Fixed:Core:Improved map querying api
[navit-package] / navit / transform.c
1 /**
2  * Navit, a modular navigation system.
3  * Copyright (C) 2005-2008 Navit Team
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * version 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the
16  * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17  * Boston, MA  02110-1301, USA.
18  */
19
20 #include <assert.h>
21 #include <stdio.h>
22 #include <math.h>
23 #include <limits.h>
24 #include <glib.h>
25 #include <string.h>
26 #include "config.h"
27 #include "coord.h"
28 #include "debug.h"
29 #include "item.h"
30 #include "map.h"
31 #include "transform.h"
32 #include "projection.h"
33 #include "point.h"
34
35 struct transformation {
36         int angle;              /* Rotation angle */
37         double cos_val,sin_val; /* cos and sin of rotation angle */
38         struct map_selection *map_sel;
39         struct map_selection *screen_sel;
40         struct point screen_center;
41         struct coord map_center;        /* Center of source rectangle */
42         enum projection pro;
43         long scale;             /* Scale factor */
44 };
45
46 struct transformation *
47 transform_new(void)
48 {
49         struct transformation *this_;
50
51         this_=g_new0(struct transformation, 1);
52
53         return this_;
54 }
55
56 static const double gar2geo_units = 360.0/(1<<24);
57 static const double geo2gar_units = 1/(360.0/(1<<24));
58
59 void
60 transform_to_geo(enum projection pro, struct coord *c, struct coord_geo *g)
61 {
62         switch (pro) {
63         case projection_mg:
64                 g->lng=c->x/6371000.0/M_PI*180;
65                 g->lat=atan(exp(c->y/6371000.0))/M_PI*360-90;
66                 break;
67         case projection_garmin:
68                 g->lng=c->x*gar2geo_units;
69                 g->lat=c->y*gar2geo_units;
70                 break;
71         default:
72                 break;
73         }
74 }
75
76 void
77 transform_from_geo(enum projection pro, struct coord_geo *g, struct coord *c)
78 {
79         switch (pro) {
80         case projection_mg:
81                 c->x=g->lng*6371000.0*M_PI/180;
82                 c->y=log(tan(M_PI_4+g->lat*M_PI/360))*6371000.0;
83                 break;
84         case projection_garmin:
85                 c->x=g->lng*geo2gar_units;
86                 c->y=g->lat*geo2gar_units;
87                 break;
88         default:
89                 break;
90         }
91 }
92
93 void
94 transform_from_to(struct coord *cfrom, enum projection from, struct coord *cto, enum projection to)
95 {
96         struct coord_geo g;
97         transform_to_geo(from, cfrom, &g);
98         transform_from_geo(to, &g, cto);
99 }
100
101 void
102 transform_geo_to_cart(struct coord_geo *geo, double a, double b, struct coord_geo_cart *cart)
103 {
104         double n,ee=1-b*b/(a*a);
105         n = a/sqrt(1-ee*sin(geo->lat)*sin(geo->lat));
106         cart->x=n*cos(geo->lat)*cos(geo->lng);
107         cart->y=n*cos(geo->lat)*sin(geo->lng);
108         cart->z=n*(1-ee)*sin(geo->lat);
109 }
110
111 void
112 transform_cart_to_geo(struct coord_geo_cart *cart, double a, double b, struct coord_geo *geo)
113 {
114         double lat,lati,n,ee=1-b*b/(a*a), lng = atan(cart->y/cart->x);
115
116         lat = atan(cart->z / sqrt((cart->x * cart->x) + (cart->y * cart->y)));
117         do
118         {
119                 lati = lat;
120
121                 n = a / sqrt(1-ee*sin(lat)*sin(lat));
122                 lat = atan((cart->z + ee * n * sin(lat)) / sqrt(cart->x * cart->x + cart->y * cart->y));
123         }
124         while (fabs(lat - lati) >= 0.000000000000001);
125
126         geo->lng=lng/M_PI*180;
127         geo->lat=lat/M_PI*180;
128 }
129
130
131 void
132 transform_datum(struct coord_geo *from, enum map_datum from_datum, struct coord_geo *to, enum map_datum to_datum)
