Spelling fixes, by Aurelien Jarno.
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}). 
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc d
251
252 Normally, QEMU uses SDL to display the VGA output.  With this option,
253 you can have QEMU listen on VNC display @var{d} and redirect the VGA
254 display over the VNC session.  It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout.
258
259 @item -k language
260
261 Use keyboard layout @var{language} (for example @code{fr} for
262 French). This option is only needed where it is not easy to get raw PC
263 keycodes (e.g. on Macs, with some X11 servers or with a VNC
264 display). You don't normally need to use it on PC/Linux or PC/Windows
265 hosts.
266
267 The available layouts are:
268 @example
269 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
270 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
271 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
272 @end example
273
274 The default is @code{en-us}.
275
276 @item -audio-help
277
278 Will show the audio subsystem help: list of drivers, tunable
279 parameters.
280
281 @item -soundhw card1,card2,... or -soundhw all
282
283 Enable audio and selected sound hardware. Use ? to print all
284 available sound hardware.
285
286 @example
287 qemu -soundhw sb16,adlib hda
288 qemu -soundhw es1370 hda
289 qemu -soundhw all hda
290 qemu -soundhw ?
291 @end example
292
293 @item -localtime
294 Set the real time clock to local time (the default is to UTC
295 time). This option is needed to have correct date in MS-DOS or
296 Windows.
297
298 @item -full-screen
299 Start in full screen.
300
301 @item -pidfile file
302 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303 from a script.
304
305 @item -win2k-hack
306 Use it when installing Windows 2000 to avoid a disk full bug. After
307 Windows 2000 is installed, you no longer need this option (this option
308 slows down the IDE transfers).
309
310 @end table
311
312 USB options:
313 @table @option
314
315 @item -usb
316 Enable the USB driver (will be the default soon)
317
318 @item -usbdevice devname
319 Add the USB device @var{devname}. @xref{usb_devices}.
320 @end table
321
322 Network options:
323
324 @table @option
325
326 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
327 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328 = 0 is the default). The NIC is currently an NE2000 on the PC
329 target. Optionally, the MAC address can be changed. If no
330 @option{-net} option is specified, a single NIC is created.
331 Qemu can emulate several different models of network card.  Valid values for
332 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
334 targets.
335
336 @item -net user[,vlan=n][,hostname=name]
337 Use the user mode network stack which requires no administrator
338 priviledge to run.  @option{hostname=name} can be used to specify the client
339 hostname reported by the builtin DHCP server.
340
341 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342 Connect the host TAP network interface @var{name} to VLAN @var{n} and
343 use the network script @var{file} to configure it. The default
344 network script is @file{/etc/qemu-ifup}. If @var{name} is not
345 provided, the OS automatically provides one.  @option{fd=h} can be
346 used to specify the handle of an already opened host TAP interface. Example:
347
348 @example
349 qemu linux.img -net nic -net tap
350 @end example
351
352 More complicated example (two NICs, each one connected to a TAP device)
353 @example
354 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356 @end example
357
358
359 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
360
361 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362 machine using a TCP socket connection. If @option{listen} is
363 specified, QEMU waits for incoming connections on @var{port}
364 (@var{host} is optional). @option{connect} is used to connect to
365 another QEMU instance using the @option{listen} option. @option{fd=h}
366 specifies an already opened TCP socket.
367
368 Example:
369 @example
370 # launch a first QEMU instance
371 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372                -net socket,listen=:1234
373 # connect the VLAN 0 of this instance to the VLAN 0
374 # of the first instance
375 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376                -net socket,connect=127.0.0.1:1234
377 @end example
378
379 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
380
381 Create a VLAN @var{n} shared with another QEMU virtual
382 machines using a UDP multicast socket, effectively making a bus for 
383 every QEMU with same multicast address @var{maddr} and @var{port}.
384 NOTES:
385 @enumerate
386 @item 
387 Several QEMU can be running on different hosts and share same bus (assuming 
388 correct multicast setup for these hosts).
389 @item
390 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391 @url{http://user-mode-linux.sf.net}.
392 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
393 @end enumerate
394
395 Example:
396 @example
397 # launch one QEMU instance
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399                -net socket,mcast=230.0.0.1:1234
400 # launch another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402                -net socket,mcast=230.0.0.1:1234
403 # launch yet another QEMU instance on same "bus"
404 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405                -net socket,mcast=230.0.0.1:1234
406 @end example
407
408 Example (User Mode Linux compat.):
409 @example
410 # launch QEMU instance (note mcast address selected
411 # is UML's default)
412 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413                -net socket,mcast=239.192.168.1:1102
414 # launch UML
415 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
416 @end example
417
418 @item -net none
419 Indicate that no network devices should be configured. It is used to
420 override the default configuration (@option{-net nic -net user}) which
421 is activated if no @option{-net} options are provided.
422
423 @item -tftp prefix
424 When using the user mode network stack, activate a built-in TFTP
425 server. All filenames beginning with @var{prefix} can be downloaded
426 from the host to the guest using a TFTP client. The TFTP client on the
427 guest must be configured in binary mode (use the command @code{bin} of
428 the Unix TFTP client). The host IP address on the guest is as usual
429 10.0.2.2.
430
431 @item -smb dir
432 When using the user mode network stack, activate a built-in SMB
433 server so that Windows OSes can access to the host files in @file{dir}
434 transparently.
435
436 In the guest Windows OS, the line:
437 @example
438 10.0.2.4 smbserver
439 @end example
440 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
442
443 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
444
445 Note that a SAMBA server must be installed on the host OS in
446 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
447 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
448
449 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
450
451 When using the user mode network stack, redirect incoming TCP or UDP
452 connections to the host port @var{host-port} to the guest
453 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454 is not specified, its value is 10.0.2.15 (default address given by the
455 built-in DHCP server).
456
457 For example, to redirect host X11 connection from screen 1 to guest
458 screen 0, use the following:
459
460 @example
461 # on the host
462 qemu -redir tcp:6001::6000 [...]
463 # this host xterm should open in the guest X11 server
464 xterm -display :1
465 @end example
466
467 To redirect telnet connections from host port 5555 to telnet port on
468 the guest, use the following:
469
470 @example
471 # on the host
472 qemu -redir tcp:5555::23 [...]
