ETRAX machine updates.
[qemu] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27
28 #include "etraxfs_dma.h"
29
30 #define D(x)
31
32 #define RW_DATA           0x0
33 #define RW_SAVED_DATA     0x58
34 #define RW_SAVED_DATA_BUF 0x5c
35 #define RW_GROUP          0x60
36 #define RW_GROUP_DOWN     0x7c
37 #define RW_CMD            0x80
38 #define RW_CFG            0x84
39 #define RW_STAT           0x88
40 #define RW_INTR_MASK      0x8c
41 #define RW_ACK_INTR       0x90
42 #define R_INTR            0x94
43 #define R_MASKED_INTR     0x98
44 #define RW_STREAM_CMD     0x9c
45
46 #define DMA_REG_MAX   0x100
47
48 /* descriptors */
49
50 // ------------------------------------------------------------ dma_descr_group
51 typedef struct dma_descr_group {
52   struct dma_descr_group       *next;
53   unsigned                      eol        : 1;
54   unsigned                      tol        : 1;
55   unsigned                      bol        : 1;
56   unsigned                                 : 1;
57   unsigned                      intr       : 1;
58   unsigned                                 : 2;
59   unsigned                      en         : 1;
60   unsigned                                 : 7;
61   unsigned                      dis        : 1;
62   unsigned                      md         : 16;
63   struct dma_descr_group       *up;
64   union {
65     struct dma_descr_context   *context;
66     struct dma_descr_group     *group;
67   }                             down;
68 } dma_descr_group;
69
70 // ---------------------------------------------------------- dma_descr_context
71 typedef struct dma_descr_context {
72   struct dma_descr_context     *next;
73   unsigned                      eol        : 1;
74   unsigned                                 : 3;
75   unsigned                      intr       : 1;
76   unsigned                                 : 1;
77   unsigned                      store_mode : 1;
78   unsigned                      en         : 1;
79   unsigned                                 : 7;
80   unsigned                      dis        : 1;
81   unsigned                      md0        : 16;
82   unsigned                      md1;
83   unsigned                      md2;
84   unsigned                      md3;
85   unsigned                      md4;
86   struct dma_descr_data        *saved_data;
87   char                         *saved_data_buf;
88 } dma_descr_context;
89
90 // ------------------------------------------------------------- dma_descr_data
91 typedef struct dma_descr_data {
92   struct dma_descr_data        *next;
93   char                         *buf;
94   unsigned                      eol        : 1;
95   unsigned                                 : 2;
96   unsigned                      out_eop    : 1;
97   unsigned                      intr       : 1;
98   unsigned                      wait       : 1;
99   unsigned                                 : 2;
100   unsigned                                 : 3;
101   unsigned                      in_eop     : 1;
102   unsigned                                 : 4;
103   unsigned                      md         : 16;
104   char                         *after;
105 } dma_descr_data;
106
107 /* Constants */
108 enum {
109   regk_dma_ack_pkt                         = 0x00000100,
110   regk_dma_anytime                         = 0x00000001,
111   regk_dma_array                           = 0x00000008,
112   regk_dma_burst                           = 0x00000020,
113   regk_dma_client                          = 0x00000002,
114   regk_dma_copy_next                       = 0x00000010,
115   regk_dma_copy_up                         = 0x00000020,
116   regk_dma_data_at_eol                     = 0x00000001,
117   regk_dma_dis_c                           = 0x00000010,
118   regk_dma_dis_g                           = 0x00000020,
119   regk_dma_idle                            = 0x00000001,
120   regk_dma_intern                          = 0x00000004,
121   regk_dma_load_c                          = 0x00000200,
122   regk_dma_load_c_n                        = 0x00000280,
123   regk_dma_load_c_next                     = 0x00000240,
124   regk_dma_load_d                          = 0x00000140,
125   regk_dma_load_g                          = 0x00000300,
126   regk_dma_load_g_down                     = 0x000003c0,
127   regk_dma_load_g_next                     = 0x00000340,
128   regk_dma_load_g_up                       = 0x00000380,
129   regk_dma_next_en                         = 0x00000010,
130   regk_dma_next_pkt                        = 0x00000010,
131   regk_dma_no                              = 0x00000000,
132   regk_dma_only_at_wait                    = 0x00000000,
133   regk_dma_restore                         = 0x00000020,
134   regk_dma_rst                             = 0x00000001,
135   regk_dma_running                         = 0x00000004,
136   regk_dma_rw_cfg_default                  = 0x00000000,
137   regk_dma_rw_cmd_default                  = 0x00000000,
138   regk_dma_rw_intr_mask_default            = 0x00000000,
139   regk_dma_rw_stat_default                 = 0x00000101,