133 {
134 }
135
136 int
137 transform(struct transformation *t, enum projection pro, struct coord *c, struct point *p, int count, int unique)
138 {
139         struct coord c1;
140         int xcn, ycn; 
141         struct coord_geo g;
142 #ifdef AVOID_FLOAT
143         int xc,yc;
144 #else
145         double xc,yc;
146 #endif
147         int i,j = 0;
148         for (i=0; i < count; i++) {
149                 if (pro == t->pro) {
150                         xc=c[i].x;
151                         yc=c[i].y;
152                 } else {
153                         transform_to_geo(pro, &c[i], &g);
154                         transform_from_geo(t->pro, &g, &c1);
155                         xc=c1.x;
156                         yc=c1.y;
157                 }
158 //              dbg(2,"0x%x, 0x%x - 0x%x,0x%x contains 0x%x,0x%x\n", t->r.lu.x, t->r.lu.y, t->r.rl.x, t->r.rl.y, c->x, c->y);
159 //              ret=coord_rect_contains(&t->r, c);
160                 xc-=t->map_center.x;
161                 yc-=t->map_center.y;
162                 yc=-yc;
163                 if (t->angle) {
164                         xcn=xc*t->cos_val+yc*t->sin_val;
165                         ycn=-xc*t->sin_val+yc*t->cos_val;
166                         xc=xcn;
167                         yc=ycn;
168                 }
169                 xc=xc*16;
170                 yc=yc*16;
171 #ifndef AVOID_FLOAT
172                 if (t->scale!=1) {
173                         xc=xc/(double)(t->scale);
174                         yc=yc/(double)(t->scale);
175                 }
176 #else
177                 if (t->scale!=1) {
178                         xc=xc/t->scale;
179                         yc=yc/t->scale;
180                 }
181 #endif
182                 xc+=t->screen_center.x;
183                 yc+=t->screen_center.y;
184                 if (xc < -0x8000)
185                         xc=-0x8000;
186                 if (xc > 0x7fff) {
187                         xc=0x7fff;
188                 }
189                 if (yc < -0x8000)
190                         yc=-0x8000;
191                 if (yc > 0x7fff)
192                         yc=0x7fff;
193                 if (j == 0 || !unique || p[j-1].x != xc || p[j-1].y != yc) {
194                         p[j].x=xc;
195                         p[j].y=yc;
196                         j++;
197                 }
198         }
199         return j;
200 }
201
202 void
203 transform_reverse(struct transformation *t, struct point *p, struct coord *c)
204 {
205         int xc,yc;
206         xc=p->x;
207         yc=p->y;
208         xc-=t->screen_center.x;
209         yc-=t->screen_center.y;
210         xc=xc*t->scale/16;
211         yc=-yc*t->scale/16;
212         if (t->angle) {
213                 int xcn, ycn; 
214                 xcn=xc*t->cos_val+yc*t->sin_val;
215                 ycn=-xc*t->sin_val+yc*t->cos_val;
216                 xc=xcn;
217                 yc=ycn;
218         }
219         c->x=t->map_center.x+xc;
220         c->y=t->map_center.y+yc;
221 }
222
223 enum projection
224 transform_get_projection(struct transformation *this_)
225 {
226         return this_->pro;
227 }
228
229 void
230 transform_set_projection(struct transformation *this_, enum projection pro)
231 {
232         this_->pro=pro;
233 }
234
235 static int
236 min4(int v1,int v2, int v3, int v4)
237 {
238         int res=v1;
239         if (v2 < res)
240                 res=v2;
241         if (v3 < res)
242                 res=v3;
243         if (v4 < res)
244                 res=v4;
245         return res;
246 }
247
248 static int
249 max4(int v1,int v2, int v3, int v4)
250 {
251         int res=v1;
252         if (v2 > res)
253                 res=v2;
254         if (v3 > res)
255                 res=v3;
