ETRAX-FS: Simplify the DMA blocks address registration and decoding.
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
29
30 #include "etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA           0x0
35 #define RW_SAVED_DATA     0x58
36 #define RW_SAVED_DATA_BUF 0x5c
37 #define RW_GROUP          0x60
38 #define RW_GROUP_DOWN     0x7c
39 #define RW_CMD            0x80
40 #define RW_CFG            0x84
41 #define RW_STAT           0x88
42 #define RW_INTR_MASK      0x8c
43 #define RW_ACK_INTR       0x90
44 #define R_INTR            0x94
45 #define R_MASKED_INTR     0x98
46 #define RW_STREAM_CMD     0x9c
47
48 #define DMA_REG_MAX   0x100
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54   struct dma_descr_group       *next;
55   unsigned                      eol        : 1;
56   unsigned                      tol        : 1;
57   unsigned                      bol        : 1;
58   unsigned                                 : 1;
59   unsigned                      intr       : 1;
60   unsigned                                 : 2;
61   unsigned                      en         : 1;
62   unsigned                                 : 7;
63   unsigned                      dis        : 1;
64   unsigned                      md         : 16;
65   struct dma_descr_group       *up;
66   union {
67     struct dma_descr_context   *context;
68     struct dma_descr_group     *group;
69   }                             down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74   struct dma_descr_context     *next;
75   unsigned                      eol        : 1;
76   unsigned                                 : 3;
77   unsigned                      intr       : 1;
78   unsigned                                 : 1;
79   unsigned                      store_mode : 1;
80   unsigned                      en         : 1;
81   unsigned                                 : 7;
82   unsigned                      dis        : 1;
83   unsigned                      md0        : 16;
84   unsigned                      md1;
85   unsigned                      md2;
86   unsigned                      md3;
87   unsigned                      md4;
88   struct dma_descr_data        *saved_data;
89   char                         *saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94   struct dma_descr_data        *next;
95   char                         *buf;
96   unsigned                      eol        : 1;
97   unsigned                                 : 2;
98   unsigned                      out_eop    : 1;
99   unsigned                      intr       : 1;
100   unsigned                      wait       : 1;
101   unsigned                                 : 2;
102   unsigned                                 : 3;
103   unsigned                      in_eop     : 1;
104   unsigned                                 : 4;
105   unsigned                      md         : 16;
106   char                         *after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111   regk_dma_ack_pkt                         = 0x00000100,
112   regk_dma_anytime                         = 0x00000001,
113   regk_dma_array                           = 0x00000008,
114   regk_dma_burst                           = 0x00000020,
115   regk_dma_client                          = 0x00000002,
116   regk_dma_copy_next                       = 0x00000010,
117   regk_dma_copy_up                         = 0x00000020,
118   regk_dma_data_at_eol                     = 0x00000001,
119   regk_dma_dis_c                           = 0x00000010,
120   regk_dma_dis_g                           = 0x00000020,
121   regk_dma_idle                            = 0x00000001,
122   regk_dma_intern                          = 0x00000004,
123   regk_dma_load_c                          = 0x00000200,
124   regk_dma_load_c_n                        = 0x00000280,
125   regk_dma_load_c_next                     = 0x00000240,
126   regk_dma_load_d                          = 0x00000140,
127   regk_dma_load_g                          = 0x00000300,
128   regk_dma_load_g_down                     = 0x000003c0,
129   regk_dma_load_g_next                     = 0x00000340,
130   regk_dma_load_g_up                       = 0x00000380,
131   regk_dma_next_en                         = 0x00000010,
132   regk_dma_next_pkt                        = 0x00000010,
133   regk_dma_no                              = 0x00000000,
134   regk_dma_only_at_wait                    = 0x00000000,
135   regk_dma_restore                         = 0x00000020,
136   regk_dma_rst                             = 0x00000001,
137   regk_dma_running                         = 0x00000004,
138   regk_dma_rw_cfg_default                  = 0x00000000,
139   regk_dma_rw_cmd_default                  = 0x00000000,
140   regk_dma_rw_intr_mask_default            = 0x00000000,
141   regk_dma_rw_stat_default                 = 0x00000101,
142   regk_dma_rw_stream_cmd_default           = 0x00000000,
143   regk_dma_save_down                       = 0x00000020,
144   regk_dma_save_up                         = 0x00000020,
145   regk_dma_set_reg                         = 0x00000050,
146   regk_dma_set_w_size1                     = 0x00000190,
147   regk_dma_set_w_size2                     = 0x000001a0,
148   regk_dma_set_w_size4                     = 0x000001c0,
149   regk_dma_stopped                         = 0x00000002,
150   regk_dma_store_c                         = 0x00000002,
151   regk_dma_store_descr                     = 0x00000000,
152   regk_dma_store_g                         = 0x00000004,
153   regk_dma_store_md                        = 0x00000001,
