Unify IRQ handling.
[qemu] / hw / slavio_intctl.c
1 /*
2  * QEMU Sparc SLAVIO interrupt controller emulation
3  * 
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  * 
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "vl.h"
25 //#define DEBUG_IRQ_COUNT
26 //#define DEBUG_IRQ
27
28 #ifdef DEBUG_IRQ
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
34
35 /*
36  * Registers of interrupt controller in sun4m.
37  *
38  * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39  * produced as NCR89C105. See
40  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41  *
42  * There is a system master controller and one for each cpu.
43  * 
44  */
45
46 #define MAX_CPUS 16
47
48 typedef struct SLAVIO_INTCTLState {
49     uint32_t intreg_pending[MAX_CPUS];
50     uint32_t intregm_pending;
51     uint32_t intregm_disabled;
52     uint32_t target_cpu;
53 #ifdef DEBUG_IRQ_COUNT
54     uint64_t irq_count[32];
55 #endif
56     CPUState *cpu_envs[MAX_CPUS];
57     const uint32_t *intbit_to_level;
58 } SLAVIO_INTCTLState;
59
60 #define INTCTL_MAXADDR 0xf
61 #define INTCTLM_MAXADDR 0xf
62 static void slavio_check_interrupts(void *opaque);
63
64 // per-cpu interrupt controller
65 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
66 {
67     SLAVIO_INTCTLState *s = opaque;
68     uint32_t saddr;
69     int cpu;
70
71     cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
72     saddr = (addr & INTCTL_MAXADDR) >> 2;
73     switch (saddr) {
74     case 0:
75         return s->intreg_pending[cpu];
76     default:
77         break;
78     }
79     return 0;
80 }
81
82 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
83 {
84     SLAVIO_INTCTLState *s = opaque;
85     uint32_t saddr;
86     int cpu;
87
88     cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
89     saddr = (addr & INTCTL_MAXADDR) >> 2;
90     switch (saddr) {
91     case 1: // clear pending softints
92         if (val & 0x4000)
93             val |= 80000000;
94         val &= 0xfffe0000;
95         s->intreg_pending[cpu] &= ~val;
96         DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
97         break;
98     case 2: // set softint
99         val &= 0xfffe0000;
100         s->intreg_pending[cpu] |= val;
101         slavio_check_interrupts(s);
102         DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
103         break;
104     default:
105         break;
106     }
107 }
108
109 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
110     slavio_intctl_mem_readl,
111     slavio_intctl_mem_readl,
112     slavio_intctl_mem_readl,
113 };
114
115 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
116     slavio_intctl_mem_writel,
117     slavio_intctl_mem_writel,
118     slavio_intctl_mem_writel,
119 };
120
121 // master system interrupt controller
122 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
123 {
124     SLAVIO_INTCTLState *s = opaque;
125     uint32_t saddr;
126
127     saddr = (addr & INTCTLM_MAXADDR) >> 2;
128     switch (saddr) {
129     case 0:
130         return s->intregm_pending & 0x7fffffff;
131     case 1:
132         return s->intregm_disabled;
133     case 4:
134         return s->target_cpu;
135     default:
136         break;
137     }
138     return 0;
139 }
140
141 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
142 {
143     SLAVIO_INTCTLState *s = opaque;
144     uint32_t saddr;
145
146     saddr = (addr & INTCTLM_MAXADDR) >> 2;
147     switch (saddr) {
148     case 2: // clear (enable)
149         // Force clear unused bits
150         val &= ~0x4fb2007f;
151         s->intregm_disabled &= ~val;
152         DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
153         slavio_check_interrupts(s);
154         break;
155     case 3: // set (disable, clear pending)
156         // Force clear unused bits
157         val &= ~0x4fb2007f;
158         s->intregm_disabled |= val;
159         s->intregm_pending &= ~val;
160         DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
161         break;
162     case 4:
163         s->target_cpu = val & (MAX_CPUS - 1);
164         DPRINTF("Set master irq cpu %d\n", s->target_cpu);
165         break;
166     default:
167         break;
168     }
169 }
170
171 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
172     slavio_intctlm_mem_readl,
173     slavio_intctlm_mem_readl,
174     slavio_intctlm_mem_readl,
175 };
176
177 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
178     slavio_intctlm_mem_writel,
179     slavio_intctlm_mem_writel,
180     slavio_intctlm_mem_writel,
181 };
182
183 void slavio_pic_info(void *opaque)
184 {
185     SLAVIO_INTCTLState *s = opaque;
186     int i;
187
188     for (i = 0; i < MAX_CPUS; i++) {
189         term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
190     }
191     term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
192 }
193
194 void slavio_irq_info(void *opaque)
195 {
196 #ifndef DEBUG_IRQ_COUNT
197     term_printf("irq statistic code not compiled.\n");
198 #else
199     SLAVIO_INTCTLState *s = opaque;
200     int i;
201     int64_t count;
202
203     term_printf("IRQ statistics:\n");
204     for (i = 0; i < 32; i++) {
205         count = s->irq_count[i];
206         if (count > 0)
207             term_printf("%2d: %" PRId64 "\n", i, count);
208     }
209 #endif
210 }
211
212 static void slavio_check_interrupts(void *opaque)
213 {
214     CPUState *env;
215     SLAVIO_INTCTLState *s = opaque;
216     uint32_t pending = s->intregm_pending;
217     unsigned int i, j, max = 0;
218
219     pending &= ~s->intregm_disabled;
220
221     if (pending && !(s->intregm_disabled & 0x80000000)) {
222         for (i = 0; i < 32; i++) {