473 telnet localhost 5555
474 @end example
475
476 Then when you use on the host @code{telnet localhost 5555}, you
477 connect to the guest telnet server.
478
479 @end table
480
481 Linux boot specific: When using these options, you can use a given
482 Linux kernel without installing it in the disk image. It can be useful
483 for easier testing of various kernels.
484
485 @table @option
486
487 @item -kernel bzImage 
488 Use @var{bzImage} as kernel image.
489
490 @item -append cmdline 
491 Use @var{cmdline} as kernel command line
492
493 @item -initrd file
494 Use @var{file} as initial ram disk.
495
496 @end table
497
498 Debug/Expert options:
499 @table @option
500
501 @item -serial dev
502 Redirect the virtual serial port to host character device
503 @var{dev}. The default device is @code{vc} in graphical mode and
504 @code{stdio} in non graphical mode.
505
506 This option can be used several times to simulate up to 4 serials
507 ports.
508
509 Use @code{-serial none} to disable all serial ports.
510
511 Available character devices are:
512 @table @code
513 @item vc
514 Virtual console
515 @item pty
516 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
517 @item none
518 No device is allocated.
519 @item null
520 void device
521 @item /dev/XXX
522 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
523 parameters are set according to the emulated ones.
524 @item /dev/parportN
525 [Linux only, parallel port only] Use host parallel port
526 @var{N}. Currently only SPP parallel port features can be used.
527 @item file:filename
528 Write output to filename. No character can be read.
529 @item stdio
530 [Unix only] standard input/output
531 @item pipe:filename
532 name pipe @var{filename}
533 @item COMn
534 [Windows only] Use host serial port @var{n}
535 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
536 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
537
538 If you just want a simple readonly console you can use @code{netcat} or
539 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
540 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
541 will appear in the netconsole session.
542
543 If you plan to send characters back via netconsole or you want to stop
544 and start qemu a lot of times, you should have qemu use the same
545 source port each time by using something like @code{-serial
546 udp::4555@@:4556} to qemu. Another approach is to use a patched
547 version of netcat which can listen to a TCP port and send and receive
548 characters via udp.  If you have a patched version of netcat which
549 activates telnet remote echo and single char transfer, then you can
550 use the following options to step up a netcat redirector to allow
551 telnet on port 5555 to access the qemu port.
552 @table @code
553 @item Qemu Options:
554 -serial udp::4555@@:4556
555 @item netcat options:
556 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
557 @item telnet options:
558 localhost 5555
559 @end table
560
561
562 @item tcp:[host]:port[,server][,nowait]
563 The TCP Net Console has two modes of operation.  It can send the serial
564 I/O to a location or wait for a connection from a location.  By default
565 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
566 the @var{server} option QEMU will wait for a client socket application
567 to connect to the port before continuing, unless the @code{nowait}
568 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
569 one TCP connection at a time is accepted. You can use @code{telnet} to
570 connect to the corresponding character device.
571 @table @code
572 @item Example to send tcp console to 192.168.0.2 port 4444
573 -serial tcp:192.168.0.2:4444
574 @item Example to listen and wait on port 4444 for connection
575 -serial tcp::4444,server
576 @item Example to not wait and listen on ip 192.168.0.100 port 4444
577 -serial tcp:192.168.0.100:4444,server,nowait
578 @end table
579
580 @item telnet:host:port[,server][,nowait]
581 The telnet protocol is used instead of raw tcp sockets.  The options
582 work the same as if you had specified @code{-serial tcp}.  The
583 difference is that the port acts like a telnet server or client using
584 telnet option negotiation.  This will also allow you to send the
585 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
586 sequence.  Typically in unix telnet you do it with Control-] and then
587 type "send break" followed by pressing the enter key.
588
589 @end table
590
591 @item -parallel dev
592 Redirect the virtual parallel port to host device @var{dev} (same
593 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
594 be used to use hardware devices connected on the corresponding host
595 parallel port.
596
597 This option can be used several times to simulate up to 3 parallel
598 ports.
599
600 Use @code{-parallel none} to disable all parallel ports.
601
602 @item -monitor dev
603 Redirect the monitor to host device @var{dev} (same devices as the
604 serial port).
605 The default device is @code{vc} in graphical mode and @code{stdio} in
606 non graphical mode.
607
608 @item -s
609 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
610 @item -p port
611 Change gdb connection port.
612 @item -S
613 Do not start CPU at startup (you must type 'c' in the monitor).
614 @item -d             
615 Output log in /tmp/qemu.log
616 @item -hdachs c,h,s,[,t]
617 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
618 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
619 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
620 all thoses parameters. This option is useful for old MS-DOS disk
621 images.
622
623 @item -L path
624 Set the directory for the BIOS, VGA BIOS and keymaps.
625
626 @item -std-vga
627 Simulate a standard VGA card with Bochs VBE extensions (default is
628 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
629 VBE extensions (e.g. Windows XP) and if you want to use high
630 resolution modes (>= 1280x1024x16) then you should use this option.
631
632 @item -no-acpi
633 Disable ACPI (Advanced Configuration and Power Interface) support. Use
634 it if your guest OS complains about ACPI problems (PC target machine
635 only).
636
637 @item -no-reboot
638 Exit instead of rebooting.
639
640 @item -loadvm file
641 Start right away with a saved state (@code{loadvm} in monitor)
642 @end table
643
644 @c man end
645
646 @node pcsys_keys
647 @section Keys
648
649 @c man begin OPTIONS
650
651 During the graphical emulation, you can use the following keys:
652 @table @key
653 @item Ctrl-Alt-f
654 Toggle full screen
655
656 @item Ctrl-Alt-n
657 Switch to virtual console 'n'. Standard console mappings are:
658 @table @emph
659 @item 1
660 Target system display
661 @item 2
662 Monitor
663 @item 3
664 Serial port
665 @end table
666
667 @item Ctrl-Alt
668 Toggle mouse and keyboard grab.
669 @end table
670
671 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
672 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
673
674 During emulation, if you are using the @option{-nographic} option, use
675 @key{Ctrl-a h} to get terminal commands:
676
677 @table @key
678 @item Ctrl-a h
679 Print this help
680 @item Ctrl-a x    
681 Exit emulator
682 @item Ctrl-a s    
683 Save disk data back to file (if -snapshot)
684 @item Ctrl-a b
685 Send break (magic sysrq in Linux)
686 @item Ctrl-a c
687 Switch between console and monitor
688 @item Ctrl-a Ctrl-a
689 Send Ctrl-a
690 @end table
691 @c man end
692
693 @ignore
694
695 @c man begin SEEALSO
696 The HTML documentation of QEMU for more precise information and Linux
697 user mode emulator invocation.
