kvm: Fix IRQ injection into full queue
[qemu] / kvm-all.c
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
28
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
31
32 //#define DEBUG_KVM
33
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39     do { } while (0)
40 #endif
41
42 typedef struct KVMSlot
43 {
44     target_phys_addr_t start_addr;
45     ram_addr_t memory_size;
46     ram_addr_t phys_offset;
47     int slot;
48     int flags;
49 } KVMSlot;
50
51 typedef struct kvm_dirty_log KVMDirtyLog;
52
53 int kvm_allowed = 0;
54
55 struct KVMState
56 {
57     KVMSlot slots[32];
58     int fd;
59     int vmfd;
60     int coalesced_mmio;
61     int broken_set_mem_region;
62     int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64     struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 };
67
68 static KVMState *kvm_state;
69
70 static KVMSlot *kvm_alloc_slot(KVMState *s)
71 {
72     int i;
73
74     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75         /* KVM private memory slots */
76         if (i >= 8 && i < 12)
77             continue;
78         if (s->slots[i].memory_size == 0)
79             return &s->slots[i];
80     }
81
82     fprintf(stderr, "%s: no free slot available\n", __func__);
83     abort();
84 }
85
86 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87                                          target_phys_addr_t start_addr,
88                                          target_phys_addr_t end_addr)
89 {
90     int i;
91
92     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93         KVMSlot *mem = &s->slots[i];
94
95         if (start_addr == mem->start_addr &&
96             end_addr == mem->start_addr + mem->memory_size) {
97             return mem;
98         }
99     }
100
101     return NULL;
102 }
103
104 /*
105  * Find overlapping slot with lowest start address
106  */
107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108                                             target_phys_addr_t start_addr,
109                                             target_phys_addr_t end_addr)
110 {
111     KVMSlot *found = NULL;
112     int i;
113
114     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115         KVMSlot *mem = &s->slots[i];
116
117         if (mem->memory_size == 0 ||
118             (found && found->start_addr < mem->start_addr)) {
119             continue;
120         }
121
122         if (end_addr > mem->start_addr &&
123             start_addr < mem->start_addr + mem->memory_size) {
124             found = mem;
125         }
126     }
127
128     return found;
129 }
130
131 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
132 {
133     struct kvm_userspace_memory_region mem;
134
135     mem.slot = slot->slot;
136     mem.guest_phys_addr = slot->start_addr;
137     mem.memory_size = slot->memory_size;
138     mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139     mem.flags = slot->flags;
140     if (s->migration_log) {
141         mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
142     }
143     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
144 }
145
146
147 int kvm_init_vcpu(CPUState *env)
148 {
149     KVMState *s = kvm_state;
150     long mmap_size;
151     int ret;
152
153     dprintf("kvm_init_vcpu\n");
154
155     ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
156     if (ret < 0) {
157         dprintf("kvm_create_vcpu failed\n");
158         goto err;
159     }
160
161     env->kvm_fd = ret;
162     env->kvm_state = s;
163
164     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
165     if (mmap_size < 0) {
166         dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
167         goto err;
168     }
169
170     env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
171                         env->kvm_fd, 0);
172     if (env->kvm_run == MAP_FAILED) {
173         ret = -errno;
174         dprintf("mmap'ing vcpu state failed\n");
175         goto err;
176     }
177
178     ret = kvm_arch_init_vcpu(env);
179
180 err:
181     return ret;
182 }
183
184 int kvm_put_mp_state(CPUState *env)
185 {
186     struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
187
188     return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
189 }
190
191 int kvm_get_mp_state(CPUState *env)
192 {
193     struct kvm_mp_state mp_state;
194     int ret;
195
196     ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
197     if (ret < 0) {
198         return ret;
199     }
200     env->mp_state = mp_state.mp_state;
201     return 0;
202 }
203
204 int kvm_sync_vcpus(void)
205 {
206     CPUState *env;
207
208     for (env = first_cpu; env != NULL; env = env->next_cpu) {
209         int ret;
210
211         ret = kvm_arch_put_registers(env);
212         if (ret)
213             return ret;
214     }
215
216     return 0;
217 }
218
219 /*
220  * dirty pages logging control
221  */
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223                                       ram_addr_t size, int flags, int mask)
224 {
225     KVMState *s = kvm_state;
