Change -drive parsing so that paths don't have to be double-escaped (Laurent Vivier...
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item ARM Integrator/CP (ARM)
81 @item ARM Versatile baseboard (ARM)
82 @item ARM RealView Emulation baseboard (ARM)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86 @item Freescale MCF5208EVB (ColdFire V2).
87 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
88 @item Palm Tungsten|E PDA (OMAP310 processor)
89 @end itemize
90
91 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93 @node Installation
94 @chapter Installation
95
96 If you want to compile QEMU yourself, see @ref{compilation}.
97
98 @menu
99 * install_linux::   Linux
100 * install_windows:: Windows
101 * install_mac::     Macintosh
102 @end menu
103
104 @node install_linux
105 @section Linux
106
107 If a precompiled package is available for your distribution - you just
108 have to install it. Otherwise, see @ref{compilation}.
109
110 @node install_windows
111 @section Windows
112
113 Download the experimental binary installer at
114 @url{http://www.free.oszoo.org/@/download.html}.
115
116 @node install_mac
117 @section Mac OS X
118
119 Download the experimental binary installer at
120 @url{http://www.free.oszoo.org/@/download.html}.
121
122 @node QEMU PC System emulator
123 @chapter QEMU PC System emulator
124
125 @menu
126 * pcsys_introduction:: Introduction
127 * pcsys_quickstart::   Quick Start
128 * sec_invocation::     Invocation
129 * pcsys_keys::         Keys
130 * pcsys_monitor::      QEMU Monitor
131 * disk_images::        Disk Images
132 * pcsys_network::      Network emulation
133 * direct_linux_boot::  Direct Linux Boot
134 * pcsys_usb::          USB emulation
135 * vnc_security::       VNC security
136 * gdb_usage::          GDB usage
137 * pcsys_os_specific::  Target OS specific information
138 @end menu
139
140 @node pcsys_introduction
141 @section Introduction
142
143 @c man begin DESCRIPTION
144
145 The QEMU PC System emulator simulates the
146 following peripherals:
147
148 @itemize @minus
149 @item
150 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151 @item
152 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153 extensions (hardware level, including all non standard modes).
154 @item
155 PS/2 mouse and keyboard
156 @item
157 2 PCI IDE interfaces with hard disk and CD-ROM support
158 @item
159 Floppy disk
160 @item
161 PCI/ISA PCI network adapters
162 @item
163 Serial ports
164 @item
165 Creative SoundBlaster 16 sound card
166 @item
167 ENSONIQ AudioPCI ES1370 sound card
168 @item
169 Adlib(OPL2) - Yamaha YM3812 compatible chip
170 @item
171 PCI UHCI USB controller and a virtual USB hub.
172 @end itemize
173
174 SMP is supported with up to 255 CPUs.
175
176 Note that adlib is only available when QEMU was configured with
177 -enable-adlib
178
179 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
180 VGA BIOS.
181
182 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
183
184 @c man end
185
186 @node pcsys_quickstart
187 @section Quick Start
188
189 Download and uncompress the linux image (@file{linux.img}) and type:
190
191 @example
192 qemu linux.img
193 @end example
194
195 Linux should boot and give you a prompt.
196
197 @node sec_invocation
198 @section Invocation
199
200 @example
201 @c man begin SYNOPSIS
202 usage: qemu [options] [@var{disk_image}]
203 @c man end
204 @end example
205
206 @c man begin OPTIONS
207 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
208
209 General options:
210 @table @option
211 @item -M @var{machine}
212 Select the emulated @var{machine} (@code{-M ?} for list)
213
214 @item -fda @var{file}
215 @item -fdb @var{file}
216 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
217 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
218
219 @item -hda @var{file}
220 @item -hdb @var{file}
221 @item -hdc @var{file}
222 @item -hdd @var{file}
223 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
224
225 @item -cdrom @var{file}
226 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
227 @option{-cdrom} at the same time). You can use the host CD-ROM by
228 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
229
230 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
231
232 Define a new drive. Valid options are:
233
234 @table @code
235 @item file=@var{file}
236 This option defines which disk image (@pxref{disk_images}) to use with
237 this drive. If the filename contains comma, you must double it
238 (for instance, "file=my,,file" to use file "my,file").
239 @item if=@var{interface}
240 This option defines on which type on interface the drive is connected.
241 Available types are: ide, scsi, sd, mtd, floppy, pflash.
242 @item bus=@var{bus},unit=@var{unit}
243 These options define where is connected the drive by defining the bus number and
244 the unit id.
245 @item index=@var{index}
246 This option defines where is connected the drive by using an index in the list
247 of available connectors of a given interface type.
248 @item media=@var{media}
249 This option defines the type of the media: disk or cdrom.
250 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
251 These options have the same definition as they have in @option{-hdachs}.
252 @item snapshot=@var{snapshot}
253 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
254 @item cache=@var{cache}
255 @var{cache} is "on" or "off" and allows to disable host cache to access data.
256 @end table
257
258 Instead of @option{-cdrom} you can use:
259 @example
260 qemu -drive file=file,index=2,media=cdrom
261 @end example
262
263 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
264 use:
265 @example
266 qemu -drive file=file,index=0,media=disk
267 qemu -drive file=file,index=1,media=disk
268 qemu -drive file=file,index=2,media=disk
269 qemu -drive file=file,index=3,media=disk
270 @end example
271
272 You can connect a CDROM to the slave of ide0:
273 @example
274 qemu -drive file=file,if=ide,index=1,media=cdrom
275 @end example
276
277 If you don't specify the "file=" argument, you define an empty drive:
278 @example
279 qemu -drive if=ide,index=1,media=cdrom
280 @end example
281
282 You can connect a SCSI disk with unit ID 6 on the bus #0:
283 @example
284 qemu -drive file=file,if=scsi,bus=0,unit=6
285 @end example
286
287 Instead of @option{-fda}, @option{-fdb}, you can use:
288 @example
289 qemu -drive file=file,index=0,if=floppy
290 qemu -drive file=file,index=1,if=floppy
291 @end example
292
293 By default, @var{interface} is "ide" and @var{index} is automatically
294 incremented:
295 @example
296 qemu -drive file=a -drive file=b"
297 @end example
298 is interpreted like:
299 @example
300 qemu -hda a -hdb b
301 @end example
302
303 @item -boot [a|c|d|n]
304 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
305 is the default.
306
307 @item -snapshot
308 Write to temporary files instead of disk image files. In this case,
309 the raw disk image you use is not written back. You can however force
310 the write back by pressing @key{C-a s} (@pxref{disk_images}).
311
312 @item -no-fd-bootchk
313 Disable boot signature checking for floppy disks in Bochs BIOS. It may
314 be needed to boot from old floppy disks.
315
316 @item -m @var{megs}
317 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
318
319 @item -smp @var{n}
320 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
321 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
322 to 4.
323
324 @item -audio-help
325
326 Will show the audio subsystem help: list of drivers, tunable
327 parameters.
328
329 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
330
331 Enable audio and selected sound hardware. Use ? to print all
332 available sound hardware.
333
334 @example
335 qemu -soundhw sb16,adlib hda
336 qemu -soundhw es1370 hda
337 qemu -soundhw all hda
338 qemu -soundhw ?
339 @end example
340
341 @item -localtime
342 Set the real time clock to local time (the default is to UTC
343 time). This option is needed to have correct date in MS-DOS or
344 Windows.
345
346 @item -startdate @var{date}
347 Set the initial date of the real time clock. Valid format for
348 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
349 @code{2006-06-17}. The default value is @code{now}.