140   regk_dma_rw_stream_cmd_default           = 0x00000000,
141   regk_dma_save_down                       = 0x00000020,
142   regk_dma_save_up                         = 0x00000020,
143   regk_dma_set_reg                         = 0x00000050,
144   regk_dma_set_w_size1                     = 0x00000190,
145   regk_dma_set_w_size2                     = 0x000001a0,
146   regk_dma_set_w_size4                     = 0x000001c0,
147   regk_dma_stopped                         = 0x00000002,
148   regk_dma_store_c                         = 0x00000002,
149   regk_dma_store_descr                     = 0x00000000,
150   regk_dma_store_g                         = 0x00000004,
151   regk_dma_store_md                        = 0x00000001,
152   regk_dma_sw                              = 0x00000008,
153   regk_dma_update_down                     = 0x00000020,
154   regk_dma_yes                             = 0x00000001
155 };
156
157 enum dma_ch_state
158 {
159         RST = 0,
160         STOPPED = 2,
161         RUNNING = 4
162 };
163
164 struct fs_dma_channel
165 {
166         int regmap;
167         qemu_irq *irq;
168         struct etraxfs_dma_client *client;
169
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         CPUState *env;
189         target_phys_addr_t base;
190
191         int nr_channels;
192         struct fs_dma_channel *channels;
193 };
194
195 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196 {
197         return ctrl->channels[c].regs[reg];
198 }
199
200 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201 {
202         return channel_reg(ctrl, c, RW_CFG) & 2;
203 }
204
205 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206 {
207         return (channel_reg(ctrl, c, RW_CFG) & 1)
208                 && ctrl->channels[c].client;
209 }
210
211 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212 {
213         /* Every channel has a 0x2000 ctrl register map.  */
214         return (addr - base) >> 13;
215 }
216
217 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
218 {
219         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
220
221         /* Load and decode. FIXME: handle endianness.  */
222         cpu_physical_memory_read (addr, 
223                                   (void *) &ctrl->channels[c].current_g, 
224                                   sizeof ctrl->channels[c].current_g);
225 }
226
227 static void dump_c(int ch, struct dma_descr_context *c)
228 {
229         printf("%s ch=%d\n", __func__, ch);
230         printf("next=%x\n", (uint32_t) c->next);
231         printf("saved_data=%x\n", (uint32_t) c->saved_data);
232         printf("saved_data_buf=%x\n", (uint32_t) c->saved_data_buf);
233         printf("eol=%x\n", (uint32_t) c->eol);
234 }
235
236 static void dump_d(int ch, struct dma_descr_data *d)
237 {
238         printf("%s ch=%d\n", __func__, ch);
239         printf("next=%x\n", (uint32_t) d->next);
240         printf("buf=%x\n", (uint32_t) d->buf);
241         printf("after=%x\n", (uint32_t) d->after);
242         printf("intr=%x\n", (uint32_t) d->intr);
243         printf("out_eop=%x\n", (uint32_t) d->out_eop);
244         printf("in_eop=%x\n", (uint32_t) d->in_eop);
245         printf("eol=%x\n", (uint32_t) d->eol);
246 }
247
248 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
249 {
250         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
251
252         /* Load and decode. FIXME: handle endianness.  */
253         cpu_physical_memory_read (addr, 
254                                   (void *) &ctrl->channels[c].current_c, 
255                                   sizeof ctrl->channels[c].current_c);
256
257         D(dump_c(c, &ctrl->channels[c].current_c));
258         /* I guess this should update the current pos.  */
259         ctrl->channels[c].regs[RW_SAVED_DATA] = 
260                 (uint32_t)ctrl->channels[c].current_c.saved_data;
261         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
262                 (uint32_t)ctrl->channels[c].current_c.saved_data_buf;
263 }
264
265 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
266 {
267         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
268
269         /* Load and decode. FIXME: handle endianness.  */
270         D(printf("%s addr=%x\n", __func__, addr));
271         cpu_physical_memory_read (addr,
272                                   (void *) &ctrl->channels[c].current_d, 
273                                   sizeof ctrl->channels[c].current_d);
274
275         D(dump_d(c, &ctrl->channels[c].current_d));
276         ctrl->channels[c].regs[RW_DATA] = addr;
277         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
278                 (uint32_t)ctrl->channels[c].current_d.buf;
279 }
280
281 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
282 {
283         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
284
285         /* Load and decode. FIXME: handle endianness.  */
286         D(printf("%s addr=%x\n", __func__, addr));
287         cpu_physical_memory_write (addr,
288                                   (void *) &ctrl->channels[c].current_d, 
