Halt/reboot support for Linux, by Daniel Jacobowitz. This is a band-aid
[qemu] / hw / mips_r4k.c
1 #include "vl.h"
2
3 #define BIOS_FILENAME "mips_bios.bin"
4 //#define BIOS_FILENAME "system.bin"
5 #define KERNEL_LOAD_ADDR 0x80010000
6 #define INITRD_LOAD_ADDR 0x80800000
7
8 #define VIRT_TO_PHYS_ADDEND (-0x80000000LL)
9
10 static const int ide_iobase[2] = { 0x1f0, 0x170 };
11 static const int ide_iobase2[2] = { 0x3f6, 0x376 };
12 static const int ide_irq[2] = { 14, 15 };
13
14 extern FILE *logfile;
15
16 static PITState *pit;
17
18 static void pic_irq_request(void *opaque, int level)
19 {
20     CPUState *env = first_cpu;
21     if (level) {
22         env->CP0_Cause |= 0x00000400;
23         cpu_interrupt(env, CPU_INTERRUPT_HARD);
24     } else {
25         env->CP0_Cause &= ~0x00000400;
26         cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
27     }
28 }
29
30 void cpu_mips_irqctrl_init (void)
31 {
32 }
33
34 /* XXX: do not use a global */
35 uint32_t cpu_mips_get_random (CPUState *env)
36 {
37     static uint32_t seed = 0;
38     uint32_t idx;
39     seed = seed * 314159 + 1;
40     idx = (seed >> 16) % (MIPS_TLB_NB - env->CP0_Wired) + env->CP0_Wired;
41     return idx;
42 }
43
44 /* MIPS R4K timer */
45 uint32_t cpu_mips_get_count (CPUState *env)
46 {
47     return env->CP0_Count +
48         (uint32_t)muldiv64(qemu_get_clock(vm_clock),
49                            100 * 1000 * 1000, ticks_per_sec);
50 }
51
52 static void cpu_mips_update_count (CPUState *env, uint32_t count,
53                                    uint32_t compare)
54 {
55     uint64_t now, next;
56     uint32_t tmp;
57     
58     tmp = count;
59     if (count == compare)
60         tmp++;
61     now = qemu_get_clock(vm_clock);
62     next = now + muldiv64(compare - tmp, ticks_per_sec, 100 * 1000 * 1000);
63     if (next == now)
64         next++;
65 #if 0
66     if (logfile) {
67         fprintf(logfile, "%s: 0x%08" PRIx64 " %08x %08x => 0x%08" PRIx64 "\n",
68                 __func__, now, count, compare, next - now);
69     }
70 #endif
71     /* Store new count and compare registers */
72     env->CP0_Compare = compare;
73     env->CP0_Count =
74         count - (uint32_t)muldiv64(now, 100 * 1000 * 1000, ticks_per_sec);
75     /* Adjust timer */
76     qemu_mod_timer(env->timer, next);
77 }
78
79 void cpu_mips_store_count (CPUState *env, uint32_t value)
80 {
81     cpu_mips_update_count(env, value, env->CP0_Compare);
82 }
83
84 void cpu_mips_store_compare (CPUState *env, uint32_t value)
85 {
86     cpu_mips_update_count(env, cpu_mips_get_count(env), value);
87     env->CP0_Cause &= ~0x00008000;
88     cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
89 }
90
91 static void mips_timer_cb (void *opaque)
92 {
93     CPUState *env;
94
95     env = opaque;
96 #if 0
97     if (logfile) {
98         fprintf(logfile, "%s\n", __func__);
99     }
100 #endif
101     cpu_mips_update_count(env, cpu_mips_get_count(env), env->CP0_Compare);
102     env->CP0_Cause |= 0x00008000;
103     cpu_interrupt(env, CPU_INTERRUPT_HARD);
104 }
105
106 void cpu_mips_clock_init (CPUState *env)
107 {
108     env->timer = qemu_new_timer(vm_clock, &mips_timer_cb, env);
109     env->CP0_Compare = 0;
110     cpu_mips_update_count(env, 1, 0);
111 }
112
113 static void mips_qemu_writel (void *opaque, target_phys_addr_t addr,
114                               uint32_t val)
115 {
116     if ((addr & 0xffff) == 0 && val == 42)
117         qemu_system_reset_request ();
118     else if ((addr & 0xffff) == 4 && val == 42)
119         qemu_system_shutdown_request ();
120 }
121
122 static uint32_t mips_qemu_readl (void *opaque, target_phys_addr_t addr)
123 {
124     return 0;
125 }
126
127 static CPUWriteMemoryFunc *mips_qemu_write[] = {
128     &mips_qemu_writel,
129     &mips_qemu_writel,
130     &mips_qemu_writel,
131 };
132
133 static CPUReadMemoryFunc *mips_qemu_read[] = {
134     &mips_qemu_readl,
135     &mips_qemu_readl,
136     &mips_qemu_readl,
137 };
138
139 static int mips_qemu_iomemtype = 0;
140
141 void load_kernel (CPUState *env, int ram_size, const char *kernel_filename,
142                   const char *kernel_cmdline,
143                   const char *initrd_filename)
144 {
145     int64_t entry = 0;
146     long kernel_size, initrd_size;
147
148     kernel_size = load_elf(kernel_filename, VIRT_TO_PHYS_ADDEND, &entry);
149     if (kernel_size >= 0)
150         env->PC = entry;
151     else {
152         kernel_size = load_image(kernel_filename,
153                                  phys_ram_base + KERNEL_LOAD_ADDR + VIRT_TO_PHYS_ADDEND);
154         if (kernel_size < 0) {
155             fprintf(stderr, "qemu: could not load kernel '%s'\n",