256         if (v4 > res)
257                 res=v4;
258         return res;
259 }
260
261 struct map_selection *
262 transform_get_selection(struct transformation *this_, enum projection pro, int order)
263 {
264
265         struct map_selection *ret,*curri,*curro;
266         struct coord_geo g;
267         
268         ret=map_selection_dup(this_->map_sel);
269         curri=this_->map_sel;
270         curro=ret;
271         while (curri) {
272                 if (this_->pro != pro) {
273                         transform_to_geo(this_->pro, &curri->u.c_rect.lu, &g);
274                         transform_from_geo(pro, &g, &curro->u.c_rect.lu);
275                         dbg(1,"%f,%f", g.lat, g.lng);
276                         transform_to_geo(this_->pro, &curri->u.c_rect.rl, &g);
277                         transform_from_geo(pro, &g, &curro->u.c_rect.rl);
278                         dbg(1,": - %f,%f\n", g.lat, g.lng);
279                 }
280                 dbg(1,"transform rect for %d is %d,%d - %d,%d\n", pro, curro->u.c_rect.lu.x, curro->u.c_rect.lu.y, curro->u.c_rect.rl.x, curro->u.c_rect.rl.y);
281                 curro->order+=order;
282                 curro->range=item_range_all;
283                 curri=curri->next;
284                 curro=curro->next;
285         }
286         return ret;
287 }
288
289 struct coord *
290 transform_center(struct transformation *this_)
291 {
292         return &this_->map_center;
293 }
294
295 void
296 transform_set_angle(struct transformation *t,int angle)
297 {
298         t->angle=angle;
299         t->cos_val=cos(M_PI*t->angle/180);
300         t->sin_val=sin(M_PI*t->angle/180);
301 }
302
303 int
304 transform_get_angle(struct transformation *this_,int angle)
305 {
306         return this_->angle;
307 }
308
309 void
310 transform_set_screen_selection(struct transformation *t, struct map_selection *sel)
311 {
312         map_selection_destroy(t->screen_sel);
313         t->screen_sel=map_selection_dup(sel);
314         if (sel) {
315                 t->screen_center.x=(sel->u.p_rect.rl.x-sel->u.p_rect.lu.x)/2;
316                 t->screen_center.y=(sel->u.p_rect.rl.y-sel->u.p_rect.lu.y)/2;
317         }
318 }
319
320 void
321 transform_set_screen_center(struct transformation *t, struct point *p)
322 {
323         t->screen_center=*p;
324 }
325
326 #if 0
327 void
328 transform_set_size(struct transformation *t, int width, int height)
329 {
330         t->width=width;
331         t->height=height;
332 }
333 #endif
334
335 void
336 transform_get_size(struct transformation *t, int *width, int *height)
337 {
338         struct point_rect *r;
339         if (t->screen_sel) {
340                 r=&t->screen_sel->u.p_rect;
341                 *width=r->rl.x-r->lu.x;
342                 *height=r->rl.y-r->lu.y;
343         }
344 }
345
346 void
347 transform_setup(struct transformation *t, struct pcoord *c, int scale, int angle)
348 {
349         t->pro=c->pro;
350         t->map_center.x=c->x;
351         t->map_center.y=c->y;
352         t->scale=scale;
353         transform_set_angle(t, angle);
354 }
355
356 #if 0
357
358 void
359 transform_setup_source_rect_limit(struct transformation *t, struct coord *center, int limit)
360 {
361         t->center=*center;
362         t->scale=1;
363         t->angle=0;
364         t->r.lu.x=center->x-limit;
365         t->r.rl.x=center->x+limit;
366         t->r.rl.y=center->y-limit;
367         t->r.lu.y=center->y+limit;
368 }
369 #endif
370
371 void
372 transform_setup_source_rect(struct transformation *t)
373 {
374         int i;
375         struct coord screen[4];
376         struct point screen_pnt[4];
377         struct point_rect *pr;
378         struct map_selection *ms,*msm,*next,**msm_last;
379         ms=t->map_sel;
380         while (ms) {
381                 next=ms->next;
