hw: remove error handling from qemu_malloc() callers (Avi Kivity)
[qemu] / hw / etraxfs_eth.c
1 /*
2  * QEMU ETRAX Ethernet Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28
29 #include "etraxfs_dma.h"
30
31 #define D(x)
32
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
35 #define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
36 #define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
38
39 /* 
40  * The MDIO extensions in the TDK PHY model were reversed engineered from the 
41  * linux driver (PHYID and Diagnostics reg).
42  * TODO: Add friendly names for the register nums.
43  */
44 struct qemu_phy
45 {
46         uint32_t regs[32];
47
48         int link;
49
50         unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51         void (*write)(struct qemu_phy *phy, unsigned int req, 
52                       unsigned int data);
53 };
54
55 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
56 {
57         int regnum;
58         unsigned r = 0;
59
60         regnum = req & 0x1f;
61
62         switch (regnum) {
63                 case 1:
64                         if (!phy->link)
65                                 break;
66                         /* MR1.  */
67                         /* Speeds and modes.  */
68                         r |= (1 << 13) | (1 << 14);
69                         r |= (1 << 11) | (1 << 12);
70                         r |= (1 << 5); /* Autoneg complete.  */
71                         r |= (1 << 3); /* Autoneg able.  */
72                         r |= (1 << 2); /* link.  */
73                         break;
74                 case 5:
75                         /* Link partner ability.
76                            We are kind; always agree with whatever best mode
77                            the guest advertises.  */
78                         r = 1 << 14; /* Success.  */
79                         /* Copy advertised modes.  */
80                         r |= phy->regs[4] & (15 << 5);
81                         /* Autoneg support.  */
82                         r |= 1;
83                         break;
84                 case 18:
85                 {
86                         /* Diagnostics reg.  */
87                         int duplex = 0;
88                         int speed_100 = 0;
89
90                         if (!phy->link)
91                                 break;
92
93                         /* Are we advertising 100 half or 100 duplex ? */
94                         speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95                         speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96
97                         /* Are we advertising 10 duplex or 100 duplex ? */
98                         duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99                         duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100                         r = (speed_100 << 10) | (duplex << 11);
101                 }
102                 break;
103
104                 default:
105                         r = phy->regs[regnum];
106                         break;
107         }
108         D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109         return r;
110 }
111
112 static void 
113 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
114 {
115         int regnum;
116
117         regnum = req & 0x1f;
118         D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119         switch (regnum) {
120                 default:
121                         phy->regs[regnum] = data;
122                         break;
123         }
124 }
125
126 static void 
127 tdk_init(struct qemu_phy *phy)
128 {
129         phy->regs[0] = 0x3100;
130         /* PHY Id.  */
131         phy->regs[2] = 0x0300;
132         phy->regs[3] = 0xe400;
133         /* Autonegotiation advertisement reg.  */
134         phy->regs[4] = 0x01E1;
135         phy->link = 1;
136
137         phy->read = tdk_read;
138         phy->write = tdk_write;
139 }
140
141 struct qemu_mdio
142 {
143         /* bus.  */
144         int mdc;
145         int mdio;
146
147         /* decoder.  */
148         enum {
149                 PREAMBLE,
150                 SOF,
151                 OPC,
152                 ADDR,
153                 REQ,
154                 TURNAROUND,
155                 DATA
156         } state;
157         unsigned int drive;
158
159         unsigned int cnt;
160         unsigned int addr;
161         unsigned int opc;
162         unsigned int req;
163         unsigned int data;
164
165         struct qemu_phy *devs[32];
166 };
167
168 static void 
169 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170 {
171         bus->devs[addr & 0x1f] = phy;
172 }
173
174 #ifdef USE_THIS_DEAD_CODE
175 static void 
176 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
177 {
178         bus->devs[addr & 0x1f] = NULL;  
179 }
180 #endif
181
182 static void mdio_read_req(struct qemu_mdio *bus)
183 {
184         struct qemu_phy *phy;
185