226     KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227     int old_flags;
228
229     if (mem == NULL)  {
230             fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
231                     TARGET_FMT_plx "\n", __func__, phys_addr,
232                     phys_addr + size - 1);
233             return -EINVAL;
234     }
235
236     old_flags = mem->flags;
237
238     flags = (mem->flags & ~mask) | flags;
239     mem->flags = flags;
240
241     /* If nothing changed effectively, no need to issue ioctl */
242     if (s->migration_log) {
243         flags |= KVM_MEM_LOG_DIRTY_PAGES;
244     }
245     if (flags == old_flags) {
246             return 0;
247     }
248
249     return kvm_set_user_memory_region(s, mem);
250 }
251
252 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253 {
254         return kvm_dirty_pages_log_change(phys_addr, size,
255                                           KVM_MEM_LOG_DIRTY_PAGES,
256                                           KVM_MEM_LOG_DIRTY_PAGES);
257 }
258
259 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260 {
261         return kvm_dirty_pages_log_change(phys_addr, size,
262                                           0,
263                                           KVM_MEM_LOG_DIRTY_PAGES);
264 }
265
266 int kvm_set_migration_log(int enable)
267 {
268     KVMState *s = kvm_state;
269     KVMSlot *mem;
270     int i, err;
271
272     s->migration_log = enable;
273
274     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
275         mem = &s->slots[i];
276
277         if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
278             continue;
279         }
280         err = kvm_set_user_memory_region(s, mem);
281         if (err) {
282             return err;
283         }
284     }
285     return 0;
286 }
287
288 /**
289  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
290  * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
291  * This means all bits are set to dirty.
292  *
293  * @start_add: start of logged region.
294  * @end_addr: end of logged region.
295  */
296 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
297                                    target_phys_addr_t end_addr)
298 {
299     KVMState *s = kvm_state;
300     unsigned long size, allocated_size = 0;
301     target_phys_addr_t phys_addr;
302     ram_addr_t addr;
303     KVMDirtyLog d;
304     KVMSlot *mem;
305     int ret = 0;
306
307     d.dirty_bitmap = NULL;
308     while (start_addr < end_addr) {
309         mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
310         if (mem == NULL) {
311             break;
312         }
313
314         size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
315         if (!d.dirty_bitmap) {
316             d.dirty_bitmap = qemu_malloc(size);
317         } else if (size > allocated_size) {
318             d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
319         }
320         allocated_size = size;
321         memset(d.dirty_bitmap, 0, allocated_size);
322
323         d.slot = mem->slot;
324
325         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
326             dprintf("ioctl failed %d\n", errno);
327             ret = -1;
328             break;
329         }
330
331         for (phys_addr = mem->start_addr, addr = mem->phys_offset;
332              phys_addr < mem->start_addr + mem->memory_size;
333              phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
334             unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
335             unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
336             unsigned word = nr / (sizeof(*bitmap) * 8);
337             unsigned bit = nr % (sizeof(*bitmap) * 8);
338
339             if ((bitmap[word] >> bit) & 1) {
340                 cpu_physical_memory_set_dirty(addr);
341             }
342         }
343         start_addr = phys_addr;
344     }
345     qemu_free(d.dirty_bitmap);
346
347     return ret;
348 }
349
350 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
351 {
352     int ret = -ENOSYS;
353 #ifdef KVM_CAP_COALESCED_MMIO
354     KVMState *s = kvm_state;
355
356     if (s->coalesced_mmio) {
357         struct kvm_coalesced_mmio_zone zone;
358
359         zone.addr = start;
360         zone.size = size;
361
362         ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
363     }
364 #endif
365
366     return ret;
367 }
368
369 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
370 {
371     int ret = -ENOSYS;
372 #ifdef KVM_CAP_COALESCED_MMIO
373     KVMState *s = kvm_state;
374
375     if (s->coalesced_mmio) {
376         struct kvm_coalesced_mmio_zone zone;
377
378         zone.addr = start;
379         zone.size = size;
380
381         ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
382     }
383 #endif
384
385     return ret;
386 }
387
388 int kvm_check_extension(KVMState *s, unsigned int extension)
389 {
390     int ret;
391
392     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
393     if (ret < 0) {
394         ret = 0;
395     }
396
397     return ret;
398 }
399
400 static void kvm_reset_vcpus(void *opaque)