382                 g_free(ms);
383                 ms=next;
384         }
385         t->map_sel=NULL;
386         msm_last=&t->map_sel;
387         ms=t->screen_sel;
388         while (ms) {
389                 msm=g_new0(struct map_selection, 1);
390                 *msm=*ms;
391                 pr=&ms->u.p_rect;
392                 screen_pnt[0].x=pr->lu.x;
393                 screen_pnt[0].y=pr->lu.y;
394                 screen_pnt[1].x=pr->rl.x;
395                 screen_pnt[1].y=pr->lu.y;
396                 screen_pnt[2].x=pr->lu.x;
397                 screen_pnt[2].y=pr->rl.y;
398                 screen_pnt[3].x=pr->rl.x;
399                 screen_pnt[3].y=pr->rl.y;
400                 for (i = 0 ; i < 4 ; i++) {
401                         transform_reverse(t, &screen_pnt[i], &screen[i]);
402                 }
403                 msm->u.c_rect.lu.x=min4(screen[0].x,screen[1].x,screen[2].x,screen[3].x);
404                 msm->u.c_rect.rl.x=max4(screen[0].x,screen[1].x,screen[2].x,screen[3].x);
405                 msm->u.c_rect.rl.y=min4(screen[0].y,screen[1].y,screen[2].y,screen[3].y);
406                 msm->u.c_rect.lu.y=max4(screen[0].y,screen[1].y,screen[2].y,screen[3].y);
407                 *msm_last=msm;
408                 msm_last=&msm->next;
409                 ms=ms->next;
410         }
411 }
412
413 long
414 transform_get_scale(struct transformation *t)
415 {
416         return t->scale;
417 }
418
419 void
420 transform_set_scale(struct transformation *t, long scale)
421 {
422         t->scale=scale;
423 }
424
425
426 int
427 transform_get_order(struct transformation *t)
428 {
429         int scale=t->scale;
430         int order=0;
431         while (scale > 1) {
432                 order++;
433                 scale>>=1;
434         }
435         order=18-order;
436         if (order < 0)
437                 order=0;
438         return order;
439 }
440
441
442
443 #define TWOPI (M_PI*2)
444 #define GC2RAD(c) ((c) * TWOPI/(1<<24))
445 #define minf(a,b) ((a) < (b) ? (a) : (b))
446
447 static double
448 transform_distance_garmin(struct coord *c1, struct coord *c2)
449 {
450 #ifdef USE_HALVESINE
451         static const int earth_radius = 6371*1000; //m change accordingly
452 // static const int earth_radius  = 3960; //miles
453  
454 //Point 1 cords
455         float lat1  = GC2RAD(c1->y);
456         float long1 = GC2RAD(c1->x);
457
458 //Point 2 cords
459         float lat2  = GC2RAD(c2->y);
460         float long2 = GC2RAD(c2->x);
461
462 //Haversine Formula
463         float dlong = long2-long1;
464         float dlat  = lat2-lat1;
465
466         float sinlat  = sinf(dlat/2);
467         float sinlong = sinf(dlong/2);
468  
469         float a=(sinlat*sinlat)+cosf(lat1)*cosf(lat2)*(sinlong*sinlong);
470         float c=2*asinf(minf(1,sqrt(a)));
471 #ifdef AVOID_FLOAT
472         return round(earth_radius*c);
473 #else
474         return earth_radius*c;
475 #endif
476 #else
477 #define GMETER 2.3887499999999999
478         double dx,dy;
479         dx=c1->x-c2->x;
480         dy=c1->y-c2->y;
481         return sqrt(dx*dx+dy*dy)*GMETER;
482 #undef GMETER
483 #endif
484 }
485
486 double
487 transform_scale(int y)
488 {
489         struct coord c;
490         struct coord_geo g;
491         c.x=0;
492         c.y=y;
493         transform_to_geo(projection_mg, &c, &g);
494         return 1/cos(g.lat/180*M_PI);
495 }
496
497 #ifdef AVOID_FLOAT
498 static int
499 tab_sqrt[]={14142,13379,12806,12364,12018,11741,11517,11333,11180,11051,10943,10850,10770,10701,10640,10587,10540,10499,10462,10429,10400,10373,10349,10327,10307,10289,10273,10257,10243,10231,10219,10208};
500 #endif
501
502 double
503 transform_distance(enum projection pro, struct coord *c1, struct coord *c2)
504 {
505         if (pro == projection_mg) {
506 #ifndef AVOID_FLOAT 