698 @c man end
699
700 @c man begin AUTHOR
701 Fabrice Bellard
702 @c man end
703
704 @end ignore
705
706 @node pcsys_monitor
707 @section QEMU Monitor
708
709 The QEMU monitor is used to give complex commands to the QEMU
710 emulator. You can use it to:
711
712 @itemize @minus
713
714 @item
715 Remove or insert removable medias images
716 (such as CD-ROM or floppies)
717
718 @item 
719 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
720 from a disk file.
721
722 @item Inspect the VM state without an external debugger.
723
724 @end itemize
725
726 @subsection Commands
727
728 The following commands are available:
729
730 @table @option
731
732 @item help or ? [cmd]
733 Show the help for all commands or just for command @var{cmd}.
734
735 @item commit  
736 Commit changes to the disk images (if -snapshot is used)
737
738 @item info subcommand 
739 show various information about the system state
740
741 @table @option
742 @item info network
743 show the various VLANs and the associated devices
744 @item info block
745 show the block devices
746 @item info registers
747 show the cpu registers
748 @item info history
749 show the command line history
750 @item info pci
751 show emulated PCI device
752 @item info usb
753 show USB devices plugged on the virtual USB hub
754 @item info usbhost
755 show all USB host devices
756 @item info capture
757 show information about active capturing
758 @item info snapshots
759 show list of VM snapshots
760 @end table
761
762 @item q or quit
763 Quit the emulator.
764
765 @item eject [-f] device
766 Eject a removable media (use -f to force it).
767
768 @item change device filename
769 Change a removable media.
770
771 @item screendump filename
772 Save screen into PPM image @var{filename}.
773
774 @item wavcapture filename [frequency [bits [channels]]]
775 Capture audio into @var{filename}. Using sample rate @var{frequency}
776 bits per sample @var{bits} and number of channels @var{channels}.
777
778 Defaults:
779 @itemize @minus
780 @item Sample rate = 44100 Hz - CD quality
781 @item Bits = 16
782 @item Number of channels = 2 - Stereo
783 @end itemize
784
785 @item stopcapture index
786 Stop capture with a given @var{index}, index can be obtained with
787 @example
788 info capture
789 @end example
790
791 @item log item1[,...]
792 Activate logging of the specified items to @file{/tmp/qemu.log}.
793
794 @item savevm [tag|id]
795 Create a snapshot of the whole virtual machine. If @var{tag} is
796 provided, it is used as human readable identifier. If there is already
797 a snapshot with the same tag or ID, it is replaced. More info at
798 @ref{vm_snapshots}.
799
800 @item loadvm tag|id
801 Set the whole virtual machine to the snapshot identified by the tag
802 @var{tag} or the unique snapshot ID @var{id}.
803
804 @item delvm tag|id
805 Delete the snapshot identified by @var{tag} or @var{id}.
806
807 @item stop
808 Stop emulation.
809
810 @item c or cont
811 Resume emulation.
812
813 @item gdbserver [port]
814 Start gdbserver session (default port=1234)
815
816 @item x/fmt addr
817 Virtual memory dump starting at @var{addr}.
818
819 @item xp /fmt addr
820 Physical memory dump starting at @var{addr}.
821
822 @var{fmt} is a format which tells the command how to format the
823 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
824
825 @table @var
826 @item count 
827 is the number of items to be dumped.
828
829 @item format
830 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
831 c (char) or i (asm instruction).
832
833 @item size
834 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
835 @code{h} or @code{w} can be specified with the @code{i} format to
836 respectively select 16 or 32 bit code instruction size.
837
838 @end table
839
840 Examples: 
841 @itemize
842 @item
843 Dump 10 instructions at the current instruction pointer:
844 @example 
845 (qemu) x/10i $eip
846 0x90107063:  ret
847 0x90107064:  sti
848 0x90107065:  lea    0x0(%esi,1),%esi
849 0x90107069:  lea    0x0(%edi,1),%edi
850 0x90107070:  ret
851 0x90107071:  jmp    0x90107080
852 0x90107073:  nop
853 0x90107074:  nop
854 0x90107075:  nop
855 0x90107076:  nop
856 @end example
857
858 @item
859 Dump 80 16 bit values at the start of the video memory.
860 @smallexample 
861 (qemu) xp/80hx 0xb8000
862 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
863 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
864 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
865 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
866 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
867 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
868 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
869 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
870 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
871 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
872 @end smallexample
873 @end itemize
874
875 @item p or print/fmt expr
876
877 Print expression value. Only the @var{format} part of @var{fmt} is
878 used.
879
880 @item sendkey keys
881
882 Send @var{keys} to the emulator. Use @code{-} to press several keys
883 simultaneously. Example:
884 @example
885 sendkey ctrl-alt-f1
886 @end example
887
888 This command is useful to send keys that your graphical user interface
889 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
890
891 @item system_reset
892
893 Reset the system.
894
895 @item usb_add devname
896
897 Add the USB device @var{devname}.  For details of available devices see
898 @ref{usb_devices}
899
900 @item usb_del devname
901
902 Remove the USB device @var{devname} from the QEMU virtual USB
903 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
904 command @code{info usb} to see the devices you can remove.
905
906 @end table
907
908 @subsection Integer expressions
909
910 The monitor understands integers expressions for every integer
911 argument. You can use register names to get the value of specifics
912 CPU registers by prefixing them with @emph{$}.
913
914 @node disk_images
915 @section Disk Images
916
917 Since version 0.6.1, QEMU supports many disk image formats, including
918 growable disk images (their size increase as non empty sectors are
919 written), compressed and encrypted disk images. Version 0.8.3 added
920 the new qcow2 disk image format which is essential to support VM
921 snapshots.