156                     kernel_filename);
157             exit(1);
158         }
159         env->PC = KERNEL_LOAD_ADDR;
160     }
161
162     /* load initrd */
163     initrd_size = 0;
164     if (initrd_filename) {
165         initrd_size = load_image(initrd_filename,
166                                  phys_ram_base + INITRD_LOAD_ADDR + VIRT_TO_PHYS_ADDEND);
167         if (initrd_size == (target_ulong) -1) {
168             fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
169                     initrd_filename);
170             exit(1);
171         }
172     }
173
174     /* Store command line.  */
175     if (initrd_size > 0) {
176         int ret;
177         ret = sprintf(phys_ram_base + (16 << 20) - 256,
178                       "rd_start=0x%08x rd_size=%li ",
179                       INITRD_LOAD_ADDR,
180                       initrd_size);
181         strcpy (phys_ram_base + (16 << 20) - 256 + ret, kernel_cmdline);
182     }
183     else {
184         strcpy (phys_ram_base + (16 << 20) - 256, kernel_cmdline);
185     }
186
187     *(int *)(phys_ram_base + (16 << 20) - 260) = tswap32 (0x12345678);
188     *(int *)(phys_ram_base + (16 << 20) - 264) = tswap32 (ram_size);
189 }
190
191 static void main_cpu_reset(void *opaque)
192 {
193     CPUState *env = opaque;
194     cpu_reset(env);
195
196     if (env->kernel_filename)
197         load_kernel (env, env->ram_size, env->kernel_filename,
198                      env->kernel_cmdline, env->initrd_filename);
199 }
200
201 void mips_r4k_init (int ram_size, int vga_ram_size, int boot_device,
202                     DisplayState *ds, const char **fd_filename, int snapshot,
203                     const char *kernel_filename, const char *kernel_cmdline,
204                     const char *initrd_filename)
205 {
206     char buf[1024];
207     unsigned long bios_offset;
208     int ret;
209     CPUState *env;
210     int i;
211
212     env = cpu_init();
213     register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
214     qemu_register_reset(main_cpu_reset, env);
215
216     /* allocate RAM */
217     cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
218
219     if (!mips_qemu_iomemtype) {
220         mips_qemu_iomemtype = cpu_register_io_memory(0, mips_qemu_read,
221                                                      mips_qemu_write, NULL);
222     }
223     cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);
224
225     /* Try to load a BIOS image. If this fails, we continue regardless,
226        but initialize the hardware ourselves. When a kernel gets
227        preloaded we also initialize the hardware, since the BIOS wasn't
228        run. */
229     bios_offset = ram_size + vga_ram_size;
230     snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
231     ret = load_image(buf, phys_ram_base + bios_offset);
232     if (ret == BIOS_SIZE) {
233         cpu_register_physical_memory((uint32_t)(0x1fc00000),
234                                      BIOS_SIZE, bios_offset | IO_MEM_ROM);
235     } else {
236         /* not fatal */
237         fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
238                 buf);
239     }
240
241     if (kernel_filename) {
242         load_kernel (env, ram_size, kernel_filename, kernel_cmdline,
243                      initrd_filename);
244         env->ram_size = ram_size;
245         env->kernel_filename = kernel_filename;
246         env->kernel_cmdline = kernel_cmdline;
247         env->initrd_filename = initrd_filename;
248     }
249
250     /* Init internal devices */
251     cpu_mips_clock_init(env);
252     cpu_mips_irqctrl_init();
253
254     /* Register 64 KB of ISA IO space at 0x14000000 */
255     isa_mmio_init(0x14000000, 0x00010000);
256     isa_mem_base = 0x10000000;
257
258     isa_pic = pic_init(pic_irq_request, env);
259     pit = pit_init(0x40, 0);
260     serial_init(&pic_set_irq_new, isa_pic, 0x3f8, 4, serial_hds[0]);
261     isa_vga_init(ds, phys_ram_base + ram_size, ram_size, 
262                  vga_ram_size);
263
264     if (nd_table[0].vlan) {
265         if (nd_table[0].model == NULL
266             || strcmp(nd_table[0].model, "ne2k_isa") == 0) {
267             isa_ne2000_init(0x300, 9, &nd_table[0]);
268         } else {
269             fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
270             exit (1);
271         }
272     }
273
274     for(i = 0; i < 2; i++)
275         isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
276                      bs_table[2 * i], bs_table[2 * i + 1]);
277 }
278
279 QEMUMachine mips_machine = {
280     "mips",
281     "mips r4k platform",
282     mips_r4k_init,
283 };