better support of host drives
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}). 
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc d
251
252 Normally, QEMU uses SDL to display the VGA output.  With this option,
253 you can have QEMU listen on VNC display @var{d} and redirect the VGA
254 display over the VNC session.  It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout.
258
259 @item -k language
260
261 Use keyboard layout @var{language} (for example @code{fr} for
262 French). This option is only needed where it is not easy to get raw PC
263 keycodes (e.g. on Macs, with some X11 servers or with a VNC
264 display). You don't normally need to use it on PC/Linux or PC/Windows
265 hosts.
266
267 The available layouts are:
268 @example
269 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
270 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
271 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
272 @end example
273
274 The default is @code{en-us}.
275
276 @item -audio-help
277
278 Will show the audio subsystem help: list of drivers, tunable
279 parameters.
280
281 @item -soundhw card1,card2,... or -soundhw all
282
283 Enable audio and selected sound hardware. Use ? to print all
284 available sound hardware.
285
286 @example
287 qemu -soundhw sb16,adlib hda
288 qemu -soundhw es1370 hda
289 qemu -soundhw all hda
290 qemu -soundhw ?
291 @end example
292
293 @item -localtime
294 Set the real time clock to local time (the default is to UTC
295 time). This option is needed to have correct date in MS-DOS or
296 Windows.
297
298 @item -full-screen
299 Start in full screen.
300
301 @item -pidfile file
302 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303 from a script.
304
305 @item -win2k-hack
306 Use it when installing Windows 2000 to avoid a disk full bug. After
307 Windows 2000 is installed, you no longer need this option (this option
308 slows down the IDE transfers).
309
310 @end table
311
312 USB options:
313 @table @option
314
315 @item -usb
316 Enable the USB driver (will be the default soon)
317
318 @item -usbdevice devname
319 Add the USB device @var{devname}. @xref{usb_devices}.
320 @end table
321
322 Network options:
323
324 @table @option
325
326 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
327 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328 = 0 is the default). The NIC is currently an NE2000 on the PC
329 target. Optionally, the MAC address can be changed. If no
330 @option{-net} option is specified, a single NIC is created.
331 Qemu can emulate several different models of network card.  Valid values for
332 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
334 targets.
335
336 @item -net user[,vlan=n][,hostname=name]
337 Use the user mode network stack which requires no administrator
338 priviledge to run.  @option{hostname=name} can be used to specify the client
339 hostname reported by the builtin DHCP server.
340
341 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342 Connect the host TAP network interface @var{name} to VLAN @var{n} and
343 use the network script @var{file} to configure it. The default
344 network script is @file{/etc/qemu-ifup}. If @var{name} is not
345 provided, the OS automatically provides one.  @option{fd=h} can be
346 used to specify the handle of an already opened host TAP interface. Example:
347
348 @example
349 qemu linux.img -net nic -net tap
350 @end example
351
352 More complicated example (two NICs, each one connected to a TAP device)
353 @example
354 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356 @end example
357
358
359 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
360
361 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362 machine using a TCP socket connection. If @option{listen} is
363 specified, QEMU waits for incoming connections on @var{port}
364 (@var{host} is optional). @option{connect} is used to connect to
365 another QEMU instance using the @option{listen} option. @option{fd=h}
366 specifies an already opened TCP socket.
367
368 Example:
369 @example
370 # launch a first QEMU instance
371 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372                -net socket,listen=:1234
373 # connect the VLAN 0 of this instance to the VLAN 0
374 # of the first instance
375 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376                -net socket,connect=127.0.0.1:1234
377 @end example
378
379 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
380
381 Create a VLAN @var{n} shared with another QEMU virtual
382 machines using a UDP multicast socket, effectively making a bus for 
383 every QEMU with same multicast address @var{maddr} and @var{port}.
384 NOTES:
385 @enumerate
386 @item 
387 Several QEMU can be running on different hosts and share same bus (assuming 
388 correct multicast setup for these hosts).
389 @item
390 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391 @url{http://user-mode-linux.sf.net}.
392 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
393 @end enumerate
394
395 Example:
396 @example
397 # launch one QEMU instance
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399                -net socket,mcast=230.0.0.1:1234
400 # launch another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402                -net socket,mcast=230.0.0.1:1234
403 # launch yet another QEMU instance on same "bus"
404 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405                -net socket,mcast=230.0.0.1:1234
406 @end example
407
408 Example (User Mode Linux compat.):
409 @example
410 # launch QEMU instance (note mcast address selected
411 # is UML's default)
412 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413                -net socket,mcast=239.192.168.1:1102
414 # launch UML
415 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
416 @end example
417
418 @item -net none
419 Indicate that no network devices should be configured. It is used to
420 override the default configuration (@option{-net nic -net user}) which
421 is activated if no @option{-net} options are provided.
422
423 @item -tftp prefix
424 When using the user mode network stack, activate a built-in TFTP
425 server. All filenames beginning with @var{prefix} can be downloaded
426 from the host to the guest using a TFTP client. The TFTP client on the
427 guest must be configured in binary mode (use the command @code{bin} of
428 the Unix TFTP client). The host IP address on the guest is as usual
429 10.0.2.2.
430
431 @item -smb dir
432 When using the user mode network stack, activate a built-in SMB
433 server so that Windows OSes can access to the host files in @file{dir}
434 transparently.
435
436 In the guest Windows OS, the line:
437 @example
438 10.0.2.4 smbserver
439 @end example
440 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
442
443 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
444
445 Note that a SAMBA server must be installed on the host OS in
446 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
447 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
448
449 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
450
451 When using the user mode network stack, redirect incoming TCP or UDP
452 connections to the host port @var{host-port} to the guest
453 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454 is not specified, its value is 10.0.2.15 (default address given by the
455 built-in DHCP server).
456
457 For example, to redirect host X11 connection from screen 1 to guest
458 screen 0, use the following:
459
460 @example
461 # on the host
462 qemu -redir tcp:6001::6000 [...]
463 # this host xterm should open in the guest X11 server
464 xterm -display :1
465 @end example
466
467 To redirect telnet connections from host port 5555 to telnet port on
468 the guest, use the following:
469
470 @example
471 # on the host
472 qemu -redir tcp:5555::23 [...]
473 telnet localhost 5555
474 @end example
475
476 Then when you use on the host @code{telnet localhost 5555}, you
477 connect to the guest telnet server.
478
479 @end table
480
481 Linux boot specific: When using these options, you can use a given
482 Linux kernel without installing it in the disk image. It can be useful
483 for easier testing of various kernels.