922
923 @menu
924 * disk_images_quickstart::    Quick start for disk image creation
925 * disk_images_snapshot_mode:: Snapshot mode
926 * vm_snapshots::              VM snapshots
927 * qemu_img_invocation::       qemu-img Invocation
928 * host_drives::               Using host drives
929 * disk_images_fat_images::    Virtual FAT disk images
930 @end menu
931
932 @node disk_images_quickstart
933 @subsection Quick start for disk image creation
934
935 You can create a disk image with the command:
936 @example
937 qemu-img create myimage.img mysize
938 @end example
939 where @var{myimage.img} is the disk image filename and @var{mysize} is its
940 size in kilobytes. You can add an @code{M} suffix to give the size in
941 megabytes and a @code{G} suffix for gigabytes.
942
943 See @ref{qemu_img_invocation} for more information.
944
945 @node disk_images_snapshot_mode
946 @subsection Snapshot mode
947
948 If you use the option @option{-snapshot}, all disk images are
949 considered as read only. When sectors in written, they are written in
950 a temporary file created in @file{/tmp}. You can however force the
951 write back to the raw disk images by using the @code{commit} monitor
952 command (or @key{C-a s} in the serial console).
953
954 @node vm_snapshots
955 @subsection VM snapshots
956
957 VM snapshots are snapshots of the complete virtual machine including
958 CPU state, RAM, device state and the content of all the writable
959 disks. In order to use VM snapshots, you must have at least one non
960 removable and writable block device using the @code{qcow2} disk image
961 format. Normally this device is the first virtual hard drive.
962
963 Use the monitor command @code{savevm} to create a new VM snapshot or
964 replace an existing one. A human readable name can be assigned to each
965 snapshot in addition to its numerical ID.
966
967 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
968 a VM snapshot. @code{info snapshots} lists the available snapshots
969 with their associated information:
970
971 @example
972 (qemu) info snapshots
973 Snapshot devices: hda
974 Snapshot list (from hda):
975 ID        TAG                 VM SIZE                DATE       VM CLOCK
976 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
977 2                                 40M 2006-08-06 12:43:29   00:00:18.633
978 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
979 @end example
980
981 A VM snapshot is made of a VM state info (its size is shown in
982 @code{info snapshots}) and a snapshot of every writable disk image.
983 The VM state info is stored in the first @code{qcow2} non removable
984 and writable block device. The disk image snapshots are stored in
985 every disk image. The size of a snapshot in a disk image is difficult
986 to evaluate and is not shown by @code{info snapshots} because the
987 associated disk sectors are shared among all the snapshots to save
988 disk space (otherwise each snapshot would need a full copy of all the
989 disk images).
990
991 When using the (unrelated) @code{-snapshot} option
992 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
993 but they are deleted as soon as you exit QEMU.
994
995 VM snapshots currently have the following known limitations:
996 @itemize
997 @item 
998 They cannot cope with removable devices if they are removed or
999 inserted after a snapshot is done.
1000 @item 
1001 A few device drivers still have incomplete snapshot support so their
1002 state is not saved or restored properly (in particular USB).
1003 @end itemize
1004
1005 @node qemu_img_invocation
1006 @subsection @code{qemu-img} Invocation
1007
1008 @include qemu-img.texi
1009
1010 @node host_drives
1011 @subsection Using host drives
1012
1013 In addition to disk image files, QEMU can directly access host
1014 devices. We describe here the usage for QEMU version >= 0.8.3.
1015
1016 @subsubsection Linux
1017
1018 On Linux, you can directly use the host device filename instead of a
1019 disk image filename provided you have enough proviledge to access
1020 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1021 @file{/dev/fd0} for the floppy.
1022
1023 @table @code
1024 @item CD
1025 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1026 specific code to detect CDROM insertion or removal. CDROM ejection by
1027 the guest OS is supported. Currently only data CDs are supported.
1028 @item Floppy
1029 You can specify a floppy device even if no floppy is loaded. Floppy
1030 removal is currently not detected accurately (if you change floppy
1031 without doing floppy access while the floppy is not loaded, the guest
1032 OS will think that the same floppy is loaded).
1033 @item Hard disks
1034 Hard disks can be used. Normally you must specify the whole disk
1035 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1036 see it as a partitioned disk. WARNING: unless you know what you do, it
1037 is better to only make READ-ONLY accesses to the hard disk otherwise
1038 you may corrupt your host data (use the @option{-snapshot} command
1039 line option or modify the device permissions accordingly).
1040 @end table
1041
1042 @subsubsection Windows
1043
1044 On Windows you can use any host drives as QEMU drive. The prefered
1045 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1046 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1047 to the first CDROM drive.
1048
1049 Currently there is no specific code to handle removable medias, so it
1050 is better to use the @code{change} or @code{eject} monitor commands to
1051 change or eject media.
1052
1053 @subsubsection Mac OS X
1054
1055 @file{/dev/cdrom} is an alias to the first CDROM. 
1056
1057 Currently there is no specific code to handle removable medias, so it
1058 is better to use the @code{change} or @code{eject} monitor commands to
1059 change or eject media.
1060
1061 @node disk_images_fat_images
1062 @subsection Virtual FAT disk images
1063
1064 QEMU can automatically create a virtual FAT disk image from a
1065 directory tree. In order to use it, just type:
1066
1067 @example 
1068 qemu linux.img -hdb fat:/my_directory
1069 @end example
1070
1071 Then you access access to all the files in the @file{/my_directory}
1072 directory without having to copy them in a disk image or to export
1073 them via SAMBA or NFS. The default access is @emph{read-only}.
1074
1075 Floppies can be emulated with the @code{:floppy:} option:
1076
1077 @example 
1078 qemu linux.img -fda fat:floppy:/my_directory
1079 @end example
1080
1081 A read/write support is available for testing (beta stage) with the
1082 @code{:rw:} option:
1083
1084 @example 
1085 qemu linux.img -fda fat:floppy:rw:/my_directory
1086 @end example
1087
1088 What you should @emph{never} do:
1089 @itemize
1090 @item use non-ASCII filenames ;
1091 @item use "-snapshot" together with ":rw:" ;
1092 @item expect it to work when loadvm'ing ;
1093 @item write to the FAT directory on the host system while accessing it with the guest system.