401 {
402     kvm_sync_vcpus();
403 }
404
405 int kvm_init(int smp_cpus)
406 {
407     static const char upgrade_note[] =
408         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
409         "(see http://sourceforge.net/projects/kvm).\n";
410     KVMState *s;
411     int ret;
412     int i;
413
414     if (smp_cpus > 1) {
415         fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
416         return -EINVAL;
417     }
418
419     s = qemu_mallocz(sizeof(KVMState));
420
421 #ifdef KVM_CAP_SET_GUEST_DEBUG
422     TAILQ_INIT(&s->kvm_sw_breakpoints);
423 #endif
424     for (i = 0; i < ARRAY_SIZE(s->slots); i++)
425         s->slots[i].slot = i;
426
427     s->vmfd = -1;
428     s->fd = open("/dev/kvm", O_RDWR);
429     if (s->fd == -1) {
430         fprintf(stderr, "Could not access KVM kernel module: %m\n");
431         ret = -errno;
432         goto err;
433     }
434
435     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
436     if (ret < KVM_API_VERSION) {
437         if (ret > 0)
438             ret = -EINVAL;
439         fprintf(stderr, "kvm version too old\n");
440         goto err;
441     }
442
443     if (ret > KVM_API_VERSION) {
444         ret = -EINVAL;
445         fprintf(stderr, "kvm version not supported\n");
446         goto err;
447     }
448
449     s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
450     if (s->vmfd < 0)
451         goto err;
452
453     /* initially, KVM allocated its own memory and we had to jump through
454      * hooks to make phys_ram_base point to this.  Modern versions of KVM
455      * just use a user allocated buffer so we can use regular pages
456      * unmodified.  Make sure we have a sufficiently modern version of KVM.
457      */
458     if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
459         ret = -EINVAL;
460         fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
461                 upgrade_note);
462         goto err;
463     }
464
465     /* There was a nasty bug in < kvm-80 that prevents memory slots from being
466      * destroyed properly.  Since we rely on this capability, refuse to work
467      * with any kernel without this capability. */
468     if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
469         ret = -EINVAL;
470
471         fprintf(stderr,
472                 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
473                 upgrade_note);
474         goto err;
475     }
476
477 #ifdef KVM_CAP_COALESCED_MMIO
478     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
479 #else
480     s->coalesced_mmio = 0;
481 #endif
482
483     s->broken_set_mem_region = 1;
484 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
485     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
486     if (ret > 0) {
487         s->broken_set_mem_region = 0;
488     }
489 #endif
490
491     ret = kvm_arch_init(s, smp_cpus);
492     if (ret < 0)
493         goto err;
494
495     qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
496
497     kvm_state = s;
498
499     return 0;
500
501 err:
502     if (s) {
503         if (s->vmfd != -1)
504             close(s->vmfd);
505         if (s->fd != -1)
506             close(s->fd);
507     }
508     qemu_free(s);
509
510     return ret;
511 }
512
513 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
514                          int direction, int size, uint32_t count)
515 {
516     int i;
517     uint8_t *ptr = data;
518
519     for (i = 0; i < count; i++) {
520         if (direction == KVM_EXIT_IO_IN) {
521             switch (size) {
522             case 1:
523                 stb_p(ptr, cpu_inb(env, port));
524                 break;
525             case 2:
526                 stw_p(ptr, cpu_inw(env, port));
527                 break;
528             case 4:
529                 stl_p(ptr, cpu_inl(env, port));
530                 break;
531             }
532         } else {
533             switch (size) {
534             case 1:
535                 cpu_outb(env, port, ldub_p(ptr));
536                 break;
537             case 2:
538                 cpu_outw(env, port, lduw_p(ptr));
539                 break;
540             case 4:
541                 cpu_outl(env, port, ldl_p(ptr));
542                 break;
543             }
544         }
545
546         ptr += size;
547     }
548
549     return 1;
550 }
551
552 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
553 {
554 #ifdef KVM_CAP_COALESCED_MMIO
555     KVMState *s = kvm_state;
556     if (s->coalesced_mmio) {
557         struct kvm_coalesced_mmio_ring *ring;
558
559         ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
560         while (ring->first != ring->last) {
561             struct kvm_coalesced_mmio *ent;
562
563             ent = &ring->coalesced_mmio[ring->first];
564
565             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
566             /* FIXME smp_wmb() */
567             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
568         }
569     }
570 #endif
571 }
572
573 int kvm_cpu_exec(CPUState *env)