484
485 @table @option
486
487 @item -kernel bzImage 
488 Use @var{bzImage} as kernel image.
489
490 @item -append cmdline 
491 Use @var{cmdline} as kernel command line
492
493 @item -initrd file
494 Use @var{file} as initial ram disk.
495
496 @end table
497
498 Debug/Expert options:
499 @table @option
500
501 @item -serial dev
502 Redirect the virtual serial port to host character device
503 @var{dev}. The default device is @code{vc} in graphical mode and
504 @code{stdio} in non graphical mode.
505
506 This option can be used several times to simulate up to 4 serials
507 ports.
508
509 Available character devices are:
510 @table @code
511 @item vc
512 Virtual console
513 @item pty
514 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
515 @item null
516 void device
517 @item /dev/XXX
518 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
519 parameters are set according to the emulated ones.
520 @item /dev/parportN
521 [Linux only, parallel port only] Use host parallel port
522 @var{N}. Currently only SPP parallel port features can be used.
523 @item file:filename
524 Write output to filename. No character can be read.
525 @item stdio
526 [Unix only] standard input/output
527 @item pipe:filename
528 name pipe @var{filename}
529 @item COMn
530 [Windows only] Use host serial port @var{n}
531 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
532 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
533
534 If you just want a simple readonly console you can use @code{netcat} or
535 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
536 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
537 will appear in the netconsole session.
538
539 If you plan to send characters back via netconsole or you want to stop
540 and start qemu a lot of times, you should have qemu use the same
541 source port each time by using something like @code{-serial
542 udp::4555@@:4556} to qemu. Another approach is to use a patched
543 version of netcat which can listen to a TCP port and send and receive
544 characters via udp.  If you have a patched version of netcat which
545 activates telnet remote echo and single char transfer, then you can
546 use the following options to step up a netcat redirector to allow
547 telnet on port 5555 to access the qemu port.
548 @table @code
549 @item Qemu Options:
550 -serial udp::4555@@:4556
551 @item netcat options:
552 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
553 @item telnet options:
554 localhost 5555
555 @end table
556
557
558 @item tcp:[host]:port[,server][,nowait]
559 The TCP Net Console has two modes of operation.  It can send the serial
560 I/O to a location or wait for a connection from a location.  By default
561 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
562 the @var{,server} option QEMU will wait for a client socket application
563 to connect to the port before continuing, unless the @code{,nowait}
564 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
565 one TCP connection at a time is accepted. You can use @code{telnet} to
566 connect to the corresponding character device.
567 @table @code
568 @item Example to send tcp console to 192.168.0.2 port 4444
569 -serial tcp:192.168.0.2:4444
570 @item Example to listen and wait on port 4444 for connection
571 -serial tcp::4444,server
572 @item Example to not wait and listen on ip 192.168.0.100 port 4444
573 -serial tcp:192.168.0.100:4444,server,nowait
574 @end table
575
576 @item telnet:host:port[,server][,nowait]
577 The telnet protocol is used instead of raw tcp sockets.  The options
578 work the same as if you had specified @code{-serial tcp}.  The
579 difference is that the port acts like a telnet server or client using
580 telnet option negotiation.  This will also allow you to send the
581 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
582 sequence.  Typically in unix telnet you do it with Control-] and then
583 type "send break" followed by pressing the enter key.
584
585 @end table
586
587 @item -parallel dev
588 Redirect the virtual parallel port to host device @var{dev} (same
589 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
590 be used to use hardware devices connected on the corresponding host
591 parallel port.
592
593 This option can be used several times to simulate up to 3 parallel
594 ports.
595
596 @item -monitor dev
597 Redirect the monitor to host device @var{dev} (same devices as the
598 serial port).
599 The default device is @code{vc} in graphical mode and @code{stdio} in
600 non graphical mode.
601
602 @item -s
603 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
604 @item -p port
605 Change gdb connection port.
606 @item -S
607 Do not start CPU at startup (you must type 'c' in the monitor).
608 @item -d             
609 Output log in /tmp/qemu.log
610 @item -hdachs c,h,s,[,t]
611 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
612 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
613 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
614 all thoses parameters. This option is useful for old MS-DOS disk
615 images.
616
617 @item -L path
618 Set the directory for the BIOS, VGA BIOS and keymaps.
619
620 @item -std-vga
621 Simulate a standard VGA card with Bochs VBE extensions (default is
622 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
623 VBE extensions (e.g. Windows XP) and if you want to use high
624 resolution modes (>= 1280x1024x16) then you should use this option.
625
626 @item -no-acpi
627 Disable ACPI (Advanced Configuration and Power Interface) support. Use
628 it if your guest OS complains about ACPI problems (PC target machine
629 only).
630
631 @item -loadvm file
632 Start right away with a saved state (@code{loadvm} in monitor)
633 @end table
634
635 @c man end
636
637 @node pcsys_keys
638 @section Keys
639
640 @c man begin OPTIONS
641
642 During the graphical emulation, you can use the following keys:
643 @table @key
644 @item Ctrl-Alt-f
645 Toggle full screen
646
647 @item Ctrl-Alt-n
648 Switch to virtual console 'n'. Standard console mappings are:
649 @table @emph
650 @item 1
651 Target system display
652 @item 2
653 Monitor
654 @item 3
655 Serial port
656 @end table
657
658 @item Ctrl-Alt
659 Toggle mouse and keyboard grab.
660 @end table
661
662 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
663 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
664
665 During emulation, if you are using the @option{-nographic} option, use
666 @key{Ctrl-a h} to get terminal commands:
667
668 @table @key
669 @item Ctrl-a h
670 Print this help
671 @item Ctrl-a x    
672 Exit emulatior
673 @item Ctrl-a s    
674 Save disk data back to file (if -snapshot)
675 @item Ctrl-a b
676 Send break (magic sysrq in Linux)
677 @item Ctrl-a c
678 Switch between console and monitor
679 @item Ctrl-a Ctrl-a
680 Send Ctrl-a
681 @end table
682 @c man end
683
684 @ignore
685
686 @c man begin SEEALSO
687 The HTML documentation of QEMU for more precise information and Linux
688 user mode emulator invocation.
689 @c man end
690
691 @c man begin AUTHOR
692 Fabrice Bellard
693 @c man end
694
695 @end ignore
696
697 @node pcsys_monitor
698 @section QEMU Monitor
699
700 The QEMU monitor is used to give complex commands to the QEMU
701 emulator. You can use it to:
702
703 @itemize @minus
704
705 @item
706 Remove or insert removable medias images
707 (such as CD-ROM or floppies)
708
709 @item 
710 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
711 from a disk file.
