)
527                                 ctrl->channels[c].current_d.buf;
528                 }
529         }
530
531         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
532         return len;
533 }
534
535 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
536 {
537         if (ctrl->channels[c].client->client.pull)
538                 ctrl->channels[c].client->client.pull(
539                         ctrl->channels[c].client->client.opaque);
540 }
541
542 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
543 {
544         struct fs_dma_ctrl *ctrl = opaque;
545         CPUState *env = ctrl->env;
546         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
547                   addr);
548         return 0;
549 }
550
551 static uint32_t
552 dma_readl (void *opaque, target_phys_addr_t addr)
553 {
554         struct fs_dma_ctrl *ctrl = opaque;
555         int c;
556         uint32_t r = 0;
557
558         /* Make addr relative to this instances base.  */
559         c = fs_channel(ctrl->base, addr);
560         addr &= 0x1fff;
561         switch (addr)
562         {
563                 case RW_STAT:
564                         r = ctrl->channels[c].state & 7;
565                         r |= ctrl->channels[c].eol << 5;
566                         r |= ctrl->channels[c].stream_cmd_src << 8;
567                         break;
568
569                 default:
570                         r = ctrl->channels[c].regs[addr];
571                         D(printf ("%s c=%d addr=%x\n",
572                                   __func__, c, addr));
573                         break;
574         }
575         return r;
576 }
577
578 static void
579 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
580 {
581         struct fs_dma_ctrl *ctrl = opaque;
582         CPUState *env = ctrl->env;
583         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
584                   addr);
585 }
586
587 static void
588 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
589 {
590         if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
591                 if (ctrl->channels[c].regs[RW_CFG] & 2)
592                         ctrl->channels[c].state = STOPPED;
593                 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
594                         ctrl->channels[c].state = RST;
595         }
596 }
597
598 static void
599 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
600 {
601         struct fs_dma_ctrl *ctrl = opaque;
602         int c;
603
604         /* Make addr relative to this instances base.  */
605         c = fs_channel(ctrl->base, addr);
606         addr &= 0x1fff;
607         switch (addr)
608         {
609                 case RW_DATA:
610                         ctrl->channels[c].regs[addr] = value;
611                         break;
612
613                 case RW_CFG:
614                         ctrl->channels[c].regs[addr] = value;
615                         dma_update_state(ctrl, c);
616                         break;
617                 case RW_CMD:
618                         /* continue.  */
619                         if (value & ~1)
620                                 printf("Invalid store to ch=%d RW_CMD %x\n",
621                                        c, value);
622                         ctrl->channels[c].regs[addr] = value;
623                         channel_continue(ctrl, c);
624                         break;
625
626                 case RW_SAVED_DATA:
627                 case RW_SAVED_DATA_BUF:
628                 case RW_GROUP:
629                 case RW_GROUP_DOWN:
630                         ctrl->channels[c].regs[addr] = value;
631                         break;
632
633                 case RW_ACK_INTR:
634                 case RW_INTR_MASK:
635                         ctrl->channels[c].regs[addr] = value;
636                         channel_update_irq(ctrl, c);
637                         if (addr == RW_ACK_INTR)
638                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
639                         break;
640
641                 case RW_STREAM_CMD:
642                         if (value & ~1023)
643                                 printf("Invalid store to ch=%d "
644                                        "RW_STREAMCMD %x\n",
645                                        c, value);
646                         ctrl->channels[c].regs[addr] = value;
647                         D(printf("stream_cmd ch=%d\n", c));
648                         channel_stream_cmd(ctrl, c, value);
649                         break;
650
651                 default:
652                         D(printf ("%s c=%d %x %x\n", __func__, c, addr));
653                         break;
654         }
655 }
656
657 static CPUReadMemoryFunc *dma_read[] = {
658         &dma_rinvalid,
659         &dma_rinvalid,
660         &dma_readl,
661 };
662
663 static CPUWriteMemoryFunc *dma_write[] = {
664         &dma_winvalid,
665         &dma_winvalid,
666         &dma_writel,
667 };
668
669 void etraxfs_dmac_run(void *opaque)
670 {
671         struct fs_dma_ctrl *ctrl = opaque;
672         int i;
673         int p = 0;
674
675         for (i = 0; 
676              i < ctrl->nr_channels;
677              i++)
678         {
679                 if (ctrl->channels[i].state == RUNNING)
680                 {
681                         p++;
682                         if (ctrl->channels[i].input)
683                                 channel_in_run(ctrl, i);
684                         else
685                                 channel_out_run(ctrl, i);
686                 }
687         }
688 }
689
690 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
691                        void *buf, int len, int eop)
692 {
693         return channel_in_process(client->ctrl, client->channel, 
694                                   buf, len, eop);
695 }
696
697 /* Connect an IRQ line with a channel.  */
698 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
699 {
700         struct fs_dma_ctrl *ctrl = opaque;
701         ctrl->channels[c].irq = line;
702         ctrl->channels[c].input = input;
703 }
704
705 void etraxfs_dmac_connect_client(void *opaque, int c, 
706                                  struct etraxfs_dma_client *cl)
707 {
708         struct fs_dma_ctrl *ctrl = opaque;
709         cl->ctrl = ctrl;
710         cl->channel = c;
711         ctrl->channels[c].client = cl;
712 }
713
714
715 static void *etraxfs_dmac;
716 void DMA_run(void)
717 {
718         if (etraxfs_dmac)
719                 etraxfs_dmac_run(etraxfs_dmac);
720 }
721
722 void *etraxfs_dmac_init(CPUState *env, 
723                         target_phys_addr_t base, int nr_channels)
724 {
725         struct fs_dma_ctrl *ctrl = NULL;
726         int i;
727
728         ctrl = qemu_mallocz(sizeof *ctrl);
729         if (!ctrl)
730                 return NULL;
731
732         ctrl->base = base;
733         ctrl->env = env;
734         ctrl->nr_channels = nr_channels;
735         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
736         if (!ctrl->channels)
737                 goto err;
738
739         for (i = 0; i < nr_channels; i++)
740         {
741                 ctrl->channels[i].regmap = cpu_register_io_memory(0,
742                                                                   dma_read, 
743                                                                   dma_write, 
744                                                                   ctrl);
745                 cpu_register_physical_memory (base + i * 0x2000,
746                                               sizeof ctrl->channels[i].regs, 
747                                               ctrl->channels[i].regmap);
748         }
749
750         /* Hax, we only support one DMA controller at a time.  */
751         etraxfs_dmac = ctrl;
752         return ctrl;
753   err:
754         qemu_free(ctrl->channels);
755         qemu_free(ctrl);
756         return NULL;
757 }