Compile with debug.
[qemu] / hw / etraxfs_timer.c
1 /*
2  * QEMU ETRAX Timers
3  *
4  * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "sysemu.h"
28 #include "qemu-timer.h"
29
30 #define D(x)
31
32 #define RW_TMR0_DIV   0x00
33 #define R_TMR0_DATA   0x04
34 #define RW_TMR0_CTRL  0x08
35 #define RW_TMR1_DIV   0x10
36 #define R_TMR1_DATA   0x14
37 #define RW_TMR1_CTRL  0x18
38 #define R_TIME        0x38
39 #define RW_WD_CTRL    0x40
40 #define R_WD_STAT     0x44
41 #define RW_INTR_MASK  0x48
42 #define RW_ACK_INTR   0x4c
43 #define R_INTR        0x50
44 #define R_MASKED_INTR 0x54
45
46 struct fs_timer_t {
47         CPUState *env;
48         qemu_irq *irq;
49         target_phys_addr_t base;
50
51         QEMUBH *bh_t0;
52         QEMUBH *bh_t1;
53         QEMUBH *bh_wd;
54         ptimer_state *ptimer_t0;
55         ptimer_state *ptimer_t1;
56         ptimer_state *ptimer_wd;
57         struct timeval last;
58
59         /* Control registers.  */
60         uint32_t rw_tmr0_div;
61         uint32_t r_tmr0_data;
62         uint32_t rw_tmr0_ctrl;
63
64         uint32_t rw_tmr1_div;
65         uint32_t r_tmr1_data;
66         uint32_t rw_tmr1_ctrl;
67
68         uint32_t rw_wd_ctrl;
69
70         uint32_t rw_intr_mask;
71         uint32_t rw_ack_intr;
72         uint32_t r_intr;
73         uint32_t r_masked_intr;
74 };
75
76 static uint32_t timer_rinvalid (void *opaque, target_phys_addr_t addr)
77 {
78         struct fs_timer_t *t = opaque;
79         CPUState *env = t->env;
80         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
81                   addr, env->pc);
82         return 0;
83 }
84
85 static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
86 {
87         struct fs_timer_t *t = opaque;
88         D(CPUState *env = t->env);
89         uint32_t r = 0;
90
91         /* Make addr relative to this instances base.  */
92         addr -= t->base;
93         switch (addr) {
94         case R_TMR0_DATA:
95                 break;
96         case R_TMR1_DATA:
97                 D(printf ("R_TMR1_DATA\n"));
98                 break;
99         case R_TIME:
100                 r = qemu_get_clock(vm_clock) * 10;
101                 break;
102         case RW_INTR_MASK:
103                 r = t->rw_intr_mask;
104                 break;
105         case R_MASKED_INTR:
106                 r = t->r_intr & t->rw_intr_mask;
107                 break;
108         default:
109                 D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
110                 break;
111         }
112         return r;
113 }
114
115 static void
116 timer_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
117 {
118         struct fs_timer_t *t = opaque;
119         CPUState *env = t->env;
120         cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
121                   addr, env->pc);
122 }
123
124 #define TIMER_SLOWDOWN 1
125 static void update_ctrl(struct fs_timer_t *t, int tnum)
126 {
127         unsigned int op;
128         unsigned int freq;
129         unsigned int freq_hz;
130         unsigned int div;
131         uint32_t ctrl;
132         ptimer_state *timer;
133
134         if (tnum == 0) {
135                 ctrl = t->rw_tmr0_ctrl;
136                 div = t->rw_tmr0_div;
137                 timer = t->ptimer_t0;
138         } else {
139                 ctrl = t->rw_tmr1_ctrl;
140                 div = t->rw_tmr1_div;
141                 timer = t->ptimer_t1;
142         }
143
144
145         op = ctrl & 3;
146         freq = ctrl >> 2;
147         freq_hz = 32000000;
148
149         switch (freq)
150         {
151         case 0:
152         case 1:
153                 D(printf ("extern or disabled timer clock?\n"));
154                 break;
155         case 4: freq_hz =  29493000; break;
156         case 5: freq_hz =  32000000; break;
157         case 6: freq_hz =  32768000; break;
158         case 7: freq_hz = 100001000; break;
159         default:
160                 abort();
161                 break;
162         }
163
164         D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
165         div = div * TIMER_SLOWDOWN;
166         div >>= 15;
167         freq_hz >>= 15;
168         ptimer_set_freq(timer, freq_hz);
169         ptimer_set_limit(timer, div, 0);
170
171         switch (op)
172         {
173                 case 0:
174                         /* Load.  */
175                         ptimer_set_limit(timer, div, 1);
176                         break;
177                 case 1:
178                         /* Hold.  */
179                         ptimer_stop(timer);
180                         break;
181                 case 2:
182                         /* Run.  */
183                         ptimer_run(timer, 0);
184                         break;
185                 default:
186                         abort();
187                         break;
188         }
189 }
190
191 static void timer_update_irq(struct fs_timer_t *t)
192 {
193         t->r_intr &= ~(t->rw_ack_intr);
194         t->r_masked_intr = t->r_intr & t->rw_intr_mask;
195