154   regk_dma_sw                              = 0x00000008,
155   regk_dma_update_down                     = 0x00000020,
156   regk_dma_yes                             = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161         RST = 1,
162         STOPPED = 2,
163         RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168         qemu_irq *irq;
169         struct etraxfs_dma_client *client;
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         int map;
189         CPUState *env;
190
191         int nr_channels;
192         struct fs_dma_channel *channels;
193
194         QEMUBH *bh;
195 };
196
197 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
198 {
199         return ctrl->channels[c].regs[reg];
200 }
201
202 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
203 {
204         return channel_reg(ctrl, c, RW_CFG) & 2;
205 }
206
207 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
208 {
209         return (channel_reg(ctrl, c, RW_CFG) & 1)
210                 && ctrl->channels[c].client;
211 }
212
213 static inline int fs_channel(target_phys_addr_t addr)
214 {
215         /* Every channel has a 0x2000 ctrl register map.  */
216         return addr >> 13;
217 }
218
219 #ifdef USE_THIS_DEAD_CODE
220 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
221 {
222         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
223
224         /* Load and decode. FIXME: handle endianness.  */
225         cpu_physical_memory_read (addr, 
226                                   (void *) &ctrl->channels[c].current_g, 
227                                   sizeof ctrl->channels[c].current_g);
228 }
229
230 static void dump_c(int ch, struct dma_descr_context *c)
231 {
232         printf("%s ch=%d\n", __func__, ch);
233         printf("next=%p\n", c->next);
234         printf("saved_data=%p\n", c->saved_data);
235         printf("saved_data_buf=%p\n", c->saved_data_buf);
236         printf("eol=%x\n", (uint32_t) c->eol);
237 }
238
239 static void dump_d(int ch, struct dma_descr_data *d)
240 {
241         printf("%s ch=%d\n", __func__, ch);
242         printf("next=%p\n", d->next);
243         printf("buf=%p\n", d->buf);
244         printf("after=%p\n", d->after);
245         printf("intr=%x\n", (uint32_t) d->intr);
246         printf("out_eop=%x\n", (uint32_t) d->out_eop);
247         printf("in_eop=%x\n", (uint32_t) d->in_eop);
248         printf("eol=%x\n", (uint32_t) d->eol);
249 }
250 #endif
251
252 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
253 {
254         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
255
256         /* Load and decode. FIXME: handle endianness.  */
257         cpu_physical_memory_read (addr, 
258                                   (void *) &ctrl->channels[c].current_c, 
259                                   sizeof ctrl->channels[c].current_c);
260
261         D(dump_c(c, &ctrl->channels[c].current_c));
262         /* I guess this should update the current pos.  */
263         ctrl->channels[c].regs[RW_SAVED_DATA] =
264                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
265         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
266                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
267 }
268
269 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
270 {
271         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
272
273         /* Load and decode. FIXME: handle endianness.  */
274         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
275         cpu_physical_memory_read (addr,
276                                   (void *) &ctrl->channels[c].current_d, 
277                                   sizeof ctrl->channels[c].current_d);
278
279         D(dump_d(c, &ctrl->channels[c].current_d));
280         ctrl->channels[c].regs[RW_DATA] = addr;
281 }
282
283 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
284 {
285         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
286
287         /* Encode and store. FIXME: handle endianness.  */
288         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
289         D(dump_d(c, &ctrl->channels[c].current_d));
290         cpu_physical_memory_write (addr,
291                                   (void *) &ctrl->channels[c].current_c,
292                                   sizeof ctrl->channels[c].current_c);
293 }
294
295 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
296 {
297         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
298
299         /* Encode and store. FIXME: handle endianness.  */
300         D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
301         cpu_physical_memory_write (addr,
302                                   (void *) &ctrl->channels[c].current_d, 
303                                   sizeof ctrl->channels[c].current_d);
304 }
305
306 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
307 {
308         /* FIXME:  */
309 }
310
311 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
312 {
313         if (ctrl->channels[c].client)
314         {
315                 ctrl->channels[c].eol = 0;
316                 ctrl->channels[c].state = RUNNING;
317         } else
318                 printf("WARNING: starting DMA ch %d with no client\n", c);
319
320         qemu_bh_schedule_idle(ctrl->bh);
321 }
322
323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
324 {
325         if (!channel_en(ctrl, c) 
326             || channel_stopped(ctrl, c)
327             || ctrl->channels[c].state != RUNNING
328             /* Only reload the current data descriptor if it has eol set.  */
329             || !ctrl->channels[c].current_d.eol) {