1094 @end itemize
1095
1096 @node pcsys_network
1097 @section Network emulation
1098
1099 QEMU can simulate several networks cards (NE2000 boards on the PC
1100 target) and can connect them to an arbitrary number of Virtual Local
1101 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1102 VLAN. VLAN can be connected between separate instances of QEMU to
1103 simulate large networks. For simpler usage, a non priviledged user mode
1104 network stack can replace the TAP device to have a basic network
1105 connection.
1106
1107 @subsection VLANs
1108
1109 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1110 connection between several network devices. These devices can be for
1111 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1112 (TAP devices).
1113
1114 @subsection Using TAP network interfaces
1115
1116 This is the standard way to connect QEMU to a real network. QEMU adds
1117 a virtual network device on your host (called @code{tapN}), and you
1118 can then configure it as if it was a real ethernet card.
1119
1120 @subsubsection Linux host
1121
1122 As an example, you can download the @file{linux-test-xxx.tar.gz}
1123 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1124 configure properly @code{sudo} so that the command @code{ifconfig}
1125 contained in @file{qemu-ifup} can be executed as root. You must verify
1126 that your host kernel supports the TAP network interfaces: the
1127 device @file{/dev/net/tun} must be present.
1128
1129 See @ref{sec_invocation} to have examples of command lines using the
1130 TAP network interfaces.
1131
1132 @subsubsection Windows host
1133
1134 There is a virtual ethernet driver for Windows 2000/XP systems, called
1135 TAP-Win32. But it is not included in standard QEMU for Windows,
1136 so you will need to get it separately. It is part of OpenVPN package,
1137 so download OpenVPN from : @url{http://openvpn.net/}.
1138
1139 @subsection Using the user mode network stack
1140
1141 By using the option @option{-net user} (default configuration if no
1142 @option{-net} option is specified), QEMU uses a completely user mode
1143 network stack (you don't need root priviledge to use the virtual
1144 network). The virtual network configuration is the following:
1145
1146 @example
1147
1148          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1149                            |          (10.0.2.2)
1150                            |
1151                            ---->  DNS server (10.0.2.3)
1152                            |     
1153                            ---->  SMB server (10.0.2.4)
1154 @end example
1155
1156 The QEMU VM behaves as if it was behind a firewall which blocks all
1157 incoming connections. You can use a DHCP client to automatically
1158 configure the network in the QEMU VM. The DHCP server assign addresses
1159 to the hosts starting from 10.0.2.15.
1160
1161 In order to check that the user mode network is working, you can ping
1162 the address 10.0.2.2 and verify that you got an address in the range
1163 10.0.2.x from the QEMU virtual DHCP server.
1164
1165 Note that @code{ping} is not supported reliably to the internet as it
1166 would require root priviledges. It means you can only ping the local
1167 router (10.0.2.2).
1168
1169 When using the built-in TFTP server, the router is also the TFTP
1170 server.
1171
1172 When using the @option{-redir} option, TCP or UDP connections can be
1173 redirected from the host to the guest. It allows for example to
1174 redirect X11, telnet or SSH connections.
1175
1176 @subsection Connecting VLANs between QEMU instances
1177
1178 Using the @option{-net socket} option, it is possible to make VLANs
1179 that span several QEMU instances. See @ref{sec_invocation} to have a
1180 basic example.
1181
1182 @node direct_linux_boot
1183 @section Direct Linux Boot
1184
1185 This section explains how to launch a Linux kernel inside QEMU without
1186 having to make a full bootable image. It is very useful for fast Linux
1187 kernel testing.
1188
1189 The syntax is:
1190 @example
1191 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1192 @end example
1193
1194 Use @option{-kernel} to provide the Linux kernel image and
1195 @option{-append} to give the kernel command line arguments. The
1196 @option{-initrd} option can be used to provide an INITRD image.
1197
1198 When using the direct Linux boot, a disk image for the first hard disk
1199 @file{hda} is required because its boot sector is used to launch the
1200 Linux kernel.
1201
1202 If you do not need graphical output, you can disable it and redirect
1203 the virtual serial port and the QEMU monitor to the console with the
1204 @option{-nographic} option. The typical command line is:
1205 @example
1206 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1207      -append "root=/dev/hda console=ttyS0" -nographic
1208 @end example
1209
1210 Use @key{Ctrl-a c} to switch between the serial console and the
1211 monitor (@pxref{pcsys_keys}).
1212
1213 @node pcsys_usb
1214 @section USB emulation
1215
1216 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1217 virtual USB devices or real host USB devices (experimental, works only
1218 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1219 as necessary to connect multiple USB devices.
1220
1221 @menu
1222 * usb_devices::
1223 * host_usb_devices::
1224 @end menu
1225 @node usb_devices
1226 @subsection Connecting USB devices
1227
1228 USB devices can be connected with the @option{-usbdevice} commandline option
1229 or the @code{usb_add} monitor command.  Available devices are:
1230
1231 @table @var
1232 @item @code{mouse}
1233 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1234 @item @code{tablet}
1235 Pointer device that uses absolute coordinates (like a touchscreen).
1236 This means qemu is able to report the mouse position without having
1237 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1238 @item @code{disk:file}
1239 Mass storage device based on @var{file} (@pxref{disk_images})
1240 @item @code{host:bus.addr}
1241 Pass through the host device identified by @var{bus.addr}
1242 (Linux only)
1243 @item @code{host:vendor_id:product_id}
1244 Pass through the host device identified by @var{vendor_id:product_id}
1245 (Linux only)
1246 @end table
1247
1248 @node host_usb_devices
1249 @subsection Using host USB devices on a Linux host
1250
1251 WARNING: this is an experimental feature. QEMU will slow down when
1252 using it. USB devices requiring real time streaming (i.e. USB Video
1253 Cameras) are not supported yet.
1254
1255 @enumerate
1256 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1257 is actually using the USB device. A simple way to do that is simply to
1258 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1259 to @file{mydriver.o.disabled}.