712
713 @item Inspect the VM state without an external debugger.
714
715 @end itemize
716
717 @subsection Commands
718
719 The following commands are available:
720
721 @table @option
722
723 @item help or ? [cmd]
724 Show the help for all commands or just for command @var{cmd}.
725
726 @item commit  
727 Commit changes to the disk images (if -snapshot is used)
728
729 @item info subcommand 
730 show various information about the system state
731
732 @table @option
733 @item info network
734 show the various VLANs and the associated devices
735 @item info block
736 show the block devices
737 @item info registers
738 show the cpu registers
739 @item info history
740 show the command line history
741 @item info pci
742 show emulated PCI device
743 @item info usb
744 show USB devices plugged on the virtual USB hub
745 @item info usbhost
746 show all USB host devices
747 @item info capture
748 show information about active capturing
749 @item info snapshots
750 show list of VM snapshots
751 @end table
752
753 @item q or quit
754 Quit the emulator.
755
756 @item eject [-f] device
757 Eject a removable media (use -f to force it).
758
759 @item change device filename
760 Change a removable media.
761
762 @item screendump filename
763 Save screen into PPM image @var{filename}.
764
765 @item wavcapture filename [frequency [bits [channels]]]
766 Capture audio into @var{filename}. Using sample rate @var{frequency}
767 bits per sample @var{bits} and number of channels @var{channels}.
768
769 Defaults:
770 @itemize @minus
771 @item Sample rate = 44100 Hz - CD quality
772 @item Bits = 16
773 @item Number of channels = 2 - Stereo
774 @end itemize
775
776 @item stopcapture index
777 Stop capture with a given @var{index}, index can be obtained with
778 @example
779 info capture
780 @end example
781
782 @item log item1[,...]
783 Activate logging of the specified items to @file{/tmp/qemu.log}.
784
785 @item savevm [tag|id]
786 Create a snapshot of the whole virtual machine. If @var{tag} is
787 provided, it is used as human readable identifier. If there is already
788 a snapshot with the same tag or ID, it is replaced. More info at
789 @ref{vm_snapshots}.
790
791 @item loadvm tag|id
792 Set the whole virtual machine to the snapshot identified by the tag
793 @var{tag} or the unique snapshot ID @var{id}.
794
795 @item delvm tag|id
796 Delete the snapshot identified by @var{tag} or @var{id}.
797
798 @item stop
799 Stop emulation.
800
801 @item c or cont
802 Resume emulation.
803
804 @item gdbserver [port]
805 Start gdbserver session (default port=1234)
806
807 @item x/fmt addr
808 Virtual memory dump starting at @var{addr}.
809
810 @item xp /fmt addr
811 Physical memory dump starting at @var{addr}.
812
813 @var{fmt} is a format which tells the command how to format the
814 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
815
816 @table @var
817 @item count 
818 is the number of items to be dumped.
819
820 @item format
821 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
822 c (char) or i (asm instruction).
823
824 @item size
825 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
826 @code{h} or @code{w} can be specified with the @code{i} format to
827 respectively select 16 or 32 bit code instruction size.
828
829 @end table
830
831 Examples: 
832 @itemize
833 @item
834 Dump 10 instructions at the current instruction pointer:
835 @example 
836 (qemu) x/10i $eip
837 0x90107063:  ret
838 0x90107064:  sti
839 0x90107065:  lea    0x0(%esi,1),%esi
840 0x90107069:  lea    0x0(%edi,1),%edi
841 0x90107070:  ret
842 0x90107071:  jmp    0x90107080
843 0x90107073:  nop
844 0x90107074:  nop
845 0x90107075:  nop
846 0x90107076:  nop
847 @end example
848
849 @item
850 Dump 80 16 bit values at the start of the video memory.
851 @smallexample 
852 (qemu) xp/80hx 0xb8000
853 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
854 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
855 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
856 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
857 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
858 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
859 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
860 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
861 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
862 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
863 @end smallexample
864 @end itemize
865
866 @item p or print/fmt expr
867
868 Print expression value. Only the @var{format} part of @var{fmt} is
869 used.
870
871 @item sendkey keys
872
873 Send @var{keys} to the emulator. Use @code{-} to press several keys
874 simultaneously. Example:
875 @example
876 sendkey ctrl-alt-f1
877 @end example
878
879 This command is useful to send keys that your graphical user interface
880 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
881
882 @item system_reset
883
884 Reset the system.
885
886 @item usb_add devname
887
888 Add the USB device @var{devname}.  For details of available devices see
889 @ref{usb_devices}
890
891 @item usb_del devname
892
893 Remove the USB device @var{devname} from the QEMU virtual USB
894 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
895 command @code{info usb} to see the devices you can remove.
896
897 @end table
898
899 @subsection Integer expressions
900
901 The monitor understands integers expressions for every integer
902 argument. You can use register names to get the value of specifics
903 CPU registers by prefixing them with @emph{$}.
904
905 @node disk_images
906 @section Disk Images
907
908 Since version 0.6.1, QEMU supports many disk image formats, including
909 growable disk images (their size increase as non empty sectors are
910 written), compressed and encrypted disk images. Version 0.8.3 added
911 the new qcow2 disk image format which is essential to support VM
912 snapshots.
913
914 @menu
915 * disk_images_quickstart::    Quick start for disk image creation
916 * disk_images_snapshot_mode:: Snapshot mode
917 * vm_snapshots::              VM snapshots
918 * qemu_img_invocation::       qemu-img Invocation
919 * host_drives::               Using host drives
920 * disk_images_fat_images::    Virtual FAT disk images
921 @end menu
922
923 @node disk_images_quickstart
924 @subsection Quick start for disk image creation
925
926 You can create a disk image with the command:
927 @example
928 qemu-img create myimage.img mysize
929 @end example
930 where @var{myimage.img} is the disk image filename and @var{mysize} is its
931 size in kilobytes. You can add an @code{M} suffix to give the size in
932 megabytes and a @code{G} suffix for gigabytes.
933
934 See @ref{qemu_img_invocation} for more information.
935
936 @node disk_images_snapshot_mode
937 @subsection Snapshot mode
938
939 If you use the option @option{-snapshot}, all disk images are
940 considered as read only. When sectors in written, they are written in
941 a temporary file created in @file{/tmp}. You can however force the
942 write back to the raw disk images by using the @code{commit} monitor
943 command (or @key{C-a s} in the serial console).