507         double dx,dy,scale=transform_scale((c1->y+c2->y)/2);
508         dx=c1->x-c2->x;
509         dy=c1->y-c2->y;
510         return sqrt(dx*dx+dy*dy)/scale;
511 #else
512         int dx,dy,f,scale=15539;
513         dx=c1->x-c2->x;
514         dy=c1->y-c2->y;
515         if (dx < 0)
516                 dx=-dx;
517         if (dy < 0)
518                 dy=-dy;
519         while (dx > 20000 || dy > 20000) {
520                 dx/=10;
521                 dy/=10;
522                 scale/=10;
523         }
524         if (! dy)
525                 return dx*10000/scale;
526         if (! dx)
527                 return dy*10000/scale;
528         if (dx > dy) {
529                 f=dx*8/dy-8;
530                 if (f >= 32)
531                         return dx*10000/scale;
532                 return dx*tab_sqrt[f]/scale;
533         } else {
534                 f=dy*8/dx-8;
535                 if (f >= 32)
536                         return dy*10000/scale;
537                 return dy*tab_sqrt[f]/scale;
538         }
539 #endif
540         } else if (pro == projection_garmin) {
541                 return transform_distance_garmin(c1, c2);
542         } else {
543                 dbg(0,"Unknown projection: %d\n", pro);
544                 return 0;
545         }
546 }
547
548 double
549 transform_polyline_length(enum projection pro, struct coord *c, int count)
550 {
551         double ret=0;
552         int i;
553
554         for (i = 0 ; i < count-1 ; i++) 
555                 ret+=transform_distance(pro, &c[i], &c[i+1]);
556         return ret;
557 }
558
559 int
560 transform_distance_sq(struct coord *c1, struct coord *c2)
561 {
562         int dx=c1->x-c2->x;
563         int dy=c1->y-c2->y;
564
565         if (dx > 32767 || dy > 32767 || dx < -32767 || dy < -32767)
566                 return INT_MAX;
567         else
568                 return dx*dx+dy*dy;
569 }
570
571 int
572 transform_distance_sq_pc(struct pcoord *c1, struct pcoord *c2)
573 {
574         struct coord p1,p2;
575         p1.x = c1->x; p1.y = c1->y;
576         p2.x = c2->x; p2.y = c2->y;
577         return transform_distance_sq(&p1, &p2);
578 }
579
580 int
581 transform_distance_line_sq(struct coord *l0, struct coord *l1, struct coord *ref, struct coord *lpnt)
582 {
583         int vx,vy,wx,wy;
584         int c1,c2;
585         int climit=1000000;
586         struct coord l;
587
588         vx=l1->x-l0->x;
589         vy=l1->y-l0->y;
590         wx=ref->x-l0->x;
591         wy=ref->y-l0->y;
592
593         c1=vx*wx+vy*wy;
594         if ( c1 <= 0 ) {
595                 if (lpnt)
596                         *lpnt=*l0;
597                 return transform_distance_sq(l0, ref);
598         }
599         c2=vx*vx+vy*vy;
600         if ( c2 <= c1 ) {
601                 if (lpnt)
602                         *lpnt=*l1;
603                 return transform_distance_sq(l1, ref);
604         }
605         while (c1 > climit || c2 > climit) {
606                 c1/=256;
607                 c2/=256;
608         }
609         l.x=l0->x+vx*c1/c2;
610         l.y=l0->y+vy*c1/c2;
611         if (lpnt)
612                 *lpnt=l;
613         return transform_distance_sq(&l, ref);
614 }
615
616 int
617 transform_distance_polyline_sq(struct coord *c, int count, struct coord *ref, struct coord *lpnt, int *pos)
618 {
619         int i,dist,distn;
620         struct coord lp;
621         if (count < 2)
622                 return INT_MAX;
623         if (pos)
624                 *pos=0;
625         dist=transform_distance_line_sq(&c[0], &c[1], ref, lpnt);
626         for (i=2 ; i < count ; i++) {
627                 distn=transform_distance_line_sq(&c[i-1], &c[i], ref, &lp);
628                 if (distn < dist) {
629                         dist=distn;
630                         if (lpnt)