350
351 @item -pidfile @var{file}
352 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
353 from a script.
354
355 @item -daemonize
356 Daemonize the QEMU process after initialization.  QEMU will not detach from
357 standard IO until it is ready to receive connections on any of its devices.
358 This option is a useful way for external programs to launch QEMU without having
359 to cope with initialization race conditions.
360
361 @item -win2k-hack
362 Use it when installing Windows 2000 to avoid a disk full bug. After
363 Windows 2000 is installed, you no longer need this option (this option
364 slows down the IDE transfers).
365
366 @item -option-rom @var{file}
367 Load the contents of @var{file} as an option ROM.
368 This option is useful to load things like EtherBoot.
369
370 @item -name @var{name}
371 Sets the @var{name} of the guest.
372 This name will be display in the SDL window caption.
373 The @var{name} will also be used for the VNC server.
374
375 @end table
376
377 Display options:
378 @table @option
379
380 @item -nographic
381
382 Normally, QEMU uses SDL to display the VGA output. With this option,
383 you can totally disable graphical output so that QEMU is a simple
384 command line application. The emulated serial port is redirected on
385 the console. Therefore, you can still use QEMU to debug a Linux kernel
386 with a serial console.
387
388 @item -no-frame
389
390 Do not use decorations for SDL windows and start them using the whole
391 available screen space. This makes the using QEMU in a dedicated desktop
392 workspace more convenient.
393
394 @item -full-screen
395 Start in full screen.
396
397 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
398
399 Normally, QEMU uses SDL to display the VGA output.  With this option,
400 you can have QEMU listen on VNC display @var{display} and redirect the VGA
401 display over the VNC session.  It is very useful to enable the usb
402 tablet device when using this option (option @option{-usbdevice
403 tablet}). When using the VNC display, you must use the @option{-k}
404 parameter to set the keyboard layout if you are not using en-us. Valid
405 syntax for the @var{display} is
406
407 @table @code
408
409 @item @var{interface}:@var{d}
410
411 TCP connections will only be allowed from @var{interface} on display @var{d}.
412 By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
413 be omitted in which case the server will bind to all interfaces.
414
415 @item @var{unix}:@var{path}
416
417 Connections will be allowed over UNIX domain sockets where @var{path} is the
418 location of a unix socket to listen for connections on.
419
420 @item none
421
422 VNC is initialized by not started. The monitor @code{change} command can be used
423 to later start the VNC server.
424
425 @end table
426
427 Following the @var{display} value there may be one or more @var{option} flags
428 separated by commas. Valid options are
429
430 @table @code
431
432 @item password
433
434 Require that password based authentication is used for client connections.
435 The password must be set separately using the @code{change} command in the
436 @ref{pcsys_monitor}
437
438 @item tls
439
440 Require that client use TLS when communicating with the VNC server. This
441 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
442 attack. It is recommended that this option be combined with either the
443 @var{x509} or @var{x509verify} options.
444
445 @item x509=@var{/path/to/certificate/dir}
446
447 Valid if @option{tls} is specified. Require that x509 credentials are used
448 for negotiating the TLS session. The server will send its x509 certificate
449 to the client. It is recommended that a password be set on the VNC server
450 to provide authentication of the client when this is used. The path following
451 this option specifies where the x509 certificates are to be loaded from.
452 See the @ref{vnc_security} section for details on generating certificates.
453
454 @item x509verify=@var{/path/to/certificate/dir}
455
456 Valid if @option{tls} is specified. Require that x509 credentials are used
457 for negotiating the TLS session. The server will send its x509 certificate
458 to the client, and request that the client send its own x509 certificate.
459 The server will validate the client's certificate against the CA certificate,
460 and reject clients when validation fails. If the certificate authority is
461 trusted, this is a sufficient authentication mechanism. You may still wish
462 to set a password on the VNC server as a second authentication layer. The
463 path following this option specifies where the x509 certificates are to
464 be loaded from. See the @ref{vnc_security} section for details on generating
465 certificates.
466
467 @end table
468
469 @item -k @var{language}
470
471 Use keyboard layout @var{language} (for example @code{fr} for
472 French). This option is only needed where it is not easy to get raw PC
473 keycodes (e.g. on Macs, with some X11 servers or with a VNC
474 display). You don't normally need to use it on PC/Linux or PC/Windows
475 hosts.
476
477 The available layouts are:
478 @example
479 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
480 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
481 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
482 @end example
483
484 The default is @code{en-us}.
485
486 @end table
487
488 USB options:
489 @table @option
490
491 @item -usb
492 Enable the USB driver (will be the default soon)
493
494 @item -usbdevice @var{devname}
495 Add the USB device @var{devname}. @xref{usb_devices}.
496
497 @table @code
498
499 @item mouse
500 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
501
502 @item tablet
503 Pointer device that uses absolute coordinates (like a touchscreen). This
504 means qemu is able to report the mouse position without having to grab the
505 mouse. Also overrides the PS/2 mouse emulation when activated.
506
507 @item disk:file
508 Mass storage device based on file
509
510 @item host:bus.addr
511 Pass through the host device identified by bus.addr (Linux only).
512
513 @item host:vendor_id:product_id
514 Pass through the host device identified by vendor_id:product_id (Linux only).
515
516 @end table
517
518 @end table
519
520 Network options:
521
522 @table @option
523
524 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
525 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
526 = 0 is the default). The NIC is an ne2k_pci by default on the PC
527 target. Optionally, the MAC address can be changed. If no
528 @option{-net} option is specified, a single NIC is created.
529 Qemu can emulate several different models of network card.
530 Valid values for @var{type} are
531 @code{i82551}, @code{i82557b}, @code{i82559er},
532 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
533 @code{smc91c111}, @code{lance} and @code{mcf_fec}.
534 Not all devices are supported on all targets.  Use -net nic,model=?
535 for a list of available devices for your target.
536
537 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
538 Use the user mode network stack which requires no administrator
539 privilege to run.  @option{hostname=name} can be used to specify the client
540 hostname reported by the builtin DHCP server.
541
542 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
543 Connect the host TAP network interface @var{name} to VLAN @var{n} and
544 use the network script @var{file} to configure it. The default
545 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
546 disable script execution. If @var{name} is not
547 provided, the OS automatically provides one. @option{fd}=@var{h} can be
548 used to specify the handle of an already opened host TAP interface. Example:
549
550 @example
551 qemu linux.img -net nic -net tap
552 @end example
553
554 More complicated example (two NICs, each one connected to a TAP device)
555 @example
556 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
557                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
558 @end example
559
560
561 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
562
563 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
564 machine using a TCP socket connection. If @option{listen} is
565 specified, QEMU waits for incoming connections on @var{port}
566 (@var{host} is optional). @option{connect} is used to connect to
567 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
568 specifies an already opened TCP socket.
569
570 Example:
571 @example
572 # launch a first QEMU instance
573 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
574                -net socket,listen=:1234
575 # connect the VLAN 0 of this instance to the VLAN 0
576 # of the first instance
577 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
578                -net socket,connect=127.0.0.1:1234
579 @end example
580
581 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
582
583 Create a VLAN @var{n} shared with another QEMU virtual
584 machines using a UDP multicast socket, effectively making a bus for
585 every QEMU with same multicast address @var{maddr} and @var{port}.