944
945 @node vm_snapshots
946 @subsection VM snapshots
947
948 VM snapshots are snapshots of the complete virtual machine including
949 CPU state, RAM, device state and the content of all the writable
950 disks. In order to use VM snapshots, you must have at least one non
951 removable and writable block device using the @code{qcow2} disk image
952 format. Normally this device is the first virtual hard drive.
953
954 Use the monitor command @code{savevm} to create a new VM snapshot or
955 replace an existing one. A human readable name can be assigned to each
956 snapshot in addition to its numerical ID.
957
958 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
959 a VM snapshot. @code{info snapshots} lists the available snapshots
960 with their associated information:
961
962 @example
963 (qemu) info snapshots
964 Snapshot devices: hda
965 Snapshot list (from hda):
966 ID        TAG                 VM SIZE                DATE       VM CLOCK
967 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
968 2                                 40M 2006-08-06 12:43:29   00:00:18.633
969 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
970 @end example
971
972 A VM snapshot is made of a VM state info (its size is shown in
973 @code{info snapshots}) and a snapshot of every writable disk image.
974 The VM state info is stored in the first @code{qcow2} non removable
975 and writable block device. The disk image snapshots are stored in
976 every disk image. The size of a snapshot in a disk image is difficult
977 to evaluate and is not shown by @code{info snapshots} because the
978 associated disk sectors are shared among all the snapshots to save
979 disk space (otherwise each snapshot would need a full copy of all the
980 disk images).
981
982 When using the (unrelated) @code{-snapshot} option
983 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
984 but they are deleted as soon as you exit QEMU.
985
986 VM snapshots currently have the following known limitations:
987 @itemize
988 @item 
989 They cannot cope with removable devices if they are removed or
990 inserted after a snapshot is done.
991 @item 
992 A few device drivers still have incomplete snapshot support so their
993 state is not saved or restored properly (in particular USB).
994 @end itemize
995
996 @node qemu_img_invocation
997 @subsection @code{qemu-img} Invocation
998
999 @include qemu-img.texi
1000
1001 @node host_drives
1002 @subsection Using host drives
1003
1004 In addition to disk image files, QEMU can directly access host
1005 devices. We describe here the usage for QEMU version >= 0.8.3.
1006
1007 @subsubsection Linux
1008
1009 On Linux, you can directly use the host device filename instead of a
1010 disk image filename provided you have enough proviledge to access
1011 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1012 @file{/dev/fd0} for the floppy.
1013
1014 @table
1015 @item CD
1016 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1017 specific code to detect CDROM insertion or removal. CDROM ejection by
1018 the guest OS is supported. Currently only data CDs are supported.
1019 @item Floppy
1020 You can specify a floppy device even if no floppy is loaded. Floppy
1021 removal is currently not detected accurately (if you change floppy
1022 without doing floppy access while the floppy is not loaded, the guest
1023 OS will think that the same floppy is loaded).
1024 @item Hard disks
1025 Hard disks can be used. Normally you must specify the whole disk
1026 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1027 see it as a partitioned disk. WARNING: unless you know what you do, it
1028 is better to only make READ-ONLY accesses to the hard disk otherwise
1029 you may corrupt your host data (use the @option{-snapshot} command
1030 line option or modify the device permissions accordingly).
1031 @end table
1032
1033 @subsubsection Windows
1034
1035 On Windows you can use any host drives as QEMU drive. The prefered
1036 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1037 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1038 to the first CDROM drive.
1039
1040 Currently there is no specific code to handle removable medias, so it
1041 is better to use the @code{change} or @code{eject} monitor commands to
1042 change or eject media.
1043
1044 @subsubsection Mac OS X
1045
1046 @file{/dev/cdrom} is an alias to the first CDROM. 
1047
1048 Currently there is no specific code to handle removable medias, so it
1049 is better to use the @code{change} or @code{eject} monitor commands to
1050 change or eject media.
1051
1052 @node disk_images_fat_images
1053 @subsection Virtual FAT disk images
1054
1055 QEMU can automatically create a virtual FAT disk image from a
1056 directory tree. In order to use it, just type:
1057
1058 @example 
1059 qemu linux.img -hdb fat:/my_directory
1060 @end example
1061
1062 Then you access access to all the files in the @file{/my_directory}
1063 directory without having to copy them in a disk image or to export
1064 them via SAMBA or NFS. The default access is @emph{read-only}.
1065
1066 Floppies can be emulated with the @code{:floppy:} option:
1067
1068 @example 
1069 qemu linux.img -fda fat:floppy:/my_directory
1070 @end example
1071
1072 A read/write support is available for testing (beta stage) with the
1073 @code{:rw:} option:
1074
1075 @example 
1076 qemu linux.img -fda fat:floppy:rw:/my_directory
1077 @end example
1078
1079 What you should @emph{never} do:
1080 @itemize
1081 @item use non-ASCII filenames ;
1082 @item use "-snapshot" together with ":rw:" ;
1083 @item expect it to work when loadvm'ing ;
1084 @item write to the FAT directory on the host system while accessing it with the guest system.
1085 @end itemize
1086
1087 @node pcsys_network
1088 @section Network emulation
1089
1090 QEMU can simulate several networks cards (NE2000 boards on the PC
1091 target) and can connect them to an arbitrary number of Virtual Local
1092 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1093 VLAN. VLAN can be connected between separate instances of QEMU to
1094 simulate large networks. For simpler usage, a non priviledged user mode
1095 network stack can replace the TAP device to have a basic network
1096 connection.
1097
1098 @subsection VLANs
1099
1100 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1101 connection between several network devices. These devices can be for
1102 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1103 (TAP devices).
1104
1105 @subsection Using TAP network interfaces
1106
1107 This is the standard way to connect QEMU to a real network. QEMU adds
1108 a virtual network device on your host (called @code{tapN}), and you
1109 can then configure it as if it was a real ethernet card.
1110
1111 As an example, you can download the @file{linux-test-xxx.tar.gz}
1112 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1113 configure properly @code{sudo} so that the command @code{ifconfig}
1114 contained in @file{qemu-ifup} can be executed as root. You must verify
1115 that your host kernel supports the TAP network interfaces: the
1116 device @file{/dev/net/tun} must be present.
1117
1118 See @ref{direct_linux_boot} to have an example of network use with a
1119 Linux distribution and @ref{sec_invocation} to have examples of
1120 command lines using the TAP network interfaces.