330                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
331                          c, ctrl->channels[c].state,
332                          channel_stopped(ctrl, c),
333                          channel_en(ctrl,c),
334                          ctrl->channels[c].eol));
335                 D(dump_d(c, &ctrl->channels[c].current_d));
336                 return;
337         }
338
339         /* Reload the current descriptor.  */
340         channel_load_d(ctrl, c);
341
342         /* If the current descriptor cleared the eol flag and we had already
343            reached eol state, do the continue.  */
344         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
345                 D(printf("continue %d ok %p\n", c,
346                          ctrl->channels[c].current_d.next));
347                 ctrl->channels[c].regs[RW_SAVED_DATA] =
348                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
349                 channel_load_d(ctrl, c);
350                 channel_start(ctrl, c);
351         }
352         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
353                 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
354 }
355
356 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
357 {
358         unsigned int cmd = v & ((1 << 10) - 1);
359
360         D(printf("%s ch=%d cmd=%x\n",
361                  __func__, c, cmd));
362         if (cmd & regk_dma_load_d) {
363                 channel_load_d(ctrl, c);
364                 if (cmd & regk_dma_burst)
365                         channel_start(ctrl, c);
366         }
367
368         if (cmd & regk_dma_load_c) {
369                 channel_load_c(ctrl, c);
370                 channel_start(ctrl, c);
371         }
372 }
373
374 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
375 {
376         D(printf("%s %d\n", __func__, c));
377         ctrl->channels[c].regs[R_INTR] &=
378                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
379
380         ctrl->channels[c].regs[R_MASKED_INTR] =
381                 ctrl->channels[c].regs[R_INTR]
382                 & ctrl->channels[c].regs[RW_INTR_MASK];
383
384         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
385                  c,
386                  ctrl->channels[c].regs[R_MASKED_INTR]));
387
388         if (ctrl->channels[c].regs[R_MASKED_INTR])
389                 qemu_irq_raise(ctrl->channels[c].irq[0]);
390         else
391                 qemu_irq_lower(ctrl->channels[c].irq[0]);
392 }
393
394 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
395 {
396         uint32_t len;
397         uint32_t saved_data_buf;
398         unsigned char buf[2 * 1024];
399
400         if (ctrl->channels[c].eol)
401                 return 0;
402
403         do {
404                 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
405
406                 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
407                          c,
408                          (uint32_t)ctrl->channels[c].current_d.buf,
409                          (uint32_t)ctrl->channels[c].current_d.after,
410                          saved_data_buf));
411
412                 len = (uint32_t)(unsigned long)
413                         ctrl->channels[c].current_d.after;
414                 len -= saved_data_buf;
415
416                 if (len > sizeof buf)
417                         len = sizeof buf;
418                 cpu_physical_memory_read (saved_data_buf, buf, len);
419
420                 D(printf("channel %d pushes %x %u bytes\n", c, 
421                          saved_data_buf, len));
422
423                 if (ctrl->channels[c].client->client.push)
424                         ctrl->channels[c].client->client.push(
425                                 ctrl->channels[c].client->client.opaque,
426                                 buf, len);
427                 else
428                         printf("WARNING: DMA ch%d dataloss,"
429                                " no attached client.\n", c);
430
431                 saved_data_buf += len;
432
433                 if (saved_data_buf == (uint32_t)(unsigned long)
434                                 ctrl->channels[c].current_d.after) {
435                         /* Done. Step to next.  */
436                         if (ctrl->channels[c].current_d.out_eop) {
437                                 /* TODO: signal eop to the client.  */
438                                 D(printf("signal eop\n"));
439                         }
440                         if (ctrl->channels[c].current_d.intr) {
441                                 /* TODO: signal eop to the client.  */
442                                 /* data intr.  */
443                                 D(printf("signal intr\n"));
444                                 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
445                                 channel_update_irq(ctrl, c);
446                         }
447                         if (ctrl->channels[c].current_d.eol) {
448                                 D(printf("channel %d EOL\n", c));
449                                 ctrl->channels[c].eol = 1;
450
451                                 /* Mark the context as disabled.  */
452                                 ctrl->channels[c].current_c.dis = 1;
453                                 channel_store_c(ctrl, c);
454
455                                 channel_stop(ctrl, c);
456                         } else {
457                                 ctrl->channels[c].regs[RW_SAVED_DATA] =
458                                         (uint32_t)(unsigned long)ctrl->