289                                   sizeof ctrl->channels[c].current_d);
290 }
291
292 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
293 {
294         /* FIXME:  */
295 }
296
297 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
298 {
299         if (ctrl->channels[c].client)
300         {
301                 ctrl->channels[c].eol = 0;
302                 ctrl->channels[c].state = RUNNING;
303         } else
304                 printf("WARNING: starting DMA ch %d with no client\n", c);
305 }
306
307 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
308 {
309         if (!channel_en(ctrl, c) 
310             || channel_stopped(ctrl, c)
311             || ctrl->channels[c].state != RUNNING
312             /* Only reload the current data descriptor if it has eol set.  */
313             || !ctrl->channels[c].current_d.eol) {
314                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
315                          c, ctrl->channels[c].state,
316                          channel_stopped(ctrl, c),
317                          channel_en(ctrl,c),
318                          ctrl->channels[c].eol));
319                 D(dump_d(c, &ctrl->channels[c].current_d));
320                 return;
321         }
322
323         /* Reload the current descriptor.  */
324         channel_load_d(ctrl, c);
325
326         /* If the current descriptor cleared the eol flag and we had already
327            reached eol state, do the continue.  */
328         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
329                 D(printf("continue %d ok %x\n", c,
330                          ctrl->channels[c].current_d.next));
331                 ctrl->channels[c].regs[RW_SAVED_DATA] =
332                         (uint32_t) ctrl->channels[c].current_d.next;
333                 channel_load_d(ctrl, c);
334                 channel_start(ctrl, c);
335         }
336 }
337
338 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
339 {
340         unsigned int cmd = v & ((1 << 10) - 1);
341
342         D(printf("%s cmd=%x\n", __func__, cmd));
343         if (cmd & regk_dma_load_d) {
344                 channel_load_d(ctrl, c);
345                 if (cmd & regk_dma_burst)
346                         channel_start(ctrl, c);
347         }
348
349         if (cmd & regk_dma_load_c) {
350                 channel_load_c(ctrl, c);
351         }
352 }
353
354 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
355 {
356         D(printf("%s %d\n", __func__, c));
357         ctrl->channels[c].regs[R_INTR] &=
358                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
359
360         ctrl->channels[c].regs[R_MASKED_INTR] =
361                 ctrl->channels[c].regs[R_INTR]
362                 & ctrl->channels[c].regs[RW_INTR_MASK];
363
364         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
365                  c,
366                  ctrl->channels[c].regs[R_MASKED_INTR]));
367
368         if (ctrl->channels[c].regs[R_MASKED_INTR])
369                 qemu_irq_raise(ctrl->channels[c].irq[0]);
370         else
371                 qemu_irq_lower(ctrl->channels[c].irq[0]);
372 }
373
374 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
375 {
376         uint32_t len;
377         uint32_t saved_data_buf;
378         unsigned char buf[2 * 1024];
379
380         if (ctrl->channels[c].eol == 1)
381                 return;
382
383         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
384
385         D(printf("buf=%x after=%x saved_data_buf=%x\n",
386                  (uint32_t)ctrl->channels[c].current_d.buf,
387                  (uint32_t)ctrl->channels[c].current_d.after,
388                  saved_data_buf));
389
390         if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after) {
391                 /* Done. Step to next.  */
392                 if (ctrl->channels[c].current_d.out_eop) {
393                         /* TODO: signal eop to the client.  */
394                         D(printf("signal eop\n"));
395                 }
396                 if (ctrl->channels[c].current_d.intr) {
397                         /* TODO: signal eop to the client.  */
398                         /* data intr.  */
399                         D(printf("signal intr\n"));
400                         ctrl->channels[c].regs[R_INTR] |= (1 << 2);
401                         channel_update_irq(ctrl, c);
402                 }
403                 if (ctrl->channels[c].current_d.eol) {
404                         D(printf("channel %d EOL\n", c));
405                         ctrl->channels[c].eol = 1;
406                         channel_stop(ctrl, c);
407                 } else {
408                         ctrl->channels[c].regs[RW_SAVED_DATA] =
409                                 (uint32_t) ctrl->channels[c].current_d.next;
410                         /* Load new descriptor.  */
411                         channel_load_d(ctrl, c);
412                 }
413
414                 channel_store_d(ctrl, c);
415                 D(dump_d(c, &ctrl->channels[c].current_d));
416                 return;
417         }
418