196         D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
197         if (t->r_masked_intr)
198                 qemu_irq_raise(t->irq[0]);
199         else
200                 qemu_irq_lower(t->irq[0]);
201 }
202
203 static void timer0_hit(void *opaque)
204 {
205         struct fs_timer_t *t = opaque;
206         t->r_intr |= 1;
207         timer_update_irq(t);
208 }
209
210 static void timer1_hit(void *opaque)
211 {
212         struct fs_timer_t *t = opaque;
213         t->r_intr |= 2;
214         timer_update_irq(t);
215 }
216
217 static void watchdog_hit(void *opaque)
218 {
219         qemu_system_reset_request();
220 }
221
222 static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
223 {
224         unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
225         unsigned int wd_key = t->rw_wd_ctrl >> 9;
226         unsigned int wd_cnt = t->rw_wd_ctrl & 511;
227         unsigned int new_key = value >> 9 & ((1 << 7) - 1);
228         unsigned int new_cmd = (value >> 8) & 1;
229
230         /* If the watchdog is enabled, they written key must match the
231            complement of the previous.  */
232         wd_key = ~wd_key & ((1 << 7) - 1);
233
234         if (wd_en && wd_key != new_key)
235                 return;
236
237         D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
238                  wd_en, new_key, wd_key, new_cmd, wd_cnt));
239
240         ptimer_set_freq(t->ptimer_wd, 760);
241         if (wd_cnt == 0)
242                 wd_cnt = 256;
243         ptimer_set_count(t->ptimer_wd, wd_cnt);
244         if (new_cmd)
245                 ptimer_run(t->ptimer_wd, 1);
246         else
247                 ptimer_stop(t->ptimer_wd);
248
249         t->rw_wd_ctrl = value;
250 }
251
252 static void
253 timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
254 {
255         struct fs_timer_t *t = opaque;
256         CPUState *env = t->env;
257
258         /* Make addr relative to this instances base.  */
259         addr -= t->base;
260         switch (addr)
261         {
262                 case RW_TMR0_DIV:
263                         t->rw_tmr0_div = value;
264                         break;
265                 case RW_TMR0_CTRL:
266                         D(printf ("RW_TMR0_CTRL=%x\n", value));
267                         t->rw_tmr0_ctrl = value;
268                         update_ctrl(t, 0);
269                         break;
270                 case RW_TMR1_DIV:
271                         t->rw_tmr1_div = value;
272                         break;
273                 case RW_TMR1_CTRL:
274                         D(printf ("RW_TMR1_CTRL=%x\n", value));
275                         t->rw_tmr1_ctrl = value;
276                         update_ctrl(t, 1);
277                         break;
278                 case RW_INTR_MASK:
279                         D(printf ("RW_INTR_MASK=%x\n", value));
280                         t->rw_intr_mask = value;
281                         timer_update_irq(t);
282                         break;
283                 case RW_WD_CTRL:
284                         timer_watchdog_update(t, value);
285                         break;
286                 case RW_ACK_INTR:
287                         t->rw_ack_intr = value;
288                         timer_update_irq(t);
289                         t->rw_ack_intr = 0;
290                         break;
291                 default:
292                         printf ("%s %x %x pc=%x\n",
293                                 __func__, addr, value, env->pc);
294                         break;
295         }
296 }
297
298 static CPUReadMemoryFunc *timer_read[] = {
299         &timer_rinvalid,
300         &timer_rinvalid,
301         &timer_readl,
302 };
303
304 static CPUWriteMemoryFunc *timer_write[] = {
305         &timer_winvalid,
306         &timer_winvalid,
307         &timer_writel,
308 };
309
310 static void etraxfs_timer_reset(void *opaque)
311 {
312         struct fs_timer_t *t = opaque;
313
314         ptimer_stop(t->ptimer_t0);
315         ptimer_stop(t->ptimer_t1);
316         ptimer_stop(t->ptimer_wd);
317         t->rw_wd_ctrl = 0;
318         t->r_intr = 0;
319         t->rw_intr_mask = 0;
320         qemu_irq_lower(t->irq[0]);
321 }
322
323 void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, 
324                         target_phys_addr_t base)
325 {
326         static struct fs_timer_t *t;
327         int timer_regs;
328
329         t = qemu_mallocz(sizeof *t);
330         if (!t)
331                 return;
332
333         t->bh_t0 = qemu_bh_new(timer0_hit, t);
334         t->bh_t1 = qemu_bh_new(timer1_hit, t);
335         t->bh_wd = qemu_bh_new(watchdog_hit, t);
336         t->ptimer_t0 = ptimer_init(t->bh_t0);
337         t->ptimer_t1 = ptimer_init(t->bh_t1);
338         t->ptimer_wd = ptimer_init(t->bh_wd);
339         t->irq = irqs;
340         t->env = env;
341         t->base = base;
342
343         timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
344         cpu_register_physical_memory (base, 0x5c, timer_regs);
345
346         qemu_register_reset(etraxfs_timer_reset, t);
347 }