1121
1122 @subsection Using the user mode network stack
1123
1124 By using the option @option{-net user} (default configuration if no
1125 @option{-net} option is specified), QEMU uses a completely user mode
1126 network stack (you don't need root priviledge to use the virtual
1127 network). The virtual network configuration is the following:
1128
1129 @example
1130
1131          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1132                            |          (10.0.2.2)
1133                            |
1134                            ---->  DNS server (10.0.2.3)
1135                            |     
1136                            ---->  SMB server (10.0.2.4)
1137 @end example
1138
1139 The QEMU VM behaves as if it was behind a firewall which blocks all
1140 incoming connections. You can use a DHCP client to automatically
1141 configure the network in the QEMU VM. The DHCP server assign addresses
1142 to the hosts starting from 10.0.2.15.
1143
1144 In order to check that the user mode network is working, you can ping
1145 the address 10.0.2.2 and verify that you got an address in the range
1146 10.0.2.x from the QEMU virtual DHCP server.
1147
1148 Note that @code{ping} is not supported reliably to the internet as it
1149 would require root priviledges. It means you can only ping the local
1150 router (10.0.2.2).
1151
1152 When using the built-in TFTP server, the router is also the TFTP
1153 server.
1154
1155 When using the @option{-redir} option, TCP or UDP connections can be
1156 redirected from the host to the guest. It allows for example to
1157 redirect X11, telnet or SSH connections.
1158
1159 @subsection Connecting VLANs between QEMU instances
1160
1161 Using the @option{-net socket} option, it is possible to make VLANs
1162 that span several QEMU instances. See @ref{sec_invocation} to have a
1163 basic example.
1164
1165 @node direct_linux_boot
1166 @section Direct Linux Boot
1167
1168 This section explains how to launch a Linux kernel inside QEMU without
1169 having to make a full bootable image. It is very useful for fast Linux
1170 kernel testing. The QEMU network configuration is also explained.
1171
1172 @enumerate
1173 @item
1174 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1175 kernel and a disk image. 
1176
1177 @item Optional: If you want network support (for example to launch X11 examples), you
1178 must copy the script @file{qemu-ifup} in @file{/etc} and configure
1179 properly @code{sudo} so that the command @code{ifconfig} contained in
1180 @file{qemu-ifup} can be executed as root. You must verify that your host
1181 kernel supports the TUN/TAP network interfaces: the device
1182 @file{/dev/net/tun} must be present.
1183
1184 When network is enabled, there is a virtual network connection between
1185 the host kernel and the emulated kernel. The emulated kernel is seen
1186 from the host kernel at IP address 172.20.0.2 and the host kernel is
1187 seen from the emulated kernel at IP address 172.20.0.1.
1188
1189 @item Launch @code{qemu.sh}. You should have the following output:
1190
1191 @smallexample
1192 > ./qemu.sh 
1193 Connected to host network interface: tun0
1194 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1195 BIOS-provided physical RAM map:
1196  BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1197  BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1198 32MB LOWMEM available.
1199 On node 0 totalpages: 8192
1200 zone(0): 4096 pages.
1201 zone(1): 4096 pages.
1202 zone(2): 0 pages.
1203 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1204 ide_setup: ide2=noprobe
1205 ide_setup: ide3=noprobe
1206 ide_setup: ide4=noprobe
1207 ide_setup: ide5=noprobe
1208 Initializing CPU#0
1209 Detected 2399.621 MHz processor.
1210 Console: colour EGA 80x25
1211 Calibrating delay loop... 4744.80 BogoMIPS
1212 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1213 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1214 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1215 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1216 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1217 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1218 CPU: Intel Pentium Pro stepping 03
1219 Checking 'hlt' instruction... OK.
1220 POSIX conformance testing by UNIFIX
1221 Linux NET4.0 for Linux 2.4
1222 Based upon Swansea University Computer Society NET3.039
1223 Initializing RT netlink socket
1224 apm: BIOS not found.
1225 Starting kswapd
1226 Journalled Block Device driver loaded
1227 Detected PS/2 Mouse Port.
1228 pty: 256 Unix98 ptys configured
1229 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1230 ttyS00 at 0x03f8 (irq = 4) is a 16450
1231 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1232 Last modified Nov 1, 2000 by Paul Gortmaker
1233 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1234 eth0: NE2000 found at 0x300, using IRQ 9.
1235 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1236 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1237 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1238 hda: QEMU HARDDISK, ATA DISK drive
1239 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1240 hda: attached ide-disk driver.
1241 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1242 Partition check:
1243  hda:
1244 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1245 NET4: Linux TCP/IP 1.0 for NET4.0
1246 IP Protocols: ICMP, UDP, TCP, IGMP
1247 IP: routing cache hash table of 512 buckets, 4Kbytes
1248 TCP: Hash tables configured (established 2048 bind 4096)
1249 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1250 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1251 VFS: Mounted root (ext2 filesystem).
1252 Freeing unused kernel memory: 64k freed
1253  
1254 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1255  
1256 QEMU Linux test distribution (based on Redhat 9)
1257  
1258 Type 'exit' to halt the system
1259  
1260 sh-2.05b# 
1261 @end smallexample
1262
1263 @item
1264 Then you can play with the kernel inside the virtual serial console. You
1265 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1266 about the keys you can type inside the virtual serial console. In
1267 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1268 the Magic SysRq key.
1269
1270 @item 
1271 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1272 emulator (don't forget the leading dot):
1273 @example
1274 . /etc/linuxrc
1275 @end example
1276
1277 Then enable X11 connections on your PC from the emulated Linux: 
1278 @example
1279 xhost +172.20.0.2
1280 @end example
1281
1282 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1283 a real Virtual Linux system !
1284
1285 @end enumerate
1286
1287 NOTES:
1288 @enumerate
1289 @item 
1290 A 2.5.74 kernel is also included in the archive. Just
1291 replace the bzImage in qemu.sh to try it.
1292
1293 @item 
1294 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1295 qemu. qemu will automatically exit when the Linux shutdown is done.
1296
1297 @item 
1298 You can boot slightly faster by disabling the probe of non present IDE
1299 interfaces. To do so, add the following options on the kernel command
1300 line:
1301 @example
1302 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1303 @end example
1304
1305 @item 
1306 The example disk image is a modified version of the one made by Kevin
1307 Lawton for the plex86 Project (@url{www.plex86.org}).
1308
1309 @end enumerate
1310
1311 @node pcsys_usb
1312 @section USB emulation
1313
1314 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1315 virtual USB devices or real host USB devices (experimental, works only
1316 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1317 as neccessary to connect multiple USB devices.
