Add limited support for the etrax ethernet controller.
[qemu] / hw / etraxfs_eth.c
1 /*
2  * QEMU ETRAX Ethernet Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28
29 #include "etraxfs_dma.h"
30
31 #define D(x)
32
33 #define R_STAT            0x2c
34 #define RW_MGM_CTRL       0x28
35 #define FS_ETH_MAX_REGS   0x5c
36
37
38
39 struct qemu_phy
40 {
41         uint32_t regs[32];
42
43         unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
44         void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
45 };
46
47 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
48 {
49         int regnum;
50         unsigned r = 0;
51
52         regnum = req & 0x1f;
53
54         switch (regnum) {
55                 case 1:
56                         /* MR1.  */
57                         /* Speeds and modes.  */
58                         r |= (1 << 13) | (1 << 14);
59                         r |= (1 << 11) | (1 << 12);
60                         r |= (1 << 5); /* Autoneg complete.  */
61                         r |= (1 << 3); /* Autoneg able.  */
62                         r |= (1 << 2); /* Link.  */
63                         break;
64                 default:
65                         r = phy->regs[regnum];
66                         break;
67         }
68         D(printf("%s %x = reg[%d]\n", __func__, r, regnum));
69         return r;
70 }
71
72 static void 
73 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
74 {
75         int regnum;
76
77         regnum = req & 0x1f;
78         D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
79         switch (regnum) {
80                 default:
81                         phy->regs[regnum] = data;
82                         break;
83         }
84 }
85
86 static void 
87 tdk_init(struct qemu_phy *phy)
88 {
89         phy->read = tdk_read;
90         phy->write = tdk_write;
91 }
92
93 struct qemu_mdio
94 {
95         /* bus.  */
96         int mdc;
97         int mdio;
98
99         /* decoder.  */
100         enum {
101                 PREAMBLE,
102                 SOF,
103                 OPC,
104                 ADDR,
105                 REQ,
106                 TURNAROUND,
107                 DATA
108         } state;
109         unsigned int drive;
110
111         unsigned int cnt;
112         unsigned int addr;
113         unsigned int opc;
114         unsigned int req;
115         unsigned int data;
116
117         struct qemu_phy *devs[32];
118 };
119
120 static void 
121 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
122 {
123         bus->devs[addr & 0x1f] = phy;
124 }
125
126 static void 
127 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
128 {
129         bus->devs[addr & 0x1f] = NULL;  
130 }
131
132 static void mdio_read_req(struct qemu_mdio *bus)
133 {
134         struct qemu_phy *phy;
135
136         phy = bus->devs[bus->addr];
137         if (phy && phy->read)
138                 bus->data = phy->read(phy, bus->req);
139         else 
140                 bus->data = 0xffff;
141 }
142
143 static void mdio_write_req(struct qemu_mdio *bus)
144 {
145         struct qemu_phy *phy;
146
147         phy = bus->devs[bus->addr];
148         if (phy && phy->write)
149                 phy->write(phy, bus->req, bus->data);
150 }
151
152 static void mdio_cycle(struct qemu_mdio *bus)
153 {
154         bus->cnt++;
155
156         D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
157                 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
158 #if 0
159         if (bus->mdc)
160                 printf("%d", bus->mdio);
161 #endif
162         switch (bus->state)
163         {
164                 case PREAMBLE:
165                         if (bus->mdc) {
166                                 if (bus->cnt >= (32 * 2) && !bus->mdio) {
167                                         bus->cnt = 0;
168                                         bus->state = SOF;
169                                         bus->data = 0;
170                                 }
171                         }
172                         break;
173                 case SOF:
174                         if (bus->mdc) {
175                                 if (bus->mdio != 1)
176                                         printf("WARNING: no SOF\n");
177                                 if (bus->cnt == 1*2) {
178                                         bus->cnt = 0;
179                                         bus->opc = 0;
180                                         bus->state = OPC;
181                                 }
182                         }
183                         break;
184                 case OPC:
185                         if (bus->mdc) {