459                                                 channels[c].current_d.next;
460                                 /* Load new descriptor.  */
461                                 channel_load_d(ctrl, c);
462                                 saved_data_buf = (uint32_t)(unsigned long)
463                                         ctrl->channels[c].current_d.buf;
464                         }
465
466                         channel_store_d(ctrl, c);
467                         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
468                                                         saved_data_buf;
469                         D(dump_d(c, &ctrl->channels[c].current_d));
470                 }
471                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
472         } while (!ctrl->channels[c].eol);
473         return 1;
474 }
475
476 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
477                               unsigned char *buf, int buflen, int eop)
478 {
479         uint32_t len;
480         uint32_t saved_data_buf;
481
482         if (ctrl->channels[c].eol == 1)
483                 return 0;
484
485         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
486         len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
487         len -= saved_data_buf;
488         
489         if (len > buflen)
490                 len = buflen;
491
492         cpu_physical_memory_write (saved_data_buf, buf, len);
493         saved_data_buf += len;
494
495         if (saved_data_buf ==
496             (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
497             || eop) {
498                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
499
500                 D(printf("in dscr end len=%d\n", 
501                          ctrl->channels[c].current_d.after
502                          - ctrl->channels[c].current_d.buf));
503                 ctrl->channels[c].current_d.after = 
504                         (void *)(unsigned long) saved_data_buf;
505
506                 /* Done. Step to next.  */
507                 if (ctrl->channels[c].current_d.intr) {
508                         /* TODO: signal eop to the client.  */
509                         /* data intr.  */
510                         ctrl->channels[c].regs[R_INTR] |= 3;
511                 }
512                 if (eop) {
513                         ctrl->channels[c].current_d.in_eop = 1;
514                         ctrl->channels[c].regs[R_INTR] |= 8;
515                 }
516                 if (r_intr != ctrl->channels[c].regs[R_INTR])
517                         channel_update_irq(ctrl, c);
518
519                 channel_store_d(ctrl, c);
520                 D(dump_d(c, &ctrl->channels[c].current_d));
521
522                 if (ctrl->channels[c].current_d.eol) {
523                         D(printf("channel %d EOL\n", c));
524                         ctrl->channels[c].eol = 1;
525
526                         /* Mark the context as disabled.  */
527                         ctrl->channels[c].current_c.dis = 1;
528                         channel_store_c(ctrl, c);
529
530                         channel_stop(ctrl, c);
531                 } else {
532                         ctrl->channels[c].regs[RW_SAVED_DATA] =
533                                 (uint32_t)(unsigned long)ctrl->
534                                         channels[c].current_d.next;
535                         /* Load new descriptor.  */
536                         channel_load_d(ctrl, c);
537                         saved_data_buf = (uint32_t)(unsigned long)
538                                 ctrl->channels[c].current_d.buf;
539                 }
540         }
541
542         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
543         return len;
544 }
545
546 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
547 {
548         if (ctrl->channels[c].client->client.pull) {
549                 ctrl->channels[c].client->client.pull(
550                         ctrl->channels[c].client->client.opaque);
551                 return 1;
552         } else
553                 return 0;
554 }
555
556 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
557 {
558         struct fs_dma_ctrl *ctrl = opaque;
559         CPUState *env = ctrl->env;
560         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
561                   addr);
562         return 0;
563 }
564
565 static uint32_t
566 dma_readl (void *opaque, target_phys_addr_t addr)
567 {
568         struct fs_dma_ctrl *ctrl = opaque;
569         int c;
570         uint32_t r = 0;
571
572         /* Make addr relative to this channel and bounded to nr regs.  */
573         c = fs_channel(addr);
574         addr &= 0xff;
575         switch (addr)
576         {
577                 case RW_STAT:
578                         r = ctrl->channels[c].state & 7;
579                         r |= ctrl->channels[c].eol << 5;
580                         r |= ctrl->channels[c].stream_cmd_src << 8;
581                         break;
582
583                 default:
584                         r = ctrl->channels[c].regs[addr];
585                         D(printf ("%s c=%d addr=%x\n",
586                                   __func__, c, addr));
587                         break;
588         }
589         return r;
590 }
591
592 static void
593 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
594 {
595         struct fs_dma_ctrl *ctrl = opaque;
596         CPUState *env = ctrl->env;
597         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
598                   addr);
599 }
600