574 {
575     struct kvm_run *run = env->kvm_run;
576     int ret;
577
578     dprintf("kvm_cpu_exec()\n");
579
580     do {
581         if (env->exit_request) {
582             dprintf("interrupt exit requested\n");
583             ret = 0;
584             break;
585         }
586
587         kvm_arch_pre_run(env, run);
588         ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
589         kvm_arch_post_run(env, run);
590
591         if (ret == -EINTR || ret == -EAGAIN) {
592             dprintf("io window exit\n");
593             ret = 0;
594             break;
595         }
596
597         if (ret < 0) {
598             dprintf("kvm run failed %s\n", strerror(-ret));
599             abort();
600         }
601
602         kvm_run_coalesced_mmio(env, run);
603
604         ret = 0; /* exit loop */
605         switch (run->exit_reason) {
606         case KVM_EXIT_IO:
607             dprintf("handle_io\n");
608             ret = kvm_handle_io(env, run->io.port,
609                                 (uint8_t *)run + run->io.data_offset,
610                                 run->io.direction,
611                                 run->io.size,
612                                 run->io.count);
613             break;
614         case KVM_EXIT_MMIO:
615             dprintf("handle_mmio\n");
616             cpu_physical_memory_rw(run->mmio.phys_addr,
617                                    run->mmio.data,
618                                    run->mmio.len,
619                                    run->mmio.is_write);
620             ret = 1;
621             break;
622         case KVM_EXIT_IRQ_WINDOW_OPEN:
623             dprintf("irq_window_open\n");
624             break;
625         case KVM_EXIT_SHUTDOWN:
626             dprintf("shutdown\n");
627             qemu_system_reset_request();
628             ret = 1;
629             break;
630         case KVM_EXIT_UNKNOWN:
631             dprintf("kvm_exit_unknown\n");
632             break;
633         case KVM_EXIT_FAIL_ENTRY:
634             dprintf("kvm_exit_fail_entry\n");
635             break;
636         case KVM_EXIT_EXCEPTION:
637             dprintf("kvm_exit_exception\n");
638             break;
639         case KVM_EXIT_DEBUG:
640             dprintf("kvm_exit_debug\n");
641 #ifdef KVM_CAP_SET_GUEST_DEBUG
642             if (kvm_arch_debug(&run->debug.arch)) {
643                 gdb_set_stop_cpu(env);
644                 vm_stop(EXCP_DEBUG);
645                 env->exception_index = EXCP_DEBUG;
646                 return 0;
647             }
648             /* re-enter, this exception was guest-internal */
649             ret = 1;
650 #endif /* KVM_CAP_SET_GUEST_DEBUG */
651             break;
652         default:
653             dprintf("kvm_arch_handle_exit\n");
654             ret = kvm_arch_handle_exit(env, run);
655             break;
656         }
657     } while (ret > 0);
658
659     if (env->exit_request) {
660         env->exit_request = 0;
661         env->exception_index = EXCP_INTERRUPT;
662     }
663
664     return ret;
665 }
666
667 void kvm_set_phys_mem(target_phys_addr_t start_addr,
668                       ram_addr_t size,
669                       ram_addr_t phys_offset)
670 {
671     KVMState *s = kvm_state;
672     ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
673     KVMSlot *mem, old;
674     int err;
675
676     if (start_addr & ~TARGET_PAGE_MASK) {
677         if (flags >= IO_MEM_UNASSIGNED) {
678             if (!kvm_lookup_overlapping_slot(s, start_addr,
679                                              start_addr + size)) {
680                 return;
681             }
682             fprintf(stderr, "Unaligned split of a KVM memory slot\n");
683         } else {
684             fprintf(stderr, "Only page-aligned memory slots supported\n");
685         }
686         abort();
687     }
688
689     /* KVM does not support read-only slots */
690     phys_offset &= ~IO_MEM_ROM;
691
692     while (1) {
693         mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
694         if (!mem) {
695             break;
696         }
697
698         if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
699             (start_addr + size <= mem->start_addr + mem->memory_size) &&
700             (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
701             /* The new slot fits into the existing one and comes with
702              * identical parameters - nothing to be done. */
703             return;
704         }
705
706         old = *mem;
707
708         /* unregister the overlapping slot */
709         mem->memory_size = 0;
710         err = kvm_set_user_memory_region(s, mem);
711         if (err) {
712             fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
713                     __func__, strerror(-err));
714             abort();
715         }
716
717         /* Workaround for older KVM versions: we can't join slots, even not by
718          * unregistering the previous ones and then registering the larger
719          * slot. We have to maintain the existing fragmentation. Sigh.