1260
1261 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1262 @example
1263 ls /proc/bus/usb
1264 001  devices  drivers
1265 @end example
1266
1267 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1268 @example
1269 chown -R myuid /proc/bus/usb
1270 @end example
1271
1272 @item Launch QEMU and do in the monitor:
1273 @example 
1274 info usbhost
1275   Device 1.2, speed 480 Mb/s
1276     Class 00: USB device 1234:5678, USB DISK
1277 @end example
1278 You should see the list of the devices you can use (Never try to use
1279 hubs, it won't work).
1280
1281 @item Add the device in QEMU by using:
1282 @example 
1283 usb_add host:1234:5678
1284 @end example
1285
1286 Normally the guest OS should report that a new USB device is
1287 plugged. You can use the option @option{-usbdevice} to do the same.
1288
1289 @item Now you can try to use the host USB device in QEMU.
1290
1291 @end enumerate
1292
1293 When relaunching QEMU, you may have to unplug and plug again the USB
1294 device to make it work again (this is a bug).
1295
1296 @node gdb_usage
1297 @section GDB usage
1298
1299 QEMU has a primitive support to work with gdb, so that you can do
1300 'Ctrl-C' while the virtual machine is running and inspect its state.
1301
1302 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1303 gdb connection:
1304 @example
1305 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1306        -append "root=/dev/hda"
1307 Connected to host network interface: tun0
1308 Waiting gdb connection on port 1234
1309 @end example
1310
1311 Then launch gdb on the 'vmlinux' executable:
1312 @example
1313 > gdb vmlinux
1314 @end example
1315
1316 In gdb, connect to QEMU:
1317 @example
1318 (gdb) target remote localhost:1234
1319 @end example
1320
1321 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1322 @example
1323 (gdb) c
1324 @end example
1325
1326 Here are some useful tips in order to use gdb on system code:
1327
1328 @enumerate
1329 @item
1330 Use @code{info reg} to display all the CPU registers.
1331 @item
1332 Use @code{x/10i $eip} to display the code at the PC position.
1333 @item
1334 Use @code{set architecture i8086} to dump 16 bit code. Then use
1335 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1336 @end enumerate
1337
1338 @node pcsys_os_specific
1339 @section Target OS specific information
1340
1341 @subsection Linux
1342
1343 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1344 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1345 color depth in the guest and the host OS.
1346
1347 When using a 2.6 guest Linux kernel, you should add the option
1348 @code{clock=pit} on the kernel command line because the 2.6 Linux
1349 kernels make very strict real time clock checks by default that QEMU
1350 cannot simulate exactly.
1351
1352 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1353 not activated because QEMU is slower with this patch. The QEMU
1354 Accelerator Module is also much slower in this case. Earlier Fedora
1355 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1356 patch by default. Newer kernels don't have it.
1357
1358 @subsection Windows
1359
1360 If you have a slow host, using Windows 95 is better as it gives the
1361 best speed. Windows 2000 is also a good choice.
1362
1363 @subsubsection SVGA graphic modes support
1364
1365 QEMU emulates a Cirrus Logic GD5446 Video
1366 card. All Windows versions starting from Windows 95 should recognize
1367 and use this graphic card. For optimal performances, use 16 bit color
1368 depth in the guest and the host OS.
1369
1370 If you are using Windows XP as guest OS and if you want to use high
1371 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1372 1280x1024x16), then you should use the VESA VBE virtual graphic card
1373 (option @option{-std-vga}).
1374
1375 @subsubsection CPU usage reduction
1376
1377 Windows 9x does not correctly use the CPU HLT
1378 instruction. The result is that it takes host CPU cycles even when
1379 idle. You can install the utility from
1380 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1381 problem. Note that no such tool is needed for NT, 2000 or XP.
1382
1383 @subsubsection Windows 2000 disk full problem
1384
1385 Windows 2000 has a bug which gives a disk full problem during its
1386 installation. When installing it, use the @option{-win2k-hack} QEMU
1387 option to enable a specific workaround. After Windows 2000 is
1388 installed, you no longer need this option (this option slows down the
1389 IDE transfers).
1390
1391 @subsubsection Windows 2000 shutdown
1392
1393 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1394 can. It comes from the fact that Windows 2000 does not automatically
1395 use the APM driver provided by the BIOS.
1396
1397 In order to correct that, do the following (thanks to Struan
1398 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1399 Add/Troubleshoot a device => Add a new device & Next => No, select the
1400 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1401 (again) a few times. Now the driver is installed and Windows 2000 now
1402 correctly instructs QEMU to shutdown at the appropriate moment. 
1403
1404 @subsubsection Share a directory between Unix and Windows
1405
1406 See @ref{sec_invocation} about the help of the option @option{-smb}.
1407
1408 @subsubsection Windows XP security problem
1409
1410 Some releases of Windows XP install correctly but give a security
1411 error when booting:
1412 @example
1413 A problem is preventing Windows from accurately checking the
1414 license for this computer. Error code: 0x800703e6.
1415 @end example
1416
1417 The workaround is to install a service pack for XP after a boot in safe
1418 mode. Then reboot, and the problem should go away. Since there is no
1419 network while in safe mode, its recommended to download the full
1420 installation of SP1 or SP2 and transfer that via an ISO or using the
1421 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1422
1423 @subsection MS-DOS and FreeDOS
1424
1425 @subsubsection CPU usage reduction
1426
1427 DOS does not correctly use the CPU HLT instruction. The result is that
1428 it takes host CPU cycles even when idle. You can install the utility
1429 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1430 problem.
1431
1432 @node QEMU System emulator for non PC targets
1433 @chapter QEMU System emulator for non PC targets
1434
1435 QEMU is a generic emulator and it emulates many non PC
1436 machines. Most of the options are similar to the PC emulator. The
1437 differences are mentionned in the following sections.
1438
1439 @menu
1440 * QEMU PowerPC System emulator::
1441 * Sparc32 System emulator invocation::
1442 * Sparc64 System emulator invocation::
1443 * MIPS System emulator invocation::
1444 * ARM System emulator invocation::
1445 @end menu
1446
1447 @node QEMU PowerPC System emulator
1448 @section QEMU PowerPC System emulator
1449
1450 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1451 or PowerMac PowerPC system.