601 static void
602 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
603 {
604         if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
605                 if (ctrl->channels[c].regs[RW_CFG] & 2)
606                         ctrl->channels[c].state = STOPPED;
607                 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
608                         ctrl->channels[c].state = RST;
609         }
610 }
611
612 static void
613 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
614 {
615         struct fs_dma_ctrl *ctrl = opaque;
616         int c;
617
618         /* Make addr relative to this channel and bounded to nr regs.  */
619         c = fs_channel(addr);
620         addr &= 0xff;
621         switch (addr)
622         {
623                 case RW_DATA:
624                         ctrl->channels[c].regs[addr] = value;
625                         break;
626
627                 case RW_CFG:
628                         ctrl->channels[c].regs[addr] = value;
629                         dma_update_state(ctrl, c);
630                         break;
631                 case RW_CMD:
632                         /* continue.  */
633                         if (value & ~1)
634                                 printf("Invalid store to ch=%d RW_CMD %x\n",
635                                        c, value);
636                         ctrl->channels[c].regs[addr] = value;
637                         channel_continue(ctrl, c);
638                         break;
639
640                 case RW_SAVED_DATA:
641                 case RW_SAVED_DATA_BUF:
642                 case RW_GROUP:
643                 case RW_GROUP_DOWN:
644                         ctrl->channels[c].regs[addr] = value;
645                         break;
646
647                 case RW_ACK_INTR:
648                 case RW_INTR_MASK:
649                         ctrl->channels[c].regs[addr] = value;
650                         channel_update_irq(ctrl, c);
651                         if (addr == RW_ACK_INTR)
652                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
653                         break;
654
655                 case RW_STREAM_CMD:
656                         if (value & ~1023)
657                                 printf("Invalid store to ch=%d "
658                                        "RW_STREAMCMD %x\n",
659                                        c, value);
660                         ctrl->channels[c].regs[addr] = value;
661                         D(printf("stream_cmd ch=%d\n", c));
662                         channel_stream_cmd(ctrl, c, value);
663                         break;
664
665                 default:
666                         D(printf ("%s c=%d %x %x\n", __func__, c, addr));
667                         break;
668         }
669 }
670
671 static CPUReadMemoryFunc *dma_read[] = {
672         &dma_rinvalid,
673         &dma_rinvalid,
674         &dma_readl,
675 };
676
677 static CPUWriteMemoryFunc *dma_write[] = {
678         &dma_winvalid,
679         &dma_winvalid,
680         &dma_writel,
681 };
682
683 static int etraxfs_dmac_run(void *opaque)
684 {
685         struct fs_dma_ctrl *ctrl = opaque;
686         int i;
687         int p = 0;
688
689         for (i = 0; 
690              i < ctrl->nr_channels;
691              i++)
692         {
693                 if (ctrl->channels[i].state == RUNNING)
694                 {
695                         if (ctrl->channels[i].input) {
696                                 p += channel_in_run(ctrl, i);
697                         } else {
698                                 p += channel_out_run(ctrl, i);
699                         }
700                 }
701         }
702         return p;
703 }
704
705 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
706                        void *buf, int len, int eop)
707 {
708         return channel_in_process(client->ctrl, client->channel, 
709                                   buf, len, eop);
710 }
711
712 /* Connect an IRQ line with a channel.  */
713 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
714 {
715         struct fs_dma_ctrl *ctrl = opaque;
716         ctrl->channels[c].irq = line;
717         ctrl->channels[c].input = input;
718 }
719
720 void etraxfs_dmac_connect_client(void *opaque, int c, 
721                                  struct etraxfs_dma_client *cl)
722 {
723         struct fs_dma_ctrl *ctrl = opaque;
724         cl->ctrl = ctrl;
725         cl->channel = c;
726         ctrl->channels[c].client = cl;
727 }
728
729
730 static void DMA_run(void *opaque)
731 {
732     struct fs_dma_ctrl *etraxfs_dmac = opaque;
733     int p = 1;
734
735     if (vm_running)
736         p = etraxfs_dmac_run(etraxfs_dmac);
737
738     if (p)
739         qemu_bh_schedule_idle(etraxfs_dmac->bh);
740 }
741
742 void *etraxfs_dmac_init(CPUState *env, 
743                         target_phys_addr_t base, int nr_channels)
744 {
745         struct fs_dma_ctrl *ctrl = NULL;
746
747         ctrl = qemu_mallocz(sizeof *ctrl);
748         if (!ctrl)
749                 return NULL;
750
751         ctrl->bh = qemu_bh_new(DMA_run, ctrl);
752
753         ctrl->env = env;
754         ctrl->nr_channels = nr_channels;
755         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
756         if (!ctrl->channels)
757                 goto err;
758
759         ctrl->map = cpu_register_io_memory(0, dma_read, dma_write, ctrl);
760         cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
761         return ctrl;
762   err:
763         qemu_free(ctrl->channels);
764         qemu_free(ctrl);
765         return NULL;
766 }