186         phy = bus->devs[bus->addr];
187         if (phy && phy->read)
188                 bus->data = phy->read(phy, bus->req);
189         else 
190                 bus->data = 0xffff;
191 }
192
193 static void mdio_write_req(struct qemu_mdio *bus)
194 {
195         struct qemu_phy *phy;
196
197         phy = bus->devs[bus->addr];
198         if (phy && phy->write)
199                 phy->write(phy, bus->req, bus->data);
200 }
201
202 static void mdio_cycle(struct qemu_mdio *bus)
203 {
204         bus->cnt++;
205
206         D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
207                 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
208 #if 0
209         if (bus->mdc)
210                 printf("%d", bus->mdio);
211 #endif
212         switch (bus->state)
213         {
214                 case PREAMBLE:
215                         if (bus->mdc) {
216                                 if (bus->cnt >= (32 * 2) && !bus->mdio) {
217                                         bus->cnt = 0;
218                                         bus->state = SOF;
219                                         bus->data = 0;
220                                 }
221                         }
222                         break;
223                 case SOF:
224                         if (bus->mdc) {
225                                 if (bus->mdio != 1)
226                                         printf("WARNING: no SOF\n");
227                                 if (bus->cnt == 1*2) {
228                                         bus->cnt = 0;
229                                         bus->opc = 0;
230                                         bus->state = OPC;
231                                 }
232                         }
233                         break;
234                 case OPC:
235                         if (bus->mdc) {
236                                 bus->opc <<= 1;
237                                 bus->opc |= bus->mdio & 1;
238                                 if (bus->cnt == 2*2) {
239                                         bus->cnt = 0;
240                                         bus->addr = 0;
241                                         bus->state = ADDR;
242                                 }
243                         }
244                         break;
245                 case ADDR:
246                         if (bus->mdc) {
247                                 bus->addr <<= 1;
248                                 bus->addr |= bus->mdio & 1;
249
250                                 if (bus->cnt == 5*2) {
251                                         bus->cnt = 0;
252                                         bus->req = 0;
253                                         bus->state = REQ;
254                                 }
255                         }
256                         break;
257                 case REQ:
258                         if (bus->mdc) {
259                                 bus->req <<= 1;
260                                 bus->req |= bus->mdio & 1;
261                                 if (bus->cnt == 5*2) {
262                                         bus->cnt = 0;
263                                         bus->state = TURNAROUND;
264                                 }
265                         }
266                         break;
267                 case TURNAROUND:
268                         if (bus->mdc && bus->cnt == 2*2) {
269                                 bus->mdio = 0;
270                                 bus->cnt = 0;
271
272                                 if (bus->opc == 2) {
273                                         bus->drive = 1;
274                                         mdio_read_req(bus);
275                                         bus->mdio = bus->data & 1;
276                                 }
277                                 bus->state = DATA;
278                         }
279                         break;
280                 case DATA:                      
281                         if (!bus->mdc) {
282                                 if (bus->drive) {
283                                         bus->mdio = !!(bus->data & (1 << 15));
284                                         bus->data <<= 1;
285                                 }
286                         } else {
287                                 if (!bus->drive) {
288                                         bus->data <<= 1;
289                                         bus->data |= bus->mdio;
290                                 }
291                                 if (bus->cnt == 16 * 2) {
292                                         bus->cnt = 0;
293                                         bus->state = PREAMBLE;
294                                         if (!bus->drive)
295                                                 mdio_write_req(bus);
296                                         bus->drive = 0;
297                                 }
298                         }
299                         break;