1452
1453 QEMU emulates the following PowerMac peripherals:
1454
1455 @itemize @minus
1456 @item 
1457 UniNorth PCI Bridge 
1458 @item
1459 PCI VGA compatible card with VESA Bochs Extensions
1460 @item 
1461 2 PMAC IDE interfaces with hard disk and CD-ROM support
1462 @item 
1463 NE2000 PCI adapters
1464 @item
1465 Non Volatile RAM
1466 @item
1467 VIA-CUDA with ADB keyboard and mouse.
1468 @end itemize
1469
1470 QEMU emulates the following PREP peripherals:
1471
1472 @itemize @minus
1473 @item 
1474 PCI Bridge
1475 @item
1476 PCI VGA compatible card with VESA Bochs Extensions
1477 @item 
1478 2 IDE interfaces with hard disk and CD-ROM support
1479 @item
1480 Floppy disk
1481 @item 
1482 NE2000 network adapters
1483 @item
1484 Serial port
1485 @item
1486 PREP Non Volatile RAM
1487 @item
1488 PC compatible keyboard and mouse.
1489 @end itemize
1490
1491 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1492 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1493
1494 @c man begin OPTIONS
1495
1496 The following options are specific to the PowerPC emulation:
1497
1498 @table @option
1499
1500 @item -g WxH[xDEPTH]  
1501
1502 Set the initial VGA graphic mode. The default is 800x600x15.
1503
1504 @end table
1505
1506 @c man end 
1507
1508
1509 More information is available at
1510 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1511
1512 @node Sparc32 System emulator invocation
1513 @section Sparc32 System emulator invocation
1514
1515 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1516 (sun4m architecture). The emulation is somewhat complete.
1517
1518 QEMU emulates the following sun4m peripherals:
1519
1520 @itemize @minus
1521 @item
1522 IOMMU
1523 @item
1524 TCX Frame buffer
1525 @item 
1526 Lance (Am7990) Ethernet
1527 @item
1528 Non Volatile RAM M48T08
1529 @item
1530 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1531 and power/reset logic
1532 @item
1533 ESP SCSI controller with hard disk and CD-ROM support
1534 @item
1535 Floppy drive
1536 @end itemize
1537
1538 The number of peripherals is fixed in the architecture.
1539
1540 Since version 0.8.2, QEMU uses OpenBIOS
1541 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1542 firmware implementation. The goal is to implement a 100% IEEE
1543 1275-1994 (referred to as Open Firmware) compliant firmware.
1544
1545 A sample Linux 2.6 series kernel and ram disk image are available on
1546 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1547 Solaris kernels don't work.
1548
1549 @c man begin OPTIONS
1550
1551 The following options are specific to the Sparc emulation:
1552
1553 @table @option
1554
1555 @item -g WxH
1556
1557 Set the initial TCX graphic mode. The default is 1024x768.
1558
1559 @end table
1560
1561 @c man end 
1562
1563 @node Sparc64 System emulator invocation
1564 @section Sparc64 System emulator invocation
1565
1566 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1567 The emulator is not usable for anything yet.
1568
1569 QEMU emulates the following sun4u peripherals:
1570
1571 @itemize @minus
1572 @item
1573 UltraSparc IIi APB PCI Bridge 
1574 @item
1575 PCI VGA compatible card with VESA Bochs Extensions
1576 @item
1577 Non Volatile RAM M48T59
1578 @item
1579 PC-compatible serial ports
1580 @end itemize
1581
1582 @node MIPS System emulator invocation
1583 @section MIPS System emulator invocation
1584
1585 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1586 The emulator is able to boot a Linux kernel and to run a Linux Debian
1587 installation from NFS. The following devices are emulated:
1588
1589 @itemize @minus
1590 @item 
1591 MIPS R4K CPU
1592 @item
1593 PC style serial port
1594 @item
1595 NE2000 network card
1596 @end itemize
1597
1598 More information is available in the QEMU mailing-list archive.
1599
1600 @node ARM System emulator invocation
1601 @section ARM System emulator invocation
1602
1603 Use the executable @file{qemu-system-arm} to simulate a ARM
1604 machine. The ARM Integrator/CP board is emulated with the following
1605 devices:
1606
1607 @itemize @minus
1608 @item
1609 ARM926E or ARM1026E CPU
1610 @item
1611 Two PL011 UARTs
1612 @item 
1613 SMC 91c111 Ethernet adapter
1614 @item
1615 PL110 LCD controller
1616 @item
1617 PL050 KMI with PS/2 keyboard and mouse.
1618 @end itemize
1619
1620 The ARM Versatile baseboard is emulated with the following devices:
1621
1622 @itemize @minus
1623 @item
1624 ARM926E CPU
1625 @item
1626 PL190 Vectored Interrupt Controller
1627 @item
1628 Four PL011 UARTs
1629 @item 
1630 SMC 91c111 Ethernet adapter
1631 @item
1632 PL110 LCD controller
1633 @item
1634 PL050 KMI with PS/2 keyboard and mouse.
1635 @item
1636 PCI host bridge.  Note the emulated PCI bridge only provides access to
1637 PCI memory space.  It does not provide access to PCI IO space.
1638 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1639 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1640 mapped control registers.
1641 @item
1642 PCI OHCI USB controller.
1643 @item
1644 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1645 @end itemize
1646
1647 A Linux 2.6 test image is available on the QEMU web site. More
1648 information is available in the QEMU mailing-list archive.
1649
1650 @node QEMU Linux User space emulator 
1651 @chapter QEMU Linux User space emulator 
1652
1653 @menu
1654 * Quick Start::
1655 * Wine launch::
1656 * Command line options::
1657 * Other binaries::
1658 @end menu
1659
1660 @node Quick Start
1661 @section Quick Start
1662
1663 In order to launch a Linux process, QEMU needs the process executable
1664 itself and all the target (x86) dynamic libraries used by it. 
1665
1666 @itemize
1667
1668 @item On x86, you can just try to launch any process by using the native
1669 libraries:
1670
1671 @example 
1672 qemu-i386 -L / /bin/ls
1673 @end example
1674
1675 @code{-L /} tells that the x86 dynamic linker must be searched with a
1676 @file{/} prefix.