586 NOTES:
587 @enumerate
588 @item
589 Several QEMU can be running on different hosts and share same bus (assuming
590 correct multicast setup for these hosts).
591 @item
592 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
593 @url{http://user-mode-linux.sf.net}.
594 @item
595 Use @option{fd=h} to specify an already opened UDP multicast socket.
596 @end enumerate
597
598 Example:
599 @example
600 # launch one QEMU instance
601 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
602                -net socket,mcast=230.0.0.1:1234
603 # launch another QEMU instance on same "bus"
604 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
605                -net socket,mcast=230.0.0.1:1234
606 # launch yet another QEMU instance on same "bus"
607 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
608                -net socket,mcast=230.0.0.1:1234
609 @end example
610
611 Example (User Mode Linux compat.):
612 @example
613 # launch QEMU instance (note mcast address selected
614 # is UML's default)
615 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
616                -net socket,mcast=239.192.168.1:1102
617 # launch UML
618 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
619 @end example
620
621 @item -net none
622 Indicate that no network devices should be configured. It is used to
623 override the default configuration (@option{-net nic -net user}) which
624 is activated if no @option{-net} options are provided.
625
626 @item -tftp @var{dir}
627 When using the user mode network stack, activate a built-in TFTP
628 server. The files in @var{dir} will be exposed as the root of a TFTP server.
629 The TFTP client on the guest must be configured in binary mode (use the command
630 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
631 usual 10.0.2.2.
632
633 @item -bootp @var{file}
634 When using the user mode network stack, broadcast @var{file} as the BOOTP
635 filename.  In conjunction with @option{-tftp}, this can be used to network boot
636 a guest from a local directory.
637
638 Example (using pxelinux):
639 @example
640 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
641 @end example
642
643 @item -smb @var{dir}
644 When using the user mode network stack, activate a built-in SMB
645 server so that Windows OSes can access to the host files in @file{@var{dir}}
646 transparently.
647
648 In the guest Windows OS, the line:
649 @example
650 10.0.2.4 smbserver
651 @end example
652 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
653 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
654
655 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
656
657 Note that a SAMBA server must be installed on the host OS in
658 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
659 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
660
661 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
662
663 When using the user mode network stack, redirect incoming TCP or UDP
664 connections to the host port @var{host-port} to the guest
665 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
666 is not specified, its value is 10.0.2.15 (default address given by the
667 built-in DHCP server).
668
669 For example, to redirect host X11 connection from screen 1 to guest
670 screen 0, use the following:
671
672 @example
673 # on the host
674 qemu -redir tcp:6001::6000 [...]
675 # this host xterm should open in the guest X11 server
676 xterm -display :1
677 @end example
678
679 To redirect telnet connections from host port 5555 to telnet port on
680 the guest, use the following:
681
682 @example
683 # on the host
684 qemu -redir tcp:5555::23 [...]
685 telnet localhost 5555
686 @end example
687
688 Then when you use on the host @code{telnet localhost 5555}, you
689 connect to the guest telnet server.
690
691 @end table
692
693 Linux boot specific: When using these options, you can use a given
694 Linux kernel without installing it in the disk image. It can be useful
695 for easier testing of various kernels.
696
697 @table @option
698
699 @item -kernel @var{bzImage}
700 Use @var{bzImage} as kernel image.
701
702 @item -append @var{cmdline}
703 Use @var{cmdline} as kernel command line
704
705 @item -initrd @var{file}
706 Use @var{file} as initial ram disk.
707
708 @end table
709
710 Debug/Expert options:
711 @table @option
712
713 @item -serial @var{dev}
714 Redirect the virtual serial port to host character device
715 @var{dev}. The default device is @code{vc} in graphical mode and
716 @code{stdio} in non graphical mode.
717
718 This option can be used several times to simulate up to 4 serials
719 ports.
720
721 Use @code{-serial none} to disable all serial ports.
722
723 Available character devices are:
724 @table @code
725 @item vc[:WxH]
726 Virtual console. Optionally, a width and height can be given in pixel with
727 @example
728 vc:800x600
729 @end example
730 It is also possible to specify width or height in characters:
731 @example
732 vc:80Cx24C
733 @end example
734 @item pty
735 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
736 @item none
737 No device is allocated.
738 @item null
739 void device
740 @item /dev/XXX
741 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
742 parameters are set according to the emulated ones.
743 @item /dev/parport@var{N}
744 [Linux only, parallel port only] Use host parallel port
745 @var{N}. Currently SPP and EPP parallel port features can be used.
746 @item file:@var{filename}
747 Write output to @var{filename}. No character can be read.
748 @item stdio
749 [Unix only] standard input/output
750 @item pipe:@var{filename}
751 name pipe @var{filename}
752 @item COM@var{n}
753 [Windows only] Use host serial port @var{n}
754 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
755 This implements UDP Net Console.
756 When @var{remote_host} or @var{src_ip} are not specified
757 they default to @code{0.0.0.0}.
758 When not using a specified @var{src_port} a random port is automatically chosen.
759
760 If you just want a simple readonly console you can use @code{netcat} or
761 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
762 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
763 will appear in the netconsole session.
764
765 If you plan to send characters back via netconsole or you want to stop
766 and start qemu a lot of times, you should have qemu use the same
767 source port each time by using something like @code{-serial
768 udp::4555@@:4556} to qemu. Another approach is to use a patched
769 version of netcat which can listen to a TCP port and send and receive
770 characters via udp.  If you have a patched version of netcat which
771 activates telnet remote echo and single char transfer, then you can
772 use the following options to step up a netcat redirector to allow
773 telnet on port 5555 to access the qemu port.
774 @table @code
775 @item Qemu Options:
776 -serial udp::4555@@:4556
777 @item netcat options:
778 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
779 @item telnet options:
780 localhost 5555
781 @end table
782
783
784 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
785 The TCP Net Console has two modes of operation.  It can send the serial
786 I/O to a location or wait for a connection from a location.  By default
787 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
788 the @var{server} option QEMU will wait for a client socket application
789 to connect to the port before continuing, unless the @code{nowait}
790 option was specified.  The @code{nodelay} option disables the Nagle buffering
791 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
792 one TCP connection at a time is accepted. You can use @code{telnet} to
793 connect to the corresponding character device.
794 @table @code
795 @item Example to send tcp console to 192.168.0.2 port 4444
796 -serial tcp:192.168.0.2:4444
797 @item Example to listen and wait on port 4444 for connection
798 -serial tcp::4444,server
799 @item Example to not wait and listen on ip 192.168.0.100 port 4444
800 -serial tcp:192.168.0.100:4444,server,nowait
801 @end table
802
803 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
804 The telnet protocol is used instead of raw tcp sockets.  The options
805 work the same as if you had specified @code{-serial tcp}.  The
806 difference is that the port acts like a telnet server or client using
807 telnet option negotiation.  This will also allow you to send the
808 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
809 sequence.  Typically in unix telnet you do it with Control-] and then
810 type "send break" followed by pressing the enter key.
811
812 @item unix:@var{path}[,server][,nowait]
813 A unix domain socket is used instead of a tcp socket.  The option works the
814 same as if you had specified @code{-serial tcp} except the unix domain socket
815 @var{path} is used for connections.
816
817 @item mon:@var{dev_string}
818 This is a special option to allow the monitor to be multiplexed onto
819 another serial port.  The monitor is accessed with key sequence of
820 @key{Control-a} and then pressing @key{c}. See monitor access
821 @ref{pcsys_keys} in the -nographic section for more keys.