186                                 bus->opc <<= 1;
187                                 bus->opc |= bus->mdio & 1;
188                                 if (bus->cnt == 2*2) {
189                                         bus->cnt = 0;
190                                         bus->addr = 0;
191                                         bus->state = ADDR;
192                                 }
193                         }
194                         break;
195                 case ADDR:
196                         if (bus->mdc) {
197                                 bus->addr <<= 1;
198                                 bus->addr |= bus->mdio & 1;
199
200                                 if (bus->cnt == 5*2) {
201                                         bus->cnt = 0;
202                                         bus->req = 0;
203                                         bus->state = REQ;
204                                 }
205                         }
206                         break;
207                 case REQ:
208                         if (bus->mdc) {
209                                 bus->req <<= 1;
210                                 bus->req |= bus->mdio & 1;
211                                 if (bus->cnt == 5*2) {
212                                         bus->cnt = 0;
213                                         bus->state = TURNAROUND;
214                                 }
215                         }
216                         break;
217                 case TURNAROUND:
218                         if (bus->mdc && bus->cnt == 2*2) {
219                                 bus->mdio = 0;
220                                 bus->cnt = 0;
221
222                                 if (bus->opc == 2) {
223                                         bus->drive = 1;
224                                         mdio_read_req(bus);
225                                         bus->mdio = bus->data & 1;
226                                 }
227                                 bus->state = DATA;
228                         }
229                         break;
230                 case DATA:                      
231                         if (!bus->mdc) {
232                                 if (bus->drive) {
233                                         bus->mdio = bus->data & 1;
234                                         bus->data >>= 1;
235                                 }
236                         } else {
237                                 if (!bus->drive) {
238                                         bus->data <<= 1;
239                                         bus->data |= bus->mdio;
240                                 }
241                                 if (bus->cnt == 16 * 2) {
242                                         bus->cnt = 0;
243                                         bus->state = PREAMBLE;
244                                         mdio_write_req(bus);
245                                 }
246                         }
247                         break;
248                 default:
249                         break;
250         }
251 }
252
253
254 struct fs_eth
255 {
256         CPUState *env;
257         qemu_irq *irq;
258         target_phys_addr_t base;
259         VLANClientState *vc;
260         uint8_t macaddr[6];
261         int ethregs;
262
263         uint32_t regs[FS_ETH_MAX_REGS];
264
265         unsigned char rx_fifo[1536];
266         int rx_fifo_len;
267         int rx_fifo_pos;
268
269         struct etraxfs_dma_client *dma_out;
270         struct etraxfs_dma_client *dma_in;
271
272         /* MDIO bus.  */
273         struct qemu_mdio mdio_bus;
274         /* PHY.  */
275         struct qemu_phy phy;
276 };
277
278 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
279 {
280         struct fs_eth *eth = opaque;
281         CPUState *env = eth->env;
282         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
283                   addr, env->pc);
284         return 0;
285 }
286
287 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
288 {
289         struct fs_eth *eth = opaque;
290         D(CPUState *env = eth->env);
291         uint32_t r = 0;
292
293         /* Make addr relative to this instances base.  */
294         addr -= eth->base;
295         switch (addr) {
296                 case R_STAT:
297                         /* Attach an MDIO/PHY abstraction.  */
298                         r = eth->mdio_bus.mdio & 1;
299                         break;
300         default:
301                 r = eth->regs[addr];
302                 D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
303                 break;
304         }
305         return r;