419         len = (uint32_t) ctrl->channels[c].current_d.after;
420         len -= saved_data_buf;
421
422         if (len > sizeof buf)
423                 len = sizeof buf;
424         cpu_physical_memory_read (saved_data_buf, buf, len);
425
426         D(printf("channel %d pushes %x %u bytes\n", c, 
427                  saved_data_buf, len));
428         /* TODO: Push content.  */
429         if (ctrl->channels[c].client->client.push)
430                 ctrl->channels[c].client->client.push(
431                         ctrl->channels[c].client->client.opaque, buf, len);
432         else
433                 printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
434
435         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] += len;
436 }
437
438 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
439                               unsigned char *buf, int buflen, int eop)
440 {
441         uint32_t len;
442         uint32_t saved_data_buf;
443
444         if (ctrl->channels[c].eol == 1)
445                 return 0;
446
447         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
448         len = (uint32_t) ctrl->channels[c].current_d.after;
449         len -= saved_data_buf;
450         
451         if (len > buflen)
452                 len = buflen;
453
454         cpu_physical_memory_write (saved_data_buf, buf, len);
455         saved_data_buf += len;
456
457         if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after
458             || eop) {
459                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
460
461                 D(printf("in dscr end len=%d\n", 
462                          ctrl->channels[c].current_d.after
463                          - ctrl->channels[c].current_d.buf));
464                 ctrl->channels[c].current_d.after = 
465                         (void *) saved_data_buf;
466
467                 /* Done. Step to next.  */
468                 if (ctrl->channels[c].current_d.intr) {
469                         /* TODO: signal eop to the client.  */
470                         /* data intr.  */
471                         ctrl->channels[c].regs[R_INTR] |= 3;
472                 }
473                 if (eop) {
474                         ctrl->channels[c].current_d.in_eop = 1;
475                         ctrl->channels[c].regs[R_INTR] |= 8;
476                 }
477                 if (r_intr != ctrl->channels[c].regs[R_INTR])
478                         channel_update_irq(ctrl, c);
479
480                 channel_store_d(ctrl, c);
481                 D(dump_d(c, &ctrl->channels[c].current_d));
482
483                 if (ctrl->channels[c].current_d.eol) {
484                         D(printf("channel %d EOL\n", c));
485                         ctrl->channels[c].eol = 1;
486                         channel_stop(ctrl, c);
487                 } else {
488                         ctrl->channels[c].regs[RW_SAVED_DATA] =
489                                 (uint32_t) ctrl->channels[c].current_d.next;
490                         /* Load new descriptor.  */
491                         channel_load_d(ctrl, c);
492                         saved_data_buf =
493                                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF];
494                 }
495         }
496
497         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
498         return len;
499 }
500
501 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
502 {
503         if (ctrl->channels[c].client->client.pull)
504                 ctrl->channels[c].client->client.pull(
505                         ctrl->channels[c].client->client.opaque);
506 }
507
508 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
509 {
510         struct fs_dma_ctrl *ctrl = opaque;
511         CPUState *env = ctrl->env;
512         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
513                   addr, env->pc);
514         return 0;
515 }
516
517 static uint32_t
518 dma_readl (void *opaque, target_phys_addr_t addr)
519 {
520         struct fs_dma_ctrl *ctrl = opaque;
521         int c;
522         uint32_t r = 0;
523
524         /* Make addr relative to this instances base.  */
525         c = fs_channel(ctrl->base, addr);
526         addr &= 0x1fff;
527         switch (addr)
528         {
529                 case RW_STAT:
530                         r = ctrl->channels[c].state & 7;
531                         r |= ctrl->channels[c].eol << 5;
532                         r |= ctrl->channels[c].stream_cmd_src << 8;
533                         break;
534
535                 default:
536                         r = ctrl->channels[c].regs[addr];
537                         D(printf ("%s c=%d addr=%x pc=%x\n",
538                                  __func__, c, addr, env->pc));
539                         break;
540         }
541         return r;
542 }
543
544 static void
545 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
546 {
547         struct fs_dma_ctrl *ctrl = opaque;
548         CPUState *env = ctrl->env;
549         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
550                   addr, env->pc);
551 }
552