822 @var{dev_string} should be any one of the serial devices specified
823 above.  An example to multiplex the monitor onto a telnet server
824 listening on port 4444 would be:
825 @table @code
826 @item -serial mon:telnet::4444,server,nowait
827 @end table
828
829 @end table
830
831 @item -parallel @var{dev}
832 Redirect the virtual parallel port to host device @var{dev} (same
833 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
834 be used to use hardware devices connected on the corresponding host
835 parallel port.
836
837 This option can be used several times to simulate up to 3 parallel
838 ports.
839
840 Use @code{-parallel none} to disable all parallel ports.
841
842 @item -monitor @var{dev}
843 Redirect the monitor to host device @var{dev} (same devices as the
844 serial port).
845 The default device is @code{vc} in graphical mode and @code{stdio} in
846 non graphical mode.
847
848 @item -echr numeric_ascii_value
849 Change the escape character used for switching to the monitor when using
850 monitor and serial sharing.  The default is @code{0x01} when using the
851 @code{-nographic} option.  @code{0x01} is equal to pressing
852 @code{Control-a}.  You can select a different character from the ascii
853 control keys where 1 through 26 map to Control-a through Control-z.  For
854 instance you could use the either of the following to change the escape
855 character to Control-t.
856 @table @code
857 @item -echr 0x14
858 @item -echr 20
859 @end table
860
861 @item -s
862 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
863 @item -p @var{port}
864 Change gdb connection port.  @var{port} can be either a decimal number
865 to specify a TCP port, or a host device (same devices as the serial port).
866 @item -S
867 Do not start CPU at startup (you must type 'c' in the monitor).
868 @item -d
869 Output log in /tmp/qemu.log
870 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
871 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
872 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
873 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
874 all those parameters. This option is useful for old MS-DOS disk
875 images.
876
877 @item -L path
878 Set the directory for the BIOS, VGA BIOS and keymaps.
879
880 @item -std-vga
881 Simulate a standard VGA card with Bochs VBE extensions (default is
882 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
883 VBE extensions (e.g. Windows XP) and if you want to use high
884 resolution modes (>= 1280x1024x16) then you should use this option.
885
886 @item -no-acpi
887 Disable ACPI (Advanced Configuration and Power Interface) support. Use
888 it if your guest OS complains about ACPI problems (PC target machine
889 only).
890
891 @item -no-reboot
892 Exit instead of rebooting.
893
894 @item -loadvm file
895 Start right away with a saved state (@code{loadvm} in monitor)
896
897 @item -semihosting
898 Enable semihosting syscall emulation (ARM and M68K target machines only).
899
900 On ARM this implements the "Angel" interface.
901 On M68K this implements the "ColdFire GDB" interface used by libgloss.
902
903 Note that this allows guest direct access to the host filesystem,
904 so should only be used with trusted guest OS.
905 @end table
906
907 @c man end
908
909 @node pcsys_keys
910 @section Keys
911
912 @c man begin OPTIONS
913
914 During the graphical emulation, you can use the following keys:
915 @table @key
916 @item Ctrl-Alt-f
917 Toggle full screen
918
919 @item Ctrl-Alt-n
920 Switch to virtual console 'n'. Standard console mappings are:
921 @table @emph
922 @item 1
923 Target system display
924 @item 2
925 Monitor
926 @item 3
927 Serial port
928 @end table
929
930 @item Ctrl-Alt
931 Toggle mouse and keyboard grab.
932 @end table
933
934 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
935 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
936
937 During emulation, if you are using the @option{-nographic} option, use
938 @key{Ctrl-a h} to get terminal commands:
939
940 @table @key
941 @item Ctrl-a h
942 Print this help
943 @item Ctrl-a x
944 Exit emulator
945 @item Ctrl-a s
946 Save disk data back to file (if -snapshot)
947 @item Ctrl-a t
948 toggle console timestamps
949 @item Ctrl-a b
950 Send break (magic sysrq in Linux)
951 @item Ctrl-a c
952 Switch between console and monitor
953 @item Ctrl-a Ctrl-a
954 Send Ctrl-a
955 @end table
956 @c man end
957
958 @ignore
959
960 @c man begin SEEALSO
961 The HTML documentation of QEMU for more precise information and Linux
962 user mode emulator invocation.
963 @c man end
964
965 @c man begin AUTHOR
966 Fabrice Bellard
967 @c man end
968
969 @end ignore
970
971 @node pcsys_monitor
972 @section QEMU Monitor
973
974 The QEMU monitor is used to give complex commands to the QEMU
975 emulator. You can use it to:
976
977 @itemize @minus
978
979 @item
980 Remove or insert removable media images
981 (such as CD-ROM or floppies).
982
983 @item
984 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
985 from a disk file.
986
987 @item Inspect the VM state without an external debugger.
988
989 @end itemize
990
991 @subsection Commands
992
993 The following commands are available:
994
995 @table @option
996
997 @item help or ? [@var{cmd}]
998 Show the help for all commands or just for command @var{cmd}.
999
1000 @item commit
1001 Commit changes to the disk images (if -snapshot is used).
1002
1003 @item info @var{subcommand}
1004 Show various information about the system state.
1005
1006 @table @option
1007 @item info network
1008 show the various VLANs and the associated devices
1009 @item info block
1010 show the block devices
1011 @item info registers
1012 show the cpu registers
1013 @item info history
1014 show the command line history
1015 @item info pci
1016 show emulated PCI device
1017 @item info usb
1018 show USB devices plugged on the virtual USB hub
1019 @item info usbhost
1020 show all USB host devices
1021 @item info capture
1022 show information about active capturing
1023 @item info snapshots
1024 show list of VM snapshots
1025 @item info mice
1026 show which guest mouse is receiving events
1027 @end table
1028
1029 @item q or quit
1030 Quit the emulator.
1031
1032 @item eject [-f] @var{device}
1033 Eject a removable medium (use -f to force it).
1034
1035 @item change @var{device} @var{setting}
1036
1037 Change the configuration of a device.
1038
1039 @table @option
1040 @item change @var{diskdevice} @var{filename}
1041 Change the medium for a removable disk device to point to @var{filename}. eg
1042
1043 @example
1044 (qemu) change cdrom /path/to/some.iso
1045 @end example
1046
1047 @item change vnc @var{display},@var{options}
1048 Change the configuration of the VNC server. The valid syntax for @var{display}
1049 and @var{options} are described at @ref{sec_invocation}. eg
1050
1051 @example
1052 (qemu) change vnc localhost:1
1053 @end example
1054
1055 @item change vnc password
1056
1057 Change the password associated with the VNC server. The monitor will prompt for
1058 the new password to be entered. VNC passwords are only significant upto 8 letters.
1059 eg.
1060
1061 @example
1062 (qemu) change vnc password
1063 Password: ********
1064 @end example
1065
1066 @end table
1067
1068 @item screendump @var{filename}
1069 Save screen into PPM image @var{filename}.
1070
1071 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1072 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1073 with optional scroll axis @var{dz}.
1074
1075 @item mouse_button @var{val}
1076 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1077
1078 @item mouse_set @var{index}
1079 Set which mouse device receives events at given @var{index}, index
1080 can be obtained with
1081 @example
1082 info mice
1083 @end example
1084
1085 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1086 Capture audio into @var{filename}. Using sample rate @var{frequency}
1087 bits per sample @var{bits} and number of channels @var{channels}.