306 }
307
308 static void
309 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
310 {
311         struct fs_eth *eth = opaque;
312         CPUState *env = eth->env;
313         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
314                   addr, env->pc);
315 }
316
317 static void
318 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
319 {
320         struct fs_eth *eth = opaque;
321         CPUState *env = eth->env;
322
323         /* Make addr relative to this instances base.  */
324         addr -= eth->base;
325         switch (addr)
326         {
327                 case RW_MGM_CTRL:
328                         /* Attach an MDIO/PHY abstraction.  */
329                         if (value & 2)
330                                 eth->mdio_bus.mdio = value & 1;
331                         if (eth->mdio_bus.mdc != (value & 4))
332                                 mdio_cycle(&eth->mdio_bus);
333                         eth->mdio_bus.mdc = !!(value & 4);
334                         break;
335
336                 default:
337                         printf ("%s %x %x pc=%x\n",
338                                 __func__, addr, value, env->pc);
339                         break;
340         }
341 }
342
343 static int eth_can_receive(void *opaque)
344 {
345         struct fs_eth *eth = opaque;
346         int r;
347
348         r = eth->rx_fifo_len == 0;
349         if (!r) {
350                 /* TODO: signal fifo overrun.  */
351                 printf("PACKET LOSS!\n");
352         }
353         return r;
354 }
355
356 static void eth_receive(void *opaque, const uint8_t *buf, int size)
357 {
358         struct fs_eth *eth = opaque;
359         if (size > sizeof(eth->rx_fifo)) {
360                 /* TODO: signal error.  */
361         } else {
362                 memcpy(eth->rx_fifo, buf, size);
363                 /* +4, HW passes the CRC to sw.  */
364                 eth->rx_fifo_len = size + 4;
365                 eth->rx_fifo_pos = 0;
366         }
367 }
368
369 static void eth_rx_pull(void *opaque)
370 {
371         struct fs_eth *eth = opaque;
372         int len;
373         if (eth->rx_fifo_len) {         
374                 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
375 #if 0
376                 {
377                         int i;
378                         for (i = 0; i < 32; i++)
379                                 printf("%2.2x", eth->rx_fifo[i]);
380                         printf("\n");
381                 }
382 #endif
383                 len = etraxfs_dmac_input(eth->dma_in,
384                                          eth->rx_fifo + eth->rx_fifo_pos, 
385                                          eth->rx_fifo_len, 1);
386                 eth->rx_fifo_len -= len;
387                 eth->rx_fifo_pos += len;
388         }
389 }
390
391 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
392 {
393         struct fs_eth *eth = opaque;
394
395         D(printf("%s buf=%p len=%d\n", __func__, buf, len));
396         qemu_send_packet(eth->vc, buf, len);
397         return len;
398 }
399
400 static CPUReadMemoryFunc *eth_read[] = {
401     &eth_rinvalid,
402     &eth_rinvalid,
403     &eth_readl,
404 };
405
406 static CPUWriteMemoryFunc *eth_write[] = {
407     &eth_winvalid,
408     &eth_winvalid,
409     &eth_writel,
410 };
411
412 void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
413                        qemu_irq *irq, target_phys_addr_t base)
414 {
415         struct etraxfs_dma_client *dma = NULL;  
416         struct fs_eth *eth = NULL;
417
418         dma = qemu_mallocz(sizeof *dma * 2);
419         if (!dma)
420                 return NULL;
421
422         eth = qemu_mallocz(sizeof *eth);
423         if (!eth)
424                 goto err;
425
426         dma[0].client.push = eth_tx_push;
427         dma[0].client.opaque = eth;
428         dma[1].client.opaque = eth;
429         dma[1].client.pull = eth_rx_pull;
430
431         eth->env = env;
432         eth->base = base;
433         eth->irq = irq;
434         eth->dma_out = dma;
435         eth->dma_in = dma + 1;
436         memcpy(eth->macaddr, nd->macaddr, 6);
437
438         /* Connect the phy.  */
439         tdk_init(&eth->phy);
440         mdio_attach(&eth->mdio_bus, &eth->phy, 0x1);
441
442         eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
443         cpu_register_physical_memory (base, 0x5c, eth->ethregs);
444
445         eth->vc = qemu_new_vlan_client(nd->vlan, 
446                                        eth_receive, eth_can_receive, eth);
447
448         return dma;
449   err:
450         qemu_free(eth);
451         qemu_free(dma);
452         return NULL;
453 }