1318
1319 @menu
1320 * usb_devices::
1321 * host_usb_devices::
1322 @end menu
1323 @node usb_devices
1324 @subsection Connecting USB devices
1325
1326 USB devices can be connected with the @option{-usbdevice} commandline option
1327 or the @code{usb_add} monitor command.  Available devices are:
1328
1329 @table @var
1330 @item @code{mouse}
1331 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1332 @item @code{tablet}
1333 Pointer device that uses abolsute coordinates (like a touchscreen).
1334 This means qemu is able to report the mouse position without having
1335 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1336 @item @code{disk:file}
1337 Mass storage device based on @var{file} (@pxref{disk_images})
1338 @item @code{host:bus.addr}
1339 Pass through the host device identified by @var{bus.addr}
1340 (Linux only)
1341 @item @code{host:vendor_id:product_id}
1342 Pass through the host device identified by @var{vendor_id:product_id}
1343 (Linux only)
1344 @end table
1345
1346 @node host_usb_devices
1347 @subsection Using host USB devices on a Linux host
1348
1349 WARNING: this is an experimental feature. QEMU will slow down when
1350 using it. USB devices requiring real time streaming (i.e. USB Video
1351 Cameras) are not supported yet.
1352
1353 @enumerate
1354 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1355 is actually using the USB device. A simple way to do that is simply to
1356 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1357 to @file{mydriver.o.disabled}.
1358
1359 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1360 @example
1361 ls /proc/bus/usb
1362 001  devices  drivers
1363 @end example
1364
1365 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1366 @example
1367 chown -R myuid /proc/bus/usb
1368 @end example
1369
1370 @item Launch QEMU and do in the monitor:
1371 @example 
1372 info usbhost
1373   Device 1.2, speed 480 Mb/s
1374     Class 00: USB device 1234:5678, USB DISK
1375 @end example
1376 You should see the list of the devices you can use (Never try to use
1377 hubs, it won't work).
1378
1379 @item Add the device in QEMU by using:
1380 @example 
1381 usb_add host:1234:5678
1382 @end example
1383
1384 Normally the guest OS should report that a new USB device is
1385 plugged. You can use the option @option{-usbdevice} to do the same.
1386
1387 @item Now you can try to use the host USB device in QEMU.
1388
1389 @end enumerate
1390
1391 When relaunching QEMU, you may have to unplug and plug again the USB
1392 device to make it work again (this is a bug).
1393
1394 @node gdb_usage
1395 @section GDB usage
1396
1397 QEMU has a primitive support to work with gdb, so that you can do
1398 'Ctrl-C' while the virtual machine is running and inspect its state.
1399
1400 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1401 gdb connection:
1402 @example
1403 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1404        -append "root=/dev/hda"
1405 Connected to host network interface: tun0
1406 Waiting gdb connection on port 1234
1407 @end example
1408
1409 Then launch gdb on the 'vmlinux' executable:
1410 @example
1411 > gdb vmlinux
1412 @end example
1413
1414 In gdb, connect to QEMU:
1415 @example
1416 (gdb) target remote localhost:1234
1417 @end example
1418
1419 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1420 @example
1421 (gdb) c
1422 @end example
1423
1424 Here are some useful tips in order to use gdb on system code:
1425
1426 @enumerate
1427 @item
1428 Use @code{info reg} to display all the CPU registers.
1429 @item
1430 Use @code{x/10i $eip} to display the code at the PC position.
1431 @item
1432 Use @code{set architecture i8086} to dump 16 bit code. Then use
1433 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1434 @end enumerate
1435
1436 @node pcsys_os_specific
1437 @section Target OS specific information
1438
1439 @subsection Linux
1440
1441 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1442 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1443 color depth in the guest and the host OS.
1444
1445 When using a 2.6 guest Linux kernel, you should add the option
1446 @code{clock=pit} on the kernel command line because the 2.6 Linux
1447 kernels make very strict real time clock checks by default that QEMU
1448 cannot simulate exactly.
1449
1450 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1451 not activated because QEMU is slower with this patch. The QEMU
1452 Accelerator Module is also much slower in this case. Earlier Fedora
1453 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1454 patch by default. Newer kernels don't have it.
1455
1456 @subsection Windows
1457
1458 If you have a slow host, using Windows 95 is better as it gives the
1459 best speed. Windows 2000 is also a good choice.
1460
1461 @subsubsection SVGA graphic modes support
1462
1463 QEMU emulates a Cirrus Logic GD5446 Video
1464 card. All Windows versions starting from Windows 95 should recognize
1465 and use this graphic card. For optimal performances, use 16 bit color
1466 depth in the guest and the host OS.
1467
1468 If you are using Windows XP as guest OS and if you want to use high
1469 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1470 1280x1024x16), then you should use the VESA VBE virtual graphic card
1471 (option @option{-std-vga}).
1472
1473 @subsubsection CPU usage reduction
1474
1475 Windows 9x does not correctly use the CPU HLT
1476 instruction. The result is that it takes host CPU cycles even when
1477 idle. You can install the utility from
1478 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1479 problem. Note that no such tool is needed for NT, 2000 or XP.
1480
1481 @subsubsection Windows 2000 disk full problem
1482
1483 Windows 2000 has a bug which gives a disk full problem during its
1484 installation. When installing it, use the @option{-win2k-hack} QEMU
1485 option to enable a specific workaround. After Windows 2000 is
1486 installed, you no longer need this option (this option slows down the
1487 IDE transfers).
1488
1489 @subsubsection Windows 2000 shutdown
1490
1491 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1492 can. It comes from the fact that Windows 2000 does not automatically
1493 use the APM driver provided by the BIOS.
1494
1495 In order to correct that, do the following (thanks to Struan
1496 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1497 Add/Troubleshoot a device => Add a new device & Next => No, select the
1498 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1499 (again) a few times. Now the driver is installed and Windows 2000 now
1500 correctly instructs QEMU to shutdown at the appropriate moment. 
1501
1502 @subsubsection Share a directory between Unix and Windows
1503
1504 See @ref{sec_invocation} about the help of the option @option{-smb}.
1505
1506 @subsubsection Windows XP security problems
1507
1508 Some releases of Windows XP install correctly but give a security
1509 error when booting:
1510 @example
1511 A problem is preventing Windows from accurately checking the
1512 license for this computer. Error code: 0x800703e6.
1513 @end example
1514 The only known workaround is to boot in Safe mode
1515 without networking support. 
1516
1517 Future QEMU releases are likely to correct this bug.
1518
1519 @subsection MS-DOS and FreeDOS
1520
1521 @subsubsection CPU usage reduction
1522
1523 DOS does not correctly use the CPU HLT instruction. The result is that
1524 it takes host CPU cycles even when idle. You can install the utility
1525 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1526 problem.