1088
1089 Defaults:
1090 @itemize @minus
1091 @item Sample rate = 44100 Hz - CD quality
1092 @item Bits = 16
1093 @item Number of channels = 2 - Stereo
1094 @end itemize
1095
1096 @item stopcapture @var{index}
1097 Stop capture with a given @var{index}, index can be obtained with
1098 @example
1099 info capture
1100 @end example
1101
1102 @item log @var{item1}[,...]
1103 Activate logging of the specified items to @file{/tmp/qemu.log}.
1104
1105 @item savevm [@var{tag}|@var{id}]
1106 Create a snapshot of the whole virtual machine. If @var{tag} is
1107 provided, it is used as human readable identifier. If there is already
1108 a snapshot with the same tag or ID, it is replaced. More info at
1109 @ref{vm_snapshots}.
1110
1111 @item loadvm @var{tag}|@var{id}
1112 Set the whole virtual machine to the snapshot identified by the tag
1113 @var{tag} or the unique snapshot ID @var{id}.
1114
1115 @item delvm @var{tag}|@var{id}
1116 Delete the snapshot identified by @var{tag} or @var{id}.
1117
1118 @item stop
1119 Stop emulation.
1120
1121 @item c or cont
1122 Resume emulation.
1123
1124 @item gdbserver [@var{port}]
1125 Start gdbserver session (default @var{port}=1234)
1126
1127 @item x/fmt @var{addr}
1128 Virtual memory dump starting at @var{addr}.
1129
1130 @item xp /@var{fmt} @var{addr}
1131 Physical memory dump starting at @var{addr}.
1132
1133 @var{fmt} is a format which tells the command how to format the
1134 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1135
1136 @table @var
1137 @item count
1138 is the number of items to be dumped.
1139
1140 @item format
1141 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1142 c (char) or i (asm instruction).
1143
1144 @item size
1145 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1146 @code{h} or @code{w} can be specified with the @code{i} format to
1147 respectively select 16 or 32 bit code instruction size.
1148
1149 @end table
1150
1151 Examples:
1152 @itemize
1153 @item
1154 Dump 10 instructions at the current instruction pointer:
1155 @example
1156 (qemu) x/10i $eip
1157 0x90107063:  ret
1158 0x90107064:  sti
1159 0x90107065:  lea    0x0(%esi,1),%esi
1160 0x90107069:  lea    0x0(%edi,1),%edi
1161 0x90107070:  ret
1162 0x90107071:  jmp    0x90107080
1163 0x90107073:  nop
1164 0x90107074:  nop
1165 0x90107075:  nop
1166 0x90107076:  nop
1167 @end example
1168
1169 @item
1170 Dump 80 16 bit values at the start of the video memory.
1171 @smallexample
1172 (qemu) xp/80hx 0xb8000
1173 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1174 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1175 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1176 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1177 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1178 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1179 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1180 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1181 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1182 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1183 @end smallexample
1184 @end itemize
1185
1186 @item p or print/@var{fmt} @var{expr}
1187
1188 Print expression value. Only the @var{format} part of @var{fmt} is
1189 used.
1190
1191 @item sendkey @var{keys}
1192
1193 Send @var{keys} to the emulator. Use @code{-} to press several keys
1194 simultaneously. Example:
1195 @example
1196 sendkey ctrl-alt-f1
1197 @end example
1198
1199 This command is useful to send keys that your graphical user interface
1200 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1201
1202 @item system_reset
1203
1204 Reset the system.
1205
1206 @item usb_add @var{devname}
1207
1208 Add the USB device @var{devname}.  For details of available devices see
1209 @ref{usb_devices}
1210
1211 @item usb_del @var{devname}
1212
1213 Remove the USB device @var{devname} from the QEMU virtual USB
1214 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1215 command @code{info usb} to see the devices you can remove.
1216
1217 @end table
1218
1219 @subsection Integer expressions
1220
1221 The monitor understands integers expressions for every integer
1222 argument. You can use register names to get the value of specifics
1223 CPU registers by prefixing them with @emph{$}.
1224
1225 @node disk_images
1226 @section Disk Images
1227
1228 Since version 0.6.1, QEMU supports many disk image formats, including
1229 growable disk images (their size increase as non empty sectors are
1230 written), compressed and encrypted disk images. Version 0.8.3 added
1231 the new qcow2 disk image format which is essential to support VM
1232 snapshots.
1233
1234 @menu
1235 * disk_images_quickstart::    Quick start for disk image creation
1236 * disk_images_snapshot_mode:: Snapshot mode
1237 * vm_snapshots::              VM snapshots
1238 * qemu_img_invocation::       qemu-img Invocation
1239 * host_drives::               Using host drives
1240 * disk_images_fat_images::    Virtual FAT disk images
1241 @end menu
1242
1243 @node disk_images_quickstart
1244 @subsection Quick start for disk image creation
1245
1246 You can create a disk image with the command:
1247 @example
1248 qemu-img create myimage.img mysize
1249 @end example
1250 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1251 size in kilobytes. You can add an @code{M} suffix to give the size in
1252 megabytes and a @code{G} suffix for gigabytes.
1253
1254 See @ref{qemu_img_invocation} for more information.
1255
1256 @node disk_images_snapshot_mode
1257 @subsection Snapshot mode
1258
1259 If you use the option @option{-snapshot}, all disk images are
1260 considered as read only. When sectors in written, they are written in
1261 a temporary file created in @file{/tmp}. You can however force the
1262 write back to the raw disk images by using the @code{commit} monitor
1263 command (or @key{C-a s} in the serial console).
1264
1265 @node vm_snapshots
1266 @subsection VM snapshots
1267
1268 VM snapshots are snapshots of the complete virtual machine including
1269 CPU state, RAM, device state and the content of all the writable
1270 disks. In order to use VM snapshots, you must have at least one non
1271 removable and writable block device using the @code{qcow2} disk image
1272 format. Normally this device is the first virtual hard drive.
1273
1274 Use the monitor command @code{savevm} to create a new VM snapshot or
1275 replace an existing one. A human readable name can be assigned to each
1276 snapshot in addition to its numerical ID.
1277
1278 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1279 a VM snapshot. @code{info snapshots} lists the available snapshots
1280 with their associated information:
1281
1282 @example
1283 (qemu) info snapshots
1284 Snapshot devices: hda
1285 Snapshot list (from hda):
1286 ID        TAG                 VM SIZE                DATE       VM CLOCK
1287 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1288 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1289 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1290 @end example
1291
1292 A VM snapshot is made of a VM state info (its size is shown in
1293 @code{info snapshots}) and a snapshot of every writable disk image.
1294 The VM state info is stored in the first @code{qcow2} non removable
1295 and writable block device. The disk image snapshots are stored in
1296 every disk image. The size of a snapshot in a disk image is difficult
1297 to evaluate and is not shown by @code{info snapshots} because the
1298 associated disk sectors are shared among all the snapshots to save
1299 disk space (otherwise each snapshot would need a full copy of all the
1300 disk images).
1301
1302 When using the (unrelated) @code{-snapshot} option
1303 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1304 but they are deleted as soon as you exit QEMU.
1305
1306 VM snapshots currently have the following known limitations:
1307 @itemize
1308 @item
1309 They cannot cope with removable devices if they are removed or
1310 inserted after a snapshot is done.
1311 @item
1312 A few device drivers still have incomplete snapshot support so their
1313 state is not saved or restored properly (in particular USB).