631                                 *lpnt=lp;
632                         if (pos)
633                                 *pos=i-1;
634                 }
635         }
636         return dist;
637 }
638
639
640 void
641 transform_print_deg(double deg)
642 {
643         printf("%2.0f:%2.0f:%2.4f", floor(deg), fmod(deg*60,60), fmod(deg*3600,60));
644 }
645
646 #ifdef AVOID_FLOAT
647 static int tab_atan[]={0,262,524,787,1051,1317,1584,1853,2126,2401,2679,2962,3249,3541,3839,4142,4452,4770,5095,5430,5774,6128,6494,6873,7265,7673,8098,8541,9004,9490,10000,10538};
648
649 static int
650 atan2_int_lookup(int val)
651 {
652         int len=sizeof(tab_atan)/sizeof(int);
653         int i=len/2;
654         int p=i-1;
655         for (;;) {
656                 i>>=1;
657                 if (val < tab_atan[p])
658                         p-=i;
659                 else
660                         if (val < tab_atan[p+1])
661                                 return p+(p>>1);
662                         else
663                                 p+=i;
664         }
665 }
666
667 static int
668 atan2_int(int dx, int dy)
669 {
670         int f,mul=1,add=0,ret;
671         if (! dx) {
672                 return dy < 0 ? 180 : 0;
673         }
674         if (! dy) {
675                 return dx < 0 ? -90 : 90;
676         }
677         if (dx < 0) {
678                 dx=-dx;
679                 mul=-1;
680         }
681         if (dy < 0) {
682                 dy=-dy;
683                 add=180*mul;
684                 mul*=-1;
685         }
686         while (dx > 20000 || dy > 20000) {
687                 dx/=10;
688                 dy/=10;
689         }
690         if (dx > dy) {
691                 ret=90-atan2_int_lookup(dy*10000/dx);
692         } else {
693                 ret=atan2_int_lookup(dx*10000/dy);
694         }
695         return ret*mul+add;
696 }
697 #endif
698
699 int
700 transform_get_angle_delta(struct coord *c1, struct coord *c2, int dir)
701 {
702         int dx=c2->x-c1->x;
703         int dy=c2->y-c1->y;
704 #ifndef AVOID_FLOAT 
705         double angle;
706         angle=atan2(dx,dy);
707         angle*=180/M_PI;
708 #else
709         int angle;
710         angle=atan2_int(dx,dy);
711 #endif
712         if (dir == -1)
713                 angle=angle-180;
714         if (angle < 0)
715                 angle+=360;
716         return angle;
717 }
718
719 int
720 transform_within_border(struct transformation *this_, struct point *p, int border)
721 {
722         struct map_selection *ms=this_->screen_sel;
723         while (ms) {
724                 struct point_rect *r=&ms->u.p_rect;
725                 if (p->x >= r->lu.x+border && p->x <= r->rl.x-border &&
726                     p->y >= r->lu.y+border && p->y <= r->rl.y-border)
727                         return 1;
728                 ms=ms->next;
729         }
730         return 0;
731 }
732
733 int
734 transform_within_dist_point(struct coord *ref, struct coord *c, int dist)
735 {
736         if (c->x-dist > ref->x)
737                 return 0;
738         if (c->x+dist < ref->x)
739                 return 0;
740         if (c->y-dist > ref->y)
741                 return 0;
742         if (c->y+dist < ref->y)
743                 return 0;
744         if ((c->x-ref->x)*(c->x-ref->x) + (c->y-ref->y)*(c->y-ref->y) <= dist*dist) 
745                 return 1;
746         return 0;
747 }
748
749 int
750 transform_within_dist_line(struct coord *ref, struct coord *c0, struct coord *c1, int dist)
751 {
752         int vx,vy,wx,wy;
753         int n1,n2;
754         struct coord lc;
755
756         if (c0->x < c1->x) {
757                 if (c0->x-dist > ref->x)
758                         return 0;
759                 if (c1->x+dist < ref->x)
760                         return 0;
761         } else {