720          *
721          * This workaround assumes that the new slot starts at the same
722          * address as the first existing one. If not or if some overlapping
723          * slot comes around later, we will fail (not seen in practice so far)
724          * - and actually require a recent KVM version. */
725         if (s->broken_set_mem_region &&
726             old.start_addr == start_addr && old.memory_size < size &&
727             flags < IO_MEM_UNASSIGNED) {
728             mem = kvm_alloc_slot(s);
729             mem->memory_size = old.memory_size;
730             mem->start_addr = old.start_addr;
731             mem->phys_offset = old.phys_offset;
732             mem->flags = 0;
733
734             err = kvm_set_user_memory_region(s, mem);
735             if (err) {
736                 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
737                         strerror(-err));
738                 abort();
739             }
740
741             start_addr += old.memory_size;
742             phys_offset += old.memory_size;
743             size -= old.memory_size;
744             continue;
745         }
746
747         /* register prefix slot */
748         if (old.start_addr < start_addr) {
749             mem = kvm_alloc_slot(s);
750             mem->memory_size = start_addr - old.start_addr;
751             mem->start_addr = old.start_addr;
752             mem->phys_offset = old.phys_offset;
753             mem->flags = 0;
754
755             err = kvm_set_user_memory_region(s, mem);
756             if (err) {
757                 fprintf(stderr, "%s: error registering prefix slot: %s\n",
758                         __func__, strerror(-err));
759                 abort();
760             }
761         }
762
763         /* register suffix slot */
764         if (old.start_addr + old.memory_size > start_addr + size) {
765             ram_addr_t size_delta;
766
767             mem = kvm_alloc_slot(s);
768             mem->start_addr = start_addr + size;
769             size_delta = mem->start_addr - old.start_addr;
770             mem->memory_size = old.memory_size - size_delta;
771             mem->phys_offset = old.phys_offset + size_delta;
772             mem->flags = 0;
773
774             err = kvm_set_user_memory_region(s, mem);
775             if (err) {
776                 fprintf(stderr, "%s: error registering suffix slot: %s\n",
777                         __func__, strerror(-err));
778                 abort();
779             }
780         }
781     }
782
783     /* in case the KVM bug workaround already "consumed" the new slot */
784     if (!size)
785         return;
786
787     /* KVM does not need to know about this memory */
788     if (flags >= IO_MEM_UNASSIGNED)
789         return;
790
791     mem = kvm_alloc_slot(s);
792     mem->memory_size = size;
793     mem->start_addr = start_addr;
794     mem->phys_offset = phys_offset;
795     mem->flags = 0;
796
797     err = kvm_set_user_memory_region(s, mem);
798     if (err) {
799         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
800                 strerror(-err));
801         abort();
802     }
803 }
804
805 int kvm_ioctl(KVMState *s, int type, ...)
806 {
807     int ret;
808     void *arg;
809     va_list ap;
810
811     va_start(ap, type);
812     arg = va_arg(ap, void *);
813     va_end(ap);
814
815     ret = ioctl(s->fd, type, arg);
816     if (ret == -1)
817         ret = -errno;
818
819     return ret;
820 }
821
822 int kvm_vm_ioctl(KVMState *s, int type, ...)
823 {
824     int ret;
825     void *arg;
826     va_list ap;
827
828     va_start(ap, type);
829     arg = va_arg(ap, void *);
830     va_end(ap);
831
832     ret = ioctl(s->vmfd, type, arg);
833     if (ret == -1)
834         ret = -errno;
835
836     return ret;
837 }
838
839 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
840 {
841     int ret;
842     void *arg;
843     va_list ap;
844
845     va_start(ap, type);
846     arg = va_arg(ap, void *);
847     va_end(ap);
848
849     ret = ioctl(env->kvm_fd, type, arg);
850     if (ret == -1)
851         ret = -errno;
852
853     return ret;
854 }
855
856 int kvm_has_sync_mmu(void)
857 {
858 #ifdef KVM_CAP_SYNC_MMU
859     KVMState *s = kvm_state;
860
861     return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
862 #else
863     return 0;
864 #endif
865 }
866
867 void kvm_setup_guest_memory(void *start, size_t size)
868 {
869     if (!kvm_has_sync_mmu()) {
870 #ifdef MADV_DONTFORK
871         int ret = madvise(start, size, MADV_DONTFORK);
872
873         if (ret) {
874             perror("madvice");
875             exit(1);
876         }
877 #else
878         fprintf(stderr,
879                 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
880         exit(1);
881 #endif
882     }
883 }
884
885 #ifdef KVM_CAP_SET_GUEST_DEBUG
886 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
887                                                  target_ulong pc)
888 {
889     struct kvm_sw_breakpoint *bp;
890
891     TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
892         if (bp->pc == pc)
893             return bp;
894     }
895     return NULL;
896 }
897
898 int kvm_sw_breakpoints_active(CPUState *env)
899 {
900     return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
901 }
902
903 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
904 {
905     struct kvm_guest_debug dbg;
906
907     dbg.control = 0;
908     if (env->singlestep_enabled)
909         dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
910
911     kvm_arch_update_guest_debug(env, &dbg);
912     dbg.control |= reinject_trap;
913
914     return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
915 }
916
917 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
918                           target_ulong len, int type)
919 {
920     struct kvm_sw_breakpoint *bp;
921     CPUState *env;
922     int err;
923
924     if (type == GDB_BREAKPOINT_SW) {
925         bp = kvm_find_sw_breakpoint(current_env, addr);
926         if (bp) {
927             bp->use_count++;
928             return 0;
929         }
930
931         bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
932         if (!bp)
933             return -ENOMEM;
934
935         bp->pc = addr;
936         bp->use_count = 1;
937         err = kvm_arch_insert_sw_breakpoint(current_env, bp);
938         if (err) {
939             free(bp);
940             return err;
941         }
942
943         TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
944                           bp, entry);
945     } else {
946         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
947         if (err)
948             return err;
949     }
950
951     for (env = first_cpu; env != NULL; env = env->next_cpu) {
952         err = kvm_update_guest_debug(env, 0);
953         if (err)
954             return err;
955     }
956     return 0;
957 }
958
959 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
960                           target_ulong len, int type)
961 {
962     struct kvm_sw_breakpoint *bp;
963     CPUState *env;
964     int err;
965
966     if (type == GDB_BREAKPOINT_SW) {
967         bp = kvm_find_sw_breakpoint(current_env, addr);
968         if (!bp)
969             return -ENOENT;
970
971         if (bp->use_count > 1) {
972             bp->use_count--;
973             return 0;
974         }
975
976         err = kvm_arch_remove_sw_breakpoint(current_env, bp);
977         if (err)
978             return err;
979
980         TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
981         qemu_free(bp);
982     } else {
983         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
984         if (err)
985             return err;
986     }
987
988     for (env = first_cpu; env != NULL; env = env->next_cpu) {
989         err = kvm_update_guest_debug(env, 0);
990         if (err)
991             return err;
992     }
993     return 0;
994 }
995
996 void kvm_remove_all_breakpoints(CPUState *current_env)
997 {
998     struct kvm_sw_breakpoint *bp, *next;
999     KVMState *s = current_env->kvm_state;
1000     CPUState *env;
1001
1002     TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1003         if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1004             /* Try harder to find a CPU that currently sees the breakpoint. */
1005             for (env = first_cpu; env != NULL; env = env->next_cpu) {
1006                 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1007                     break;
1008             }
1009         }
1010     }
1011     kvm_arch_remove_all_hw_breakpoints();
1012
1013     for (env = first_cpu; env != NULL; env = env->next_cpu)
1014         kvm_update_guest_debug(env, 0);
1015 }
1016
1017 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1018
1019 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1020 {
1021     return -EINVAL;
1022 }
1023
1024 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1025                           target_ulong len, int type)
1026 {
1027     return -EINVAL;
1028 }
1029
1030 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1031                           target_ulong len, int type)
1032 {
1033     return -EINVAL;
1034 }
1035
1036 void kvm_remove_all_breakpoints(CPUState *current_env)
1037 {
1038 }
1039 #endif /* !KVM_CAP_SET_GUEST_DEBUG */