1314 @end itemize
1315
1316 @node qemu_img_invocation
1317 @subsection @code{qemu-img} Invocation
1318
1319 @include qemu-img.texi
1320
1321 @node host_drives
1322 @subsection Using host drives
1323
1324 In addition to disk image files, QEMU can directly access host
1325 devices. We describe here the usage for QEMU version >= 0.8.3.
1326
1327 @subsubsection Linux
1328
1329 On Linux, you can directly use the host device filename instead of a
1330 disk image filename provided you have enough privileges to access
1331 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1332 @file{/dev/fd0} for the floppy.
1333
1334 @table @code
1335 @item CD
1336 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1337 specific code to detect CDROM insertion or removal. CDROM ejection by
1338 the guest OS is supported. Currently only data CDs are supported.
1339 @item Floppy
1340 You can specify a floppy device even if no floppy is loaded. Floppy
1341 removal is currently not detected accurately (if you change floppy
1342 without doing floppy access while the floppy is not loaded, the guest
1343 OS will think that the same floppy is loaded).
1344 @item Hard disks
1345 Hard disks can be used. Normally you must specify the whole disk
1346 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1347 see it as a partitioned disk. WARNING: unless you know what you do, it
1348 is better to only make READ-ONLY accesses to the hard disk otherwise
1349 you may corrupt your host data (use the @option{-snapshot} command
1350 line option or modify the device permissions accordingly).
1351 @end table
1352
1353 @subsubsection Windows
1354
1355 @table @code
1356 @item CD
1357 The preferred syntax is the drive letter (e.g. @file{d:}). The
1358 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1359 supported as an alias to the first CDROM drive.
1360
1361 Currently there is no specific code to handle removable media, so it
1362 is better to use the @code{change} or @code{eject} monitor commands to
1363 change or eject media.
1364 @item Hard disks
1365 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1366 where @var{N} is the drive number (0 is the first hard disk).
1367
1368 WARNING: unless you know what you do, it is better to only make
1369 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1370 host data (use the @option{-snapshot} command line so that the
1371 modifications are written in a temporary file).
1372 @end table
1373
1374
1375 @subsubsection Mac OS X
1376
1377 @file{/dev/cdrom} is an alias to the first CDROM.
1378
1379 Currently there is no specific code to handle removable media, so it
1380 is better to use the @code{change} or @code{eject} monitor commands to
1381 change or eject media.
1382
1383 @node disk_images_fat_images
1384 @subsection Virtual FAT disk images
1385
1386 QEMU can automatically create a virtual FAT disk image from a
1387 directory tree. In order to use it, just type:
1388
1389 @example
1390 qemu linux.img -hdb fat:/my_directory
1391 @end example
1392
1393 Then you access access to all the files in the @file{/my_directory}
1394 directory without having to copy them in a disk image or to export
1395 them via SAMBA or NFS. The default access is @emph{read-only}.
1396
1397 Floppies can be emulated with the @code{:floppy:} option:
1398
1399 @example
1400 qemu linux.img -fda fat:floppy:/my_directory
1401 @end example
1402
1403 A read/write support is available for testing (beta stage) with the
1404 @code{:rw:} option:
1405
1406 @example
1407 qemu linux.img -fda fat:floppy:rw:/my_directory
1408 @end example
1409
1410 What you should @emph{never} do:
1411 @itemize
1412 @item use non-ASCII filenames ;
1413 @item use "-snapshot" together with ":rw:" ;
1414 @item expect it to work when loadvm'ing ;
1415 @item write to the FAT directory on the host system while accessing it with the guest system.
1416 @end itemize
1417
1418 @node pcsys_network
1419 @section Network emulation
1420
1421 QEMU can simulate several network cards (PCI or ISA cards on the PC
1422 target) and can connect them to an arbitrary number of Virtual Local
1423 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1424 VLAN. VLAN can be connected between separate instances of QEMU to
1425 simulate large networks. For simpler usage, a non privileged user mode
1426 network stack can replace the TAP device to have a basic network
1427 connection.
1428
1429 @subsection VLANs
1430
1431 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1432 connection between several network devices. These devices can be for
1433 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1434 (TAP devices).
1435
1436 @subsection Using TAP network interfaces
1437
1438 This is the standard way to connect QEMU to a real network. QEMU adds
1439 a virtual network device on your host (called @code{tapN}), and you
1440 can then configure it as if it was a real ethernet card.
1441
1442 @subsubsection Linux host
1443
1444 As an example, you can download the @file{linux-test-xxx.tar.gz}
1445 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1446 configure properly @code{sudo} so that the command @code{ifconfig}
1447 contained in @file{qemu-ifup} can be executed as root. You must verify
1448 that your host kernel supports the TAP network interfaces: the
1449 device @file{/dev/net/tun} must be present.
1450
1451 See @ref{sec_invocation} to have examples of command lines using the
1452 TAP network interfaces.
1453
1454 @subsubsection Windows host
1455
1456 There is a virtual ethernet driver for Windows 2000/XP systems, called
1457 TAP-Win32. But it is not included in standard QEMU for Windows,
1458 so you will need to get it separately. It is part of OpenVPN package,
1459 so download OpenVPN from : @url{http://openvpn.net/}.
1460
1461 @subsection Using the user mode network stack
1462
1463 By using the option @option{-net user} (default configuration if no
1464 @option{-net} option is specified), QEMU uses a completely user mode
1465 network stack (you don't need root privilege to use the virtual
1466 network). The virtual network configuration is the following:
1467
1468 @example
1469
1470          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1471                            |          (10.0.2.2)
1472                            |
1473                            ---->  DNS server (10.0.2.3)
1474                            |
1475                            ---->  SMB server (10.0.2.4)
1476 @end example
1477
1478 The QEMU VM behaves as if it was behind a firewall which blocks all
1479 incoming connections. You can use a DHCP client to automatically
1480 configure the network in the QEMU VM. The DHCP server assign addresses
1481 to the hosts starting from 10.0.2.15.
1482
1483 In order to check that the user mode network is working, you can ping
1484 the address 10.0.2.2 and verify that you got an address in the range
1485 10.0.2.x from the QEMU virtual DHCP server.
1486
1487 Note that @code{ping} is not supported reliably to the internet as it
1488 would require root privileges. It means you can only ping the local
1489 router (10.0.2.2).
1490
1491 When using the built-in TFTP server, the router is also the TFTP
1492 server.
1493
1494 When using the @option{-redir} option, TCP or UDP connections can be
1495 redirected from the host to the guest. It allows for example to
1496 redirect X11, telnet or SSH connections.
1497
1498 @subsection Connecting VLANs between QEMU instances
1499
1500 Using the @option{-net socket} option, it is possible to make VLANs
1501 that span several QEMU instances. See @ref{sec_invocation} to have a
1502 basic example.
1503
1504 @node direct_linux_boot
1505 @section Direct Linux Boot
1506
1507 This section explains how to launch a Linux kernel inside QEMU without
1508 having to make a full bootable image. It is very useful for fast Linux
1509 kernel testing.
1510
1511 The syntax is:
1512 @example
1513 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1514 @end example
1515
1516 Use @option{-kernel} to provide the Linux kernel image and
1517 @option{-append} to give the kernel command line arguments. The
1518 @option{-initrd} option can be used to provide an INITRD image.