1677
1678 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1679
1680 @example 
1681 qemu-i386 -L / qemu-i386 -L / /bin/ls
1682 @end example
1683
1684 @item On non x86 CPUs, you need first to download at least an x86 glibc
1685 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1686 @code{LD_LIBRARY_PATH} is not set:
1687
1688 @example
1689 unset LD_LIBRARY_PATH 
1690 @end example
1691
1692 Then you can launch the precompiled @file{ls} x86 executable:
1693
1694 @example
1695 qemu-i386 tests/i386/ls
1696 @end example
1697 You can look at @file{qemu-binfmt-conf.sh} so that
1698 QEMU is automatically launched by the Linux kernel when you try to
1699 launch x86 executables. It requires the @code{binfmt_misc} module in the
1700 Linux kernel.
1701
1702 @item The x86 version of QEMU is also included. You can try weird things such as:
1703 @example
1704 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1705           /usr/local/qemu-i386/bin/ls-i386
1706 @end example
1707
1708 @end itemize
1709
1710 @node Wine launch
1711 @section Wine launch
1712
1713 @itemize
1714
1715 @item Ensure that you have a working QEMU with the x86 glibc
1716 distribution (see previous section). In order to verify it, you must be
1717 able to do:
1718
1719 @example
1720 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1721 @end example
1722
1723 @item Download the binary x86 Wine install
1724 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1725
1726 @item Configure Wine on your account. Look at the provided script
1727 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1728 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1729
1730 @item Then you can try the example @file{putty.exe}:
1731
1732 @example
1733 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1734           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1735 @end example
1736
1737 @end itemize
1738
1739 @node Command line options
1740 @section Command line options
1741
1742 @example
1743 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1744 @end example
1745
1746 @table @option
1747 @item -h
1748 Print the help
1749 @item -L path   
1750 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1751 @item -s size
1752 Set the x86 stack size in bytes (default=524288)
1753 @end table
1754
1755 Debug options:
1756
1757 @table @option
1758 @item -d
1759 Activate log (logfile=/tmp/qemu.log)
1760 @item -p pagesize
1761 Act as if the host page size was 'pagesize' bytes
1762 @end table
1763
1764 @node Other binaries
1765 @section Other binaries
1766
1767 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1768 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1769 configurations), and arm-uclinux bFLT format binaries.
1770
1771 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1772 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1773 coldfire uClinux bFLT format binaries.
1774
1775 The binary format is detected automatically.
1776
1777 @node compilation
1778 @chapter Compilation from the sources
1779
1780 @menu
1781 * Linux/Unix::
1782 * Windows::
1783 * Cross compilation for Windows with Linux::
1784 * Mac OS X::
1785 @end menu
1786
1787 @node Linux/Unix
1788 @section Linux/Unix
1789
1790 @subsection Compilation
1791
1792 First you must decompress the sources:
1793 @example
1794 cd /tmp
1795 tar zxvf qemu-x.y.z.tar.gz
1796 cd qemu-x.y.z
1797 @end example
1798
1799 Then you configure QEMU and build it (usually no options are needed):
1800 @example
1801 ./configure
1802 make
1803 @end example
1804
1805 Then type as root user:
1806 @example
1807 make install
1808 @end example
1809 to install QEMU in @file{/usr/local}.
1810
1811 @subsection Tested tool versions
1812
1813 In order to compile QEMU successfully, it is very important that you
1814 have the right tools. The most important one is gcc. I cannot guaranty
1815 that QEMU works if you do not use a tested gcc version. Look at
1816 'configure' and 'Makefile' if you want to make a different gcc
1817 version work.
1818
1819 @example
1820 host      gcc      binutils      glibc    linux       distribution
1821 ----------------------------------------------------------------------
1822 x86       3.2      2.13.2        2.1.3    2.4.18
1823           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1824           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1825
1826 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1827           3.2
1828
1829 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1830
1831 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1832
1833 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1834
1835 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1836     for gcc version >= 3.3.
1837 [2] Linux >= 2.4.20 is necessary for precise exception support
1838     (untested).
1839 [3] 2.4.9-ac10-rmk2-np1-cerf2
1840
1841 [4] gcc 2.95.x generates invalid code when using too many register
1842 variables. You must use gcc 3.x on PowerPC.
1843 @end example
1844
1845 @node Windows
1846 @section Windows
1847
1848 @itemize
1849 @item Install the current versions of MSYS and MinGW from
1850 @url{http://www.mingw.org/}. You can find detailed installation
1851 instructions in the download section and the FAQ.
1852
1853 @item Download 
1854 the MinGW development library of SDL 1.2.x
1855 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1856 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1857 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1858 directory. Edit the @file{sdl-config} script so that it gives the
1859 correct SDL directory when invoked.
1860
1861 @item Extract the current version of QEMU.
1862  
1863 @item Start the MSYS shell (file @file{msys.bat}).
1864
1865 @item Change to the QEMU directory. Launch @file{./configure} and 
1866 @file{make}.  If you have problems using SDL, verify that
1867 @file{sdl-config} can be launched from the MSYS command line.
1868
1869 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1870 @file{make install}. Don't forget to copy @file{SDL.dll} in
1871 @file{Program Files/Qemu}.
1872
1873 @end itemize
1874
1875 @node Cross compilation for Windows with Linux
1876 @section Cross compilation for Windows with Linux
1877
1878 @itemize
1879 @item
1880 Install the MinGW cross compilation tools available at
1881 @url{http://www.mingw.org/}.
1882
1883 @item 
1884 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1885 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1886 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1887 the QEMU configuration script.
1888
1889 @item 
1890 Configure QEMU for Windows cross compilation:
1891 @example
1892 ./configure --enable-mingw32
1893 @end example
1894 If necessary, you can change the cross-prefix according to the prefix
1895 choosen for the MinGW tools with --cross-prefix. You can also use
1896 --prefix to set the Win32 install path.
1897
1898 @item You can install QEMU in the installation directory by typing 
1899 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1900 installation directory. 
1901
1902 @end itemize
1903
1904 Note: Currently, Wine does not seem able to launch
1905 QEMU for Win32.
1906
1907 @node Mac OS X
1908 @section Mac OS X
1909
1910 The Mac OS X patches are not fully merged in QEMU, so you should look
1911 at the QEMU mailing list archive to have all the necessary
1912 information.
1913
1914 @node Index
1915 @chapter Index
1916 @printindex cp
1917
1918 @bye