300                 default:
301                         break;
302         }
303 }
304
305 /* ETRAX-FS Ethernet MAC block starts here.  */
306
307 #define RW_MA0_LO         0x00
308 #define RW_MA0_HI         0x01
309 #define RW_MA1_LO         0x02
310 #define RW_MA1_HI         0x03
311 #define RW_GA_LO          0x04
312 #define RW_GA_HI          0x05
313 #define RW_GEN_CTRL       0x06
314 #define RW_REC_CTRL       0x07
315 #define RW_TR_CTRL        0x08
316 #define RW_CLR_ERR        0x09
317 #define RW_MGM_CTRL       0x0a
318 #define R_STAT            0x0b
319 #define FS_ETH_MAX_REGS   0x17
320
321 struct fs_eth
322 {
323         CPUState *env;
324         qemu_irq *irq;
325         VLANClientState *vc;
326         int ethregs;
327
328         /* Two addrs in the filter.  */
329         uint8_t macaddr[2][6];
330         uint32_t regs[FS_ETH_MAX_REGS];
331
332         struct etraxfs_dma_client *dma_out;
333         struct etraxfs_dma_client *dma_in;
334
335         /* MDIO bus.  */
336         struct qemu_mdio mdio_bus;
337         unsigned int phyaddr;
338         int duplex_mismatch;
339
340         /* PHY.  */
341         struct qemu_phy phy;
342 };
343
344 static void eth_validate_duplex(struct fs_eth *eth)
345 {
346         struct qemu_phy *phy;
347         unsigned int phy_duplex;
348         unsigned int mac_duplex;
349         int new_mm = 0;
350
351         phy = eth->mdio_bus.devs[eth->phyaddr];
352         phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
353         mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
354
355         if (mac_duplex != phy_duplex)
356                 new_mm = 1;
357
358         if (eth->regs[RW_GEN_CTRL] & 1) {
359                 if (new_mm != eth->duplex_mismatch) {
360                         if (new_mm)
361                                 printf("HW: WARNING "
362                                        "ETH duplex mismatch MAC=%d PHY=%d\n",
363                                        mac_duplex, phy_duplex);
364                         else
365                                 printf("HW: ETH duplex ok.\n");
366                 }
367                 eth->duplex_mismatch = new_mm;
368         }
369 }
370
371 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
372 {
373         struct fs_eth *eth = opaque;
374         uint32_t r = 0;
375
376         addr >>= 2;
377
378         switch (addr) {
379                 case R_STAT:
380                         r = eth->mdio_bus.mdio & 1;
381                         break;
382         default:
383                 r = eth->regs[addr];
384                 D(printf ("%s %x\n", __func__, addr * 4));
385                 break;
386         }
387         return r;
388 }
389
390 static void eth_update_ma(struct fs_eth *eth, int ma)
391 {
392         int reg;
393         int i = 0;
394
395         ma &= 1;
396
397         reg = RW_MA0_LO;
398         if (ma)
399                 reg = RW_MA1_LO;
400
401         eth->macaddr[ma][i++] = eth->regs[reg];
402         eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
403         eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
404         eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
405         eth->macaddr[ma][i++] = eth->regs[reg + 4];
406         eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
407
408         D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
409                  eth->macaddr[ma][0], eth->macaddr[ma][1],
410                  eth->macaddr[ma][2], eth->macaddr[ma][3],
411                  eth->macaddr[ma][4], eth->macaddr[ma][5]));
412 }
413
414 static void
415 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
416 {
417         struct fs_eth *eth = opaque;
418
419         addr >>= 2;
420         switch (addr)
421         {
422                 case RW_MA0_LO:
423                 case RW_MA0_HI:
424                         eth->regs[addr] = value;
425                         eth_update_ma(eth, 0);
426                         break;
427                 case RW_MA1_LO:
428                 case RW_MA1_HI:
429                         eth->regs[addr] = value;
430                         eth_update_ma(eth, 1);
431                         break;
432
433                 case RW_MGM_CTRL:
434                         /* Attach an MDIO/PHY abstraction.  */
435                         if (value & 2)
436                                 eth->mdio_bus.mdio = value & 1;
437                         if (eth->mdio_bus.mdc != (value & 4)) {
438                                 mdio_cycle(&eth->mdio_bus);
439                                 eth_validate_duplex(eth);
440                         }
441                         eth->mdio_bus.mdc = !!(value & 4);
442                         break;
443
444                 case RW_REC_CTRL:
445                         eth->regs[addr] = value;
446                         eth_validate_duplex(eth);
447                         break;
448
449                 default:
450                         eth->regs[addr] = value;