1519
1520 When using the direct Linux boot, a disk image for the first hard disk
1521 @file{hda} is required because its boot sector is used to launch the
1522 Linux kernel.
1523
1524 If you do not need graphical output, you can disable it and redirect
1525 the virtual serial port and the QEMU monitor to the console with the
1526 @option{-nographic} option. The typical command line is:
1527 @example
1528 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1529      -append "root=/dev/hda console=ttyS0" -nographic
1530 @end example
1531
1532 Use @key{Ctrl-a c} to switch between the serial console and the
1533 monitor (@pxref{pcsys_keys}).
1534
1535 @node pcsys_usb
1536 @section USB emulation
1537
1538 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1539 virtual USB devices or real host USB devices (experimental, works only
1540 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1541 as necessary to connect multiple USB devices.
1542
1543 @menu
1544 * usb_devices::
1545 * host_usb_devices::
1546 @end menu
1547 @node usb_devices
1548 @subsection Connecting USB devices
1549
1550 USB devices can be connected with the @option{-usbdevice} commandline option
1551 or the @code{usb_add} monitor command.  Available devices are:
1552
1553 @table @var
1554 @item @code{mouse}
1555 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1556 @item @code{tablet}
1557 Pointer device that uses absolute coordinates (like a touchscreen).
1558 This means qemu is able to report the mouse position without having
1559 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1560 @item @code{disk:@var{file}}
1561 Mass storage device based on @var{file} (@pxref{disk_images})
1562 @item @code{host:@var{bus.addr}}
1563 Pass through the host device identified by @var{bus.addr}
1564 (Linux only)
1565 @item @code{host:@var{vendor_id:product_id}}
1566 Pass through the host device identified by @var{vendor_id:product_id}
1567 (Linux only)
1568 @item @code{wacom-tablet}
1569 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1570 above but it can be used with the tslib library because in addition to touch
1571 coordinates it reports touch pressure.
1572 @item @code{keyboard}
1573 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1574 @end table
1575
1576 @node host_usb_devices
1577 @subsection Using host USB devices on a Linux host
1578
1579 WARNING: this is an experimental feature. QEMU will slow down when
1580 using it. USB devices requiring real time streaming (i.e. USB Video
1581 Cameras) are not supported yet.
1582
1583 @enumerate
1584 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1585 is actually using the USB device. A simple way to do that is simply to
1586 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1587 to @file{mydriver.o.disabled}.
1588
1589 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1590 @example
1591 ls /proc/bus/usb
1592 001  devices  drivers
1593 @end example
1594
1595 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1596 @example
1597 chown -R myuid /proc/bus/usb
1598 @end example
1599
1600 @item Launch QEMU and do in the monitor:
1601 @example
1602 info usbhost
1603   Device 1.2, speed 480 Mb/s
1604     Class 00: USB device 1234:5678, USB DISK
1605 @end example
1606 You should see the list of the devices you can use (Never try to use
1607 hubs, it won't work).
1608
1609 @item Add the device in QEMU by using:
1610 @example
1611 usb_add host:1234:5678
1612 @end example
1613
1614 Normally the guest OS should report that a new USB device is
1615 plugged. You can use the option @option{-usbdevice} to do the same.
1616
1617 @item Now you can try to use the host USB device in QEMU.
1618
1619 @end enumerate
1620
1621 When relaunching QEMU, you may have to unplug and plug again the USB
1622 device to make it work again (this is a bug).
1623
1624 @node vnc_security
1625 @section VNC security
1626
1627 The VNC server capability provides access to the graphical console
1628 of the guest VM across the network. This has a number of security
1629 considerations depending on the deployment scenarios.
1630
1631 @menu
1632 * vnc_sec_none::
1633 * vnc_sec_password::
1634 * vnc_sec_certificate::
1635 * vnc_sec_certificate_verify::
1636 * vnc_sec_certificate_pw::
1637 * vnc_generate_cert::
1638 @end menu
1639 @node vnc_sec_none
1640 @subsection Without passwords
1641
1642 The simplest VNC server setup does not include any form of authentication.
1643 For this setup it is recommended to restrict it to listen on a UNIX domain
1644 socket only. For example
1645
1646 @example
1647 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1648 @end example
1649
1650 This ensures that only users on local box with read/write access to that
1651 path can access the VNC server. To securely access the VNC server from a
1652 remote machine, a combination of netcat+ssh can be used to provide a secure
1653 tunnel.
1654
1655 @node vnc_sec_password
1656 @subsection With passwords
1657
1658 The VNC protocol has limited support for password based authentication. Since
1659 the protocol limits passwords to 8 characters it should not be considered
1660 to provide high security. The password can be fairly easily brute-forced by
1661 a client making repeat connections. For this reason, a VNC server using password
1662 authentication should be restricted to only listen on the loopback interface
1663 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1664 option, and then once QEMU is running the password is set with the monitor. Until
1665 the monitor is used to set the password all clients will be rejected.
1666
1667 @example
1668 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1669 (qemu) change vnc password
1670 Password: ********
1671 (qemu)
1672 @end example
1673
1674 @node vnc_sec_certificate
1675 @subsection With x509 certificates
1676
1677 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1678 TLS for encryption of the session, and x509 certificates for authentication.
1679 The use of x509 certificates is strongly recommended, because TLS on its
1680 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1681 support provides a secure session, but no authentication. This allows any
1682 client to connect, and provides an encrypted session.
1683
1684 @example
1685 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1686 @end example
1687
1688 In the above example @code{/etc/pki/qemu} should contain at least three files,
1689 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1690 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1691 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1692 only be readable by the user owning it.
1693
1694 @node vnc_sec_certificate_verify
1695 @subsection With x509 certificates and client verification
1696
1697 Certificates can also provide a means to authenticate the client connecting.
1698 The server will request that the client provide a certificate, which it will
1699 then validate against the CA certificate. This is a good choice if deploying
1700 in an environment with a private internal certificate authority.
1701
1702 @example
1703 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1704 @end example
1705
1706
1707 @node vnc_sec_certificate_pw
1708 @subsection With x509 certificates, client verification and passwords
1709
1710 Finally, the previous method can be combined with VNC password authentication
1711 to provide two layers of authentication for clients.
1712
1713 @example
1714 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1715 (qemu) change vnc password
1716 Password: ********
1717 (qemu)
1718 @end example
1719
1720 @node vnc_generate_cert
1721 @subsection Generating certificates for VNC
1722
1723 The GNU TLS packages provides a command called @code{certtool} which can
1724 be used to generate certificates and keys in PEM format. At a minimum it
1725 is neccessary to setup a certificate authority, and issue certificates to
1726 each server. If using certificates for authentication, then each client
1727 will also need to be issued a certificate. The recommendation is for the
1728 server to keep its certificates in either @code{/etc/pki/qemu} or for
1729 unprivileged users in @code{$HOME/.pki/qemu}.
1730
1731 @menu
1732 * vnc_generate_ca::
1733 * vnc_generate_server::
1734 * vnc_generate_client::
1735 @end menu
1736 @node vnc_generate_ca
1737 @subsubsection Setup the Certificate Authority
1738
1739 This step only needs to be performed once per organization / organizational
1740 unit. First the CA needs a private key. This key must be kept VERY secret
1741 and secure. If this key is compromised the entire trust chain of the certificates
1742 issued with it is lost.
1743
1744 @example
1745 # certtool --generate-privkey > ca-key.pem
1746 @end example
1747
1748 A CA needs to have a public certificate. For simplicity it can be a self-signed
1749 certificate, or one issue by a commercial certificate issuing authority. To
1750 generate a self-signed certificate requires one core piece of information, the
1751 name of the organization.