1527
1528 @node QEMU System emulator for non PC targets
1529 @chapter QEMU System emulator for non PC targets
1530
1531 QEMU is a generic emulator and it emulates many non PC
1532 machines. Most of the options are similar to the PC emulator. The
1533 differences are mentionned in the following sections.
1534
1535 @menu
1536 * QEMU PowerPC System emulator::
1537 * Sparc32 System emulator invocation::
1538 * Sparc64 System emulator invocation::
1539 * MIPS System emulator invocation::
1540 * ARM System emulator invocation::
1541 @end menu
1542
1543 @node QEMU PowerPC System emulator
1544 @section QEMU PowerPC System emulator
1545
1546 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1547 or PowerMac PowerPC system.
1548
1549 QEMU emulates the following PowerMac peripherals:
1550
1551 @itemize @minus
1552 @item 
1553 UniNorth PCI Bridge 
1554 @item
1555 PCI VGA compatible card with VESA Bochs Extensions
1556 @item 
1557 2 PMAC IDE interfaces with hard disk and CD-ROM support
1558 @item 
1559 NE2000 PCI adapters
1560 @item
1561 Non Volatile RAM
1562 @item
1563 VIA-CUDA with ADB keyboard and mouse.
1564 @end itemize
1565
1566 QEMU emulates the following PREP peripherals:
1567
1568 @itemize @minus
1569 @item 
1570 PCI Bridge
1571 @item
1572 PCI VGA compatible card with VESA Bochs Extensions
1573 @item 
1574 2 IDE interfaces with hard disk and CD-ROM support
1575 @item
1576 Floppy disk
1577 @item 
1578 NE2000 network adapters
1579 @item
1580 Serial port
1581 @item
1582 PREP Non Volatile RAM
1583 @item
1584 PC compatible keyboard and mouse.
1585 @end itemize
1586
1587 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1588 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1589
1590 @c man begin OPTIONS
1591
1592 The following options are specific to the PowerPC emulation:
1593
1594 @table @option
1595
1596 @item -g WxH[xDEPTH]  
1597
1598 Set the initial VGA graphic mode. The default is 800x600x15.
1599
1600 @end table
1601
1602 @c man end 
1603
1604
1605 More information is available at
1606 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1607
1608 @node Sparc32 System emulator invocation
1609 @section Sparc32 System emulator invocation
1610
1611 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1612 (sun4m architecture). The emulation is somewhat complete.
1613
1614 QEMU emulates the following sun4m peripherals:
1615
1616 @itemize @minus
1617 @item
1618 IOMMU
1619 @item
1620 TCX Frame buffer
1621 @item 
1622 Lance (Am7990) Ethernet
1623 @item
1624 Non Volatile RAM M48T08
1625 @item
1626 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1627 and power/reset logic
1628 @item
1629 ESP SCSI controller with hard disk and CD-ROM support
1630 @item
1631 Floppy drive
1632 @end itemize
1633
1634 The number of peripherals is fixed in the architecture.
1635
1636 Since version 0.8.2, QEMU uses OpenBIOS
1637 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1638 firmware implementation. The goal is to implement a 100% IEEE
1639 1275-1994 (referred to as Open Firmware) compliant firmware.
1640
1641 A sample Linux 2.6 series kernel and ram disk image are available on
1642 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1643 Solaris kernels don't work.
1644
1645 @c man begin OPTIONS
1646
1647 The following options are specific to the Sparc emulation:
1648
1649 @table @option
1650
1651 @item -g WxH
1652
1653 Set the initial TCX graphic mode. The default is 1024x768.
1654
1655 @end table
1656
1657 @c man end 
1658
1659 @node Sparc64 System emulator invocation
1660 @section Sparc64 System emulator invocation
1661
1662 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1663 The emulator is not usable for anything yet.
1664
1665 QEMU emulates the following sun4u peripherals:
1666
1667 @itemize @minus
1668 @item
1669 UltraSparc IIi APB PCI Bridge 
1670 @item
1671 PCI VGA compatible card with VESA Bochs Extensions
1672 @item
1673 Non Volatile RAM M48T59
1674 @item
1675 PC-compatible serial ports
1676 @end itemize
1677
1678 @node MIPS System emulator invocation
1679 @section MIPS System emulator invocation
1680
1681 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1682 The emulator is able to boot a Linux kernel and to run a Linux Debian
1683 installation from NFS. The following devices are emulated:
1684
1685 @itemize @minus
1686 @item 
1687 MIPS R4K CPU
1688 @item
1689 PC style serial port
1690 @item
1691 NE2000 network card
1692 @end itemize
1693
1694 More information is available in the QEMU mailing-list archive.
1695
1696 @node ARM System emulator invocation
1697 @section ARM System emulator invocation
1698
1699 Use the executable @file{qemu-system-arm} to simulate a ARM
1700 machine. The ARM Integrator/CP board is emulated with the following
1701 devices:
1702
1703 @itemize @minus
1704 @item
1705 ARM926E or ARM1026E CPU
1706 @item
1707 Two PL011 UARTs
1708 @item 
1709 SMC 91c111 Ethernet adapter
1710 @item
1711 PL110 LCD controller
1712 @item
1713 PL050 KMI with PS/2 keyboard and mouse.
1714 @end itemize
1715
1716 The ARM Versatile baseboard is emulated with the following devices:
1717
1718 @itemize @minus
1719 @item
1720 ARM926E CPU
1721 @item
1722 PL190 Vectored Interrupt Controller
1723 @item
1724 Four PL011 UARTs
1725 @item 
1726 SMC 91c111 Ethernet adapter
1727 @item
1728 PL110 LCD controller
1729 @item
1730 PL050 KMI with PS/2 keyboard and mouse.
1731 @item
1732 PCI host bridge.  Note the emulated PCI bridge only provides access to
1733 PCI memory space.  It does not provide access to PCI IO space.
1734 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1735 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1736 mapped control registers.
1737 @item
1738 PCI OHCI USB controller.
1739 @item
1740 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1741 @end itemize
1742
1743 A Linux 2.6 test image is available on the QEMU web site. More
1744 information is available in the QEMU mailing-list archive.
1745
1746 @node QEMU Linux User space emulator 
1747 @chapter QEMU Linux User space emulator 
1748
1749 @menu
1750 * Quick Start::
1751 * Wine launch::
1752 * Command line options::
1753 * Other binaries::
1754 @end menu
1755
1756 @node Quick Start
1757 @section Quick Start
1758
1759 In order to launch a Linux process, QEMU needs the process executable
1760 itself and all the target (x86) dynamic libraries used by it. 