223             if (pending & (1 << i)) {
224                 if (max < s->intbit_to_level[i])
225                     max = s->intbit_to_level[i];
226             }
227         }
228         env = s->cpu_envs[s->target_cpu];
229         if (!env) {
230             DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
231         }
232         else {
233             if (env->halted)
234                 env->halted = 0;
235             if (env->interrupt_index == 0) {
236                 DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
237 #ifdef DEBUG_IRQ_COUNT
238                 s->irq_count[max]++;
239 #endif
240                 env->interrupt_index = TT_EXTINT | max;
241                 cpu_interrupt(env, CPU_INTERRUPT_HARD);
242             }
243             else
244                 DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
245         }
246     }
247     else
248         DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
249     
250     for (i = 0; i < MAX_CPUS; i++) {
251         max = 0;
252         env = s->cpu_envs[i];
253         if (!env)
254             continue;
255         for (j = 17; j < 32; j++) {
256             if (s->intreg_pending[i] & (1 << j)) {
257                 if (max < j - 16)
258                     max = j - 16;
259             }
260         }
261         if (max > 0) {
262             if (env->halted)
263                 env->halted = 0;
264             if (env->interrupt_index == 0) {
265                 DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
266 #ifdef DEBUG_IRQ_COUNT
267                 s->irq_count[max]++;
268 #endif
269                 env->interrupt_index = TT_EXTINT | max;
270                 cpu_interrupt(env, CPU_INTERRUPT_HARD);
271             }
272         }
273     }
274 }
275
276 /*
277  * "irq" here is the bit number in the system interrupt register to
278  * separate serial and keyboard interrupts sharing a level.
279  */
280 void slavio_set_irq(void *opaque, int irq, int level)
281 {
282     SLAVIO_INTCTLState *s = opaque;
283
284     DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
285     if (irq < 32) {
286         uint32_t mask = 1 << irq;
287         uint32_t pil = s->intbit_to_level[irq];
288         if (pil > 0) {
289             if (level) {
290                 s->intregm_pending |= mask;
291                 s->intreg_pending[s->target_cpu] |= 1 << pil;
292                 slavio_check_interrupts(s);
293             }
294             else {
295                 s->intregm_pending &= ~mask;
296                 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
297             }
298         }
299     }
300 }
301
302 void pic_set_irq_cpu(void *opaque, int irq, int level, unsigned int cpu)
303 {
304     SLAVIO_INTCTLState *s = opaque;
305
306     DPRINTF("Set cpu %d local irq %d level %d\n", cpu, irq, level);
307     if (cpu == (unsigned int)-1) {
308         slavio_set_irq(opaque, irq, level);
309         return;
310     }
311     if (irq < 32) {
312         uint32_t pil = s->intbit_to_level[irq];
313         if (pil > 0) {
314             if (level) {
315                 s->intreg_pending[cpu] |= 1 << pil;
316             }
317             else {
318                 s->intreg_pending[cpu] &= ~(1 << pil);
319             }
320         }
321     }
322     slavio_check_interrupts(s);
323 }
324
325 static void slavio_intctl_save(QEMUFile *f, void *opaque)
326 {
327     SLAVIO_INTCTLState *s = opaque;
328     int i;
329     
330     for (i = 0; i < MAX_CPUS; i++) {
331         qemu_put_be32s(f, &s->intreg_pending[i]);
332     }
333     qemu_put_be32s(f, &s->intregm_pending);
334     qemu_put_be32s(f, &s->intregm_disabled);
335     qemu_put_be32s(f, &s->target_cpu);
336 }
337
338 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
339 {
340     SLAVIO_INTCTLState *s = opaque;
341     int i;
342
343     if (version_id != 1)
344         return -EINVAL;
345
346     for (i = 0; i < MAX_CPUS; i++) {
347         qemu_get_be32s(f, &s->intreg_pending[i]);
348     }
349     qemu_get_be32s(f, &s->intregm_pending);
350     qemu_get_be32s(f, &s->intregm_disabled);
351     qemu_get_be32s(f, &s->target_cpu);
352     return 0;
353 }
354
355 static void slavio_intctl_reset(void *opaque)
356 {
357     SLAVIO_INTCTLState *s = opaque;
358     int i;
359
360     for (i = 0; i < MAX_CPUS; i++) {
361         s->intreg_pending[i] = 0;
362     }
363     s->intregm_disabled = ~0xffb2007f;
364     s->intregm_pending = 0;
365     s->target_cpu = 0;
366 }
367
368 void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
369 {
370     SLAVIO_INTCTLState *s = opaque;
371     s->cpu_envs[cpu] = env;
372 }
373
374 void *slavio_intctl_init(uint32_t addr, uint32_t addrg,
375                          const uint32_t *intbit_to_level,
376                          qemu_irq **irq)
377 {
378     int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
379     SLAVIO_INTCTLState *s;
380
381     s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
382     if (!s)
383         return NULL;
384
385     s->intbit_to_level = intbit_to_level;
386     for (i = 0; i < MAX_CPUS; i++) {
387         slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
388         cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
389     }
390
391     slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
392     cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
393
394     register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
395     qemu_register_reset(slavio_intctl_reset, s);
396     *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
397     slavio_intctl_reset(s);
398     return s;
399 }
400