1752
1753 @example
1754 # cat > ca.info <<EOF
1755 cn = Name of your organization
1756 ca
1757 cert_signing_key
1758 EOF
1759 # certtool --generate-self-signed \
1760            --load-privkey ca-key.pem
1761            --template ca.info \
1762            --outfile ca-cert.pem
1763 @end example
1764
1765 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1766 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1767
1768 @node vnc_generate_server
1769 @subsubsection Issuing server certificates
1770
1771 Each server (or host) needs to be issued with a key and certificate. When connecting
1772 the certificate is sent to the client which validates it against the CA certificate.
1773 The core piece of information for a server certificate is the hostname. This should
1774 be the fully qualified hostname that the client will connect with, since the client
1775 will typically also verify the hostname in the certificate. On the host holding the
1776 secure CA private key:
1777
1778 @example
1779 # cat > server.info <<EOF
1780 organization = Name  of your organization
1781 cn = server.foo.example.com
1782 tls_www_server
1783 encryption_key
1784 signing_key
1785 EOF
1786 # certtool --generate-privkey > server-key.pem
1787 # certtool --generate-certificate \
1788            --load-ca-certificate ca-cert.pem \
1789            --load-ca-privkey ca-key.pem \
1790            --load-privkey server server-key.pem \
1791            --template server.info \
1792            --outfile server-cert.pem
1793 @end example
1794
1795 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1796 to the server for which they were generated. The @code{server-key.pem} is security
1797 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1798
1799 @node vnc_generate_client
1800 @subsubsection Issuing client certificates
1801
1802 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1803 certificates as its authentication mechanism, each client also needs to be issued
1804 a certificate. The client certificate contains enough metadata to uniquely identify
1805 the client, typically organization, state, city, building, etc. On the host holding
1806 the secure CA private key:
1807
1808 @example
1809 # cat > client.info <<EOF
1810 country = GB
1811 state = London
1812 locality = London
1813 organiazation = Name of your organization
1814 cn = client.foo.example.com
1815 tls_www_client
1816 encryption_key
1817 signing_key
1818 EOF
1819 # certtool --generate-privkey > client-key.pem
1820 # certtool --generate-certificate \
1821            --load-ca-certificate ca-cert.pem \
1822            --load-ca-privkey ca-key.pem \
1823            --load-privkey client-key.pem \
1824            --template client.info \
1825            --outfile client-cert.pem
1826 @end example
1827
1828 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1829 copied to the client for which they were generated.
1830
1831 @node gdb_usage
1832 @section GDB usage
1833
1834 QEMU has a primitive support to work with gdb, so that you can do
1835 'Ctrl-C' while the virtual machine is running and inspect its state.
1836
1837 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1838 gdb connection:
1839 @example
1840 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1841        -append "root=/dev/hda"
1842 Connected to host network interface: tun0
1843 Waiting gdb connection on port 1234
1844 @end example
1845
1846 Then launch gdb on the 'vmlinux' executable:
1847 @example
1848 > gdb vmlinux
1849 @end example
1850
1851 In gdb, connect to QEMU:
1852 @example
1853 (gdb) target remote localhost:1234
1854 @end example
1855
1856 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1857 @example
1858 (gdb) c
1859 @end example
1860
1861 Here are some useful tips in order to use gdb on system code:
1862
1863 @enumerate
1864 @item
1865 Use @code{info reg} to display all the CPU registers.
1866 @item
1867 Use @code{x/10i $eip} to display the code at the PC position.
1868 @item
1869 Use @code{set architecture i8086} to dump 16 bit code. Then use
1870 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1871 @end enumerate
1872
1873 @node pcsys_os_specific
1874 @section Target OS specific information
1875
1876 @subsection Linux
1877
1878 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1879 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1880 color depth in the guest and the host OS.
1881
1882 When using a 2.6 guest Linux kernel, you should add the option
1883 @code{clock=pit} on the kernel command line because the 2.6 Linux
1884 kernels make very strict real time clock checks by default that QEMU
1885 cannot simulate exactly.
1886
1887 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1888 not activated because QEMU is slower with this patch. The QEMU
1889 Accelerator Module is also much slower in this case. Earlier Fedora
1890 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1891 patch by default. Newer kernels don't have it.
1892
1893 @subsection Windows
1894
1895 If you have a slow host, using Windows 95 is better as it gives the
1896 best speed. Windows 2000 is also a good choice.
1897
1898 @subsubsection SVGA graphic modes support
1899
1900 QEMU emulates a Cirrus Logic GD5446 Video
1901 card. All Windows versions starting from Windows 95 should recognize
1902 and use this graphic card. For optimal performances, use 16 bit color
1903 depth in the guest and the host OS.
1904
1905 If you are using Windows XP as guest OS and if you want to use high
1906 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1907 1280x1024x16), then you should use the VESA VBE virtual graphic card
1908 (option @option{-std-vga}).
1909
1910 @subsubsection CPU usage reduction
1911
1912 Windows 9x does not correctly use the CPU HLT
1913 instruction. The result is that it takes host CPU cycles even when
1914 idle. You can install the utility from
1915 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1916 problem. Note that no such tool is needed for NT, 2000 or XP.
1917
1918 @subsubsection Windows 2000 disk full problem
1919
1920 Windows 2000 has a bug which gives a disk full problem during its
1921 installation. When installing it, use the @option{-win2k-hack} QEMU
1922 option to enable a specific workaround. After Windows 2000 is
1923 installed, you no longer need this option (this option slows down the
1924 IDE transfers).
1925
1926 @subsubsection Windows 2000 shutdown
1927
1928 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1929 can. It comes from the fact that Windows 2000 does not automatically
1930 use the APM driver provided by the BIOS.
1931
1932 In order to correct that, do the following (thanks to Struan
1933 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1934 Add/Troubleshoot a device => Add a new device & Next => No, select the
1935 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1936 (again) a few times. Now the driver is installed and Windows 2000 now
1937 correctly instructs QEMU to shutdown at the appropriate moment.
1938
1939 @subsubsection Share a directory between Unix and Windows
1940
1941 See @ref{sec_invocation} about the help of the option @option{-smb}.
1942
1943 @subsubsection Windows XP security problem
1944
1945 Some releases of Windows XP install correctly but give a security
1946 error when booting:
1947 @example
1948 A problem is preventing Windows from accurately checking the
1949 license for this computer. Error code: 0x800703e6.
1950 @end example
1951
1952 The workaround is to install a service pack for XP after a boot in safe
1953 mode. Then reboot, and the problem should go away. Since there is no
1954 network while in safe mode, its recommended to download the full
1955 installation of SP1 or SP2 and transfer that via an ISO or using the
1956 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1957
1958 @subsection MS-DOS and FreeDOS
1959
1960 @subsubsection CPU usage reduction
1961
1962 DOS does not correctly use the CPU HLT instruction. The result is that
1963 it takes host CPU cycles even when idle. You can install the utility
1964 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1965 problem.
1966
1967 @node QEMU System emulator for non PC targets
1968 @chapter QEMU System emulator for non PC targets
1969
1970 QEMU is a generic emulator and it emulates many non PC
1971 machines. Most of the options are similar to the PC emulator. The
1972 differences are mentioned in the following sections.
1973
1974 @menu
1975 * QEMU PowerPC System emulator::
1976 * Sparc32 System emulator::
1