553 static void
554 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
555 {
556         struct fs_dma_ctrl *ctrl = opaque;
557         int c;
558
559         /* Make addr relative to this instances base.  */
560         c = fs_channel(ctrl->base, addr);
561         addr &= 0x1fff;
562         switch (addr)
563         {
564                 case RW_DATA:
565                         ctrl->channels[c].regs[addr] = value;
566                         break;
567
568                 case RW_CFG:
569                         ctrl->channels[c].regs[addr] = value;
570                         break;
571                 case RW_CMD:
572                         /* continue.  */
573                         ctrl->channels[c].regs[addr] = value;
574                         channel_continue(ctrl, c);
575                         break;
576
577                 case RW_SAVED_DATA:
578                 case RW_SAVED_DATA_BUF:
579                 case RW_GROUP:
580                 case RW_GROUP_DOWN:
581                         ctrl->channels[c].regs[addr] = value;
582                         break;
583
584                 case RW_ACK_INTR:
585                 case RW_INTR_MASK:
586                         ctrl->channels[c].regs[addr] = value;
587                         channel_update_irq(ctrl, c);
588                         if (addr == RW_ACK_INTR)
589                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
590                         break;
591
592                 case RW_STREAM_CMD:
593                         ctrl->channels[c].regs[addr] = value;
594                         channel_stream_cmd(ctrl, c, value);
595                         break;
596
597                 default:
598                         D(printf ("%s c=%d %x %x pc=%x\n",
599                                   __func__, c, addr, value, env->pc));
600                         break;
601         }
602 }
603
604 static CPUReadMemoryFunc *dma_read[] = {
605         &dma_rinvalid,
606         &dma_rinvalid,
607         &dma_readl,
608 };
609
610 static CPUWriteMemoryFunc *dma_write[] = {
611         &dma_winvalid,
612         &dma_winvalid,
613         &dma_writel,
614 };
615
616 void etraxfs_dmac_run(void *opaque)
617 {
618         struct fs_dma_ctrl *ctrl = opaque;
619         int i;
620         int p = 0;
621
622         for (i = 0; 
623              i < ctrl->nr_channels;
624              i++)
625         {
626                 if (ctrl->channels[i].state == RUNNING)
627                 {
628                         p++;
629                         if (ctrl->channels[i].input)
630                                 channel_in_run(ctrl, i);
631                         else
632                                 channel_out_run(ctrl, i);
633                 }
634         }
635 }
636
637 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
638                        void *buf, int len, int eop)
639 {
640         return channel_in_process(client->ctrl, client->channel, 
641                                   buf, len, eop);
642 }
643
644 /* Connect an IRQ line with a channel.  */
645 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
646 {
647         struct fs_dma_ctrl *ctrl = opaque;
648         ctrl->channels[c].irq = line;
649         ctrl->channels[c].input = input;
650 }
651
652 void etraxfs_dmac_connect_client(void *opaque, int c, 
653                                  struct etraxfs_dma_client *cl)
654 {
655         struct fs_dma_ctrl *ctrl = opaque;
656         cl->ctrl = ctrl;
657         cl->channel = c;
658         ctrl->channels[c].client = cl;
659 }
660
661
662 static void *etraxfs_dmac;
663 void DMA_run(void)
664 {
665         if (etraxfs_dmac)
666                 etraxfs_dmac_run(etraxfs_dmac);
667 }
668
669 void *etraxfs_dmac_init(CPUState *env, 
670                         target_phys_addr_t base, int nr_channels)
671 {
672         struct fs_dma_ctrl *ctrl = NULL;
673         int i;
674
675         ctrl = qemu_mallocz(sizeof *ctrl);
676         if (!ctrl)
677                 return NULL;
678
679         ctrl->base = base;
680         ctrl->env = env;
681         ctrl->nr_channels = nr_channels;
682         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
683         if (!ctrl->channels)
684                 goto err;
685
686         for (i = 0; i < nr_channels; i++)
687         {
688                 ctrl->channels[i].regmap = cpu_register_io_memory(0,
689                                                                   dma_read, 
690                                                                   dma_write, 
691                                                                   ctrl);
692                 cpu_register_physical_memory (base + i * 0x2000,
693                                               sizeof ctrl->channels[i].regs, 
694                                               ctrl->channels[i].regmap);
695         }
696
697         /* Hax, we only support one DMA controller at a time.  */
698         etraxfs_dmac = ctrl;
699         return ctrl;
700   err:
701         qemu_free(ctrl->channels);
702         qemu_free(ctrl);
703         return NULL;
704 }