1761
1762 @itemize
1763
1764 @item On x86, you can just try to launch any process by using the native
1765 libraries:
1766
1767 @example 
1768 qemu-i386 -L / /bin/ls
1769 @end example
1770
1771 @code{-L /} tells that the x86 dynamic linker must be searched with a
1772 @file{/} prefix.
1773
1774 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1775
1776 @example 
1777 qemu-i386 -L / qemu-i386 -L / /bin/ls
1778 @end example
1779
1780 @item On non x86 CPUs, you need first to download at least an x86 glibc
1781 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1782 @code{LD_LIBRARY_PATH} is not set:
1783
1784 @example
1785 unset LD_LIBRARY_PATH 
1786 @end example
1787
1788 Then you can launch the precompiled @file{ls} x86 executable:
1789
1790 @example
1791 qemu-i386 tests/i386/ls
1792 @end example
1793 You can look at @file{qemu-binfmt-conf.sh} so that
1794 QEMU is automatically launched by the Linux kernel when you try to
1795 launch x86 executables. It requires the @code{binfmt_misc} module in the
1796 Linux kernel.
1797
1798 @item The x86 version of QEMU is also included. You can try weird things such as:
1799 @example
1800 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1801           /usr/local/qemu-i386/bin/ls-i386
1802 @end example
1803
1804 @end itemize
1805
1806 @node Wine launch
1807 @section Wine launch
1808
1809 @itemize
1810
1811 @item Ensure that you have a working QEMU with the x86 glibc
1812 distribution (see previous section). In order to verify it, you must be
1813 able to do:
1814
1815 @example
1816 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1817 @end example
1818
1819 @item Download the binary x86 Wine install
1820 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1821
1822 @item Configure Wine on your account. Look at the provided script
1823 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1824 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1825
1826 @item Then you can try the example @file{putty.exe}:
1827
1828 @example
1829 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1830           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1831 @end example
1832
1833 @end itemize
1834
1835 @node Command line options
1836 @section Command line options
1837
1838 @example
1839 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1840 @end example
1841
1842 @table @option
1843 @item -h
1844 Print the help
1845 @item -L path   
1846 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1847 @item -s size
1848 Set the x86 stack size in bytes (default=524288)
1849 @end table
1850
1851 Debug options:
1852
1853 @table @option
1854 @item -d
1855 Activate log (logfile=/tmp/qemu.log)
1856 @item -p pagesize
1857 Act as if the host page size was 'pagesize' bytes
1858 @end table
1859
1860 @node Other binaries
1861 @section Other binaries
1862
1863 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1864 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1865 configurations), and arm-uclinux bFLT format binaries.
1866
1867 The binary format is detected automatically.
1868
1869 @node compilation
1870 @chapter Compilation from the sources
1871
1872 @menu
1873 * Linux/Unix::
1874 * Windows::
1875 * Cross compilation for Windows with Linux::
1876 * Mac OS X::
1877 @end menu
1878
1879 @node Linux/Unix
1880 @section Linux/Unix
1881
1882 @subsection Compilation
1883
1884 First you must decompress the sources:
1885 @example
1886 cd /tmp
1887 tar zxvf qemu-x.y.z.tar.gz
1888 cd qemu-x.y.z
1889 @end example
1890
1891 Then you configure QEMU and build it (usually no options are needed):
1892 @example
1893 ./configure
1894 make
1895 @end example
1896
1897 Then type as root user:
1898 @example
1899 make install
1900 @end example
1901 to install QEMU in @file{/usr/local}.
1902
1903 @subsection Tested tool versions
1904
1905 In order to compile QEMU succesfully, it is very important that you
1906 have the right tools. The most important one is gcc. I cannot guaranty
1907 that QEMU works if you do not use a tested gcc version. Look at
1908 'configure' and 'Makefile' if you want to make a different gcc
1909 version work.
1910
1911 @example
1912 host      gcc      binutils      glibc    linux       distribution
1913 ----------------------------------------------------------------------
1914 x86       3.2      2.13.2        2.1.3    2.4.18
1915           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1916           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1917
1918 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1919           3.2
1920
1921 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1922
1923 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1924
1925 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1926
1927 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1928     for gcc version >= 3.3.
1929 [2] Linux >= 2.4.20 is necessary for precise exception support
1930     (untested).
1931 [3] 2.4.9-ac10-rmk2-np1-cerf2
1932
1933 [4] gcc 2.95.x generates invalid code when using too many register
1934 variables. You must use gcc 3.x on PowerPC.
1935 @end example
1936
1937 @node Windows
1938 @section Windows
1939
1940 @itemize
1941 @item Install the current versions of MSYS and MinGW from
1942 @url{http://www.mingw.org/}. You can find detailed installation
1943 instructions in the download section and the FAQ.
1944
1945 @item Download 
1946 the MinGW development library of SDL 1.2.x
1947 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1948 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1949 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1950 directory. Edit the @file{sdl-config} script so that it gives the
1951 correct SDL directory when invoked.
1952
1953 @item Extract the current version of QEMU.
1954  
1955 @item Start the MSYS shell (file @file{msys.bat}).
1956
1957 @item Change to the QEMU directory. Launch @file{./configure} and 
1958 @file{make}.  If you have problems using SDL, verify that
1959 @file{sdl-config} can be launched from the MSYS command line.
1960
1961 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1962 @file{make install}. Don't forget to copy @file{SDL.dll} in
1963 @file{Program Files/Qemu}.
1964
1965 @end itemize
1966
1967 @node Cross compilation for Windows with Linux
1968 @section Cross compilation for Windows with Linux
1969
1970 @itemize
1971 @item
1972 Install the MinGW cross compilation tools available at
1973 @url{http://www.mingw.org/}.
1974
1975 @item 
1976 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1977 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1978 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1979 the QEMU configuration script.
1980
1981 @item 
1982 Configure QEMU for Windows cross compilation:
1983 @example
1984 ./configure --enable-mingw32
1985 @end example
1986 If necessary, you can change the cross-prefix according to the prefix
1987 choosen for the MinGW tools with --cross-prefix. You can also use
1988 --prefix to set the Win32 install path.
1989
1990 @item You can install QEMU in the installation directory by typing 
1991 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1992 installation directory. 
1993
1994 @end itemize
1995
1996 Note: Currently, Wine does not seem able to launch
1997 QEMU for Win32.
1998
1999 @node Mac OS X
2000 @section Mac OS X
2001
2002 The Mac OS X patches are not fully merged in QEMU, so you should look
2003 at the QEMU mailing list archive to have all the necessary
2004 information.
2005
2006 @node Index
2007 @chapter Index
2008 @printindex cp
2009
2010 @bye