451                         D(printf ("%s %x %x\n",
452                                   __func__, addr, value));
453                         break;
454         }
455 }
456
457 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
458    filter dropping group addresses we have not joined.  The filter has 64
459    bits (m). The has function is a simple nible xor of the group addr.  */
460 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
461 {
462         unsigned int hsh;
463         int m_individual = eth->regs[RW_REC_CTRL] & 4;
464         int match;
465
466         /* First bit on the wire of a MAC address signals multicast or
467            physical address.  */
468         if (!m_individual && !sa[0] & 1)
469                 return 0;
470
471         /* Calculate the hash index for the GA registers. */
472         hsh = 0;
473         hsh ^= (*sa) & 0x3f;
474         hsh ^= ((*sa) >> 6) & 0x03;
475         ++sa;
476         hsh ^= ((*sa) << 2) & 0x03c;
477         hsh ^= ((*sa) >> 4) & 0xf;
478         ++sa;
479         hsh ^= ((*sa) << 4) & 0x30;
480         hsh ^= ((*sa) >> 2) & 0x3f;
481         ++sa;
482         hsh ^= (*sa) & 0x3f;
483         hsh ^= ((*sa) >> 6) & 0x03;
484         ++sa;
485         hsh ^= ((*sa) << 2) & 0x03c;
486         hsh ^= ((*sa) >> 4) & 0xf;
487         ++sa;
488         hsh ^= ((*sa) << 4) & 0x30;
489         hsh ^= ((*sa) >> 2) & 0x3f;
490
491         hsh &= 63;
492         if (hsh > 31)
493                 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
494         else
495                 match = eth->regs[RW_GA_LO] & (1 << hsh);
496         D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
497                  eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
498         return match;
499 }
500
501 static int eth_can_receive(void *opaque)
502 {
503         return 1;
504 }
505
506 static void eth_receive(void *opaque, const uint8_t *buf, int size)
507 {
508         unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
509         struct fs_eth *eth = opaque;
510         int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
511         int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
512         int r_bcast = eth->regs[RW_REC_CTRL] & 8;
513
514         if (size < 12)
515                 return;
516
517         D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
518                  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
519                  use_ma0, use_ma1, r_bcast));
520                
521         /* Does the frame get through the address filters?  */
522         if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
523             && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
524             && (!r_bcast || memcmp(buf, sa_bcast, 6))
525             && !eth_match_groupaddr(eth, buf))
526                 return;
527
528         /* FIXME: Find another way to pass on the fake csum.  */
529         etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
530 }
531
532 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
533 {
534         struct fs_eth *eth = opaque;
535
536         D(printf("%s buf=%p len=%d\n", __func__, buf, len));
537         qemu_send_packet(eth->vc, buf, len);
538         return len;
539 }
540
541 static void eth_set_link(VLANClientState *vc)
542 {
543         struct fs_eth *eth = vc->opaque;
544         D(printf("%s %d\n", __func__, vc->link_down));
545         eth->phy.link = !vc->link_down;
546 }
547
548 static CPUReadMemoryFunc *eth_read[] = {
549         NULL, NULL,
550         &eth_readl,
551 };
552
553 static CPUWriteMemoryFunc *eth_write[] = {
554         NULL, NULL,
555         &eth_writel,
556 };
557
558 void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
559                        qemu_irq *irq, target_phys_addr_t base, int phyaddr)
560 {
561         struct etraxfs_dma_client *dma = NULL;  
562         struct fs_eth *eth = NULL;
563
564         qemu_check_nic_model(nd, "fseth");
565
566         dma = qemu_mallocz(sizeof *dma * 2);
567
568         eth = qemu_mallocz(sizeof *eth);
569
570         dma[0].client.push = eth_tx_push;
571         dma[0].client.opaque = eth;
572         dma[1].client.opaque = eth;
573         dma[1].client.pull = NULL;
574
575         eth->env = env;
576         eth->irq = irq;
577         eth->dma_out = dma;
578         eth->dma_in = dma + 1;
579
580         /* Connect the phy.  */
581         eth->phyaddr = phyaddr & 0x1f;
582         tdk_init(&eth->phy);
583         mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
584
585         eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
586         cpu_register_physical_memory (base, 0x5c, eth->ethregs);
587
588         eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
589                                        eth_receive, eth_can_receive, eth);
590         eth->vc->opaque = eth;
591         eth->vc->link_status_changed = eth_set_link;
592
593         return dma;
594 }