762                 if (c1->x-dist > ref->x)
763                         return 0;
764                 if (c0->x+dist < ref->x)
765                         return 0;
766         }
767         if (c0->y < c1->y) {
768                 if (c0->y-dist > ref->y)
769                         return 0;
770                 if (c1->y+dist < ref->y)
771                         return 0;
772         } else {
773                 if (c1->y-dist > ref->y)
774                         return 0;
775                 if (c0->y+dist < ref->y)
776                         return 0;
777         }
778         vx=c1->x-c0->x;
779         vy=c1->y-c0->y;
780         wx=ref->x-c0->x;
781         wy=ref->y-c0->y;
782
783         n1=vx*wx+vy*wy;
784         if ( n1 <= 0 )
785                 return transform_within_dist_point(ref, c0, dist);
786         n2=vx*vx+vy*vy;
787         if ( n2 <= n1 )
788                 return transform_within_dist_point(ref, c1, dist);
789
790         lc.x=c0->x+vx*n1/n2;
791         lc.y=c0->y+vy*n1/n2;
792         return transform_within_dist_point(ref, &lc, dist);
793 }
794
795 int
796 transform_within_dist_polyline(struct coord *ref, struct coord *c, int count, int close, int dist)
797 {
798         int i;
799         for (i = 0 ; i < count-1 ; i++) {
800                 if (transform_within_dist_line(ref,c+i,c+i+1,dist)) {
801                         return 1;
802                 }
803         }
804         if (close)
805                 return (transform_within_dist_line(ref,c,c+count-1,dist));
806         return 0;
807 }
808
809 int
810 transform_within_dist_polygon(struct coord *ref, struct coord *c, int count, int dist)
811 {
812         int i, j, ci = 0;
813         for (i = 0, j = count-1; i < count; j = i++) {
814                 if ((((c[i].y <= ref->y) && ( ref->y < c[j].y )) ||
815                 ((c[j].y <= ref->y) && ( ref->y < c[i].y))) &&
816                 (ref->x < (c[j].x - c[i].x) * (ref->y - c[i].y) / (c[j].y - c[i].y) + c[i].x))
817                         ci = !ci;
818         }
819         if (! ci) {
820                 if (dist)
821                         return transform_within_dist_polyline(ref, c, count, dist, 1);
822                 else
823                         return 0;
824         }
825         return 1;
826 }
827
828 int
829 transform_within_dist_item(struct coord *ref, enum item_type type, struct coord *c, int count, int dist)
830 {
831         if (type < type_line)
832                 return transform_within_dist_point(ref, c, dist);
833         if (type < type_area)
834                 return transform_within_dist_polyline(ref, c, count, 0, dist);
835         return transform_within_dist_polygon(ref, c, count, dist);
836 }
837
838 void
839 transform_destroy(struct transformation *t)
840 {
841         g_free(t);
842 }
843
844
845 /*
846 Note: there are many mathematically equivalent ways to express these formulas. As usual, not all of them are computationally equivalent.
847
848 L = latitude in radians (positive north)
849 Lo = longitude in radians (positive east)
850 E = easting (meters)
851 N = northing (meters)
852
853 For the sphere
854
855 E = r Lo
856 N = r ln [ tan (pi/4 + L/2) ]
857
858 where 
859
860 r = radius of the sphere (meters)
861 ln() is the natural logarithm
862
863 For the ellipsoid
864
865 E = a Lo
866 N = a * ln ( tan (pi/4 + L/2) * ( (1 - e * sin (L)) / (1 + e * sin (L))) ** (e/2)  )
867
868
869                                                e
870                                                -
871                    pi     L     1 - e sin(L)   2
872     =  a ln( tan( ---- + ---) (--------------)   )
873                    4      2     1 + e sin(L) 
874
875
876 where
877
878 a = the length of the semi-major axis of the ellipsoid (meters)
879 e = the first eccentricity of the ellipsoid
880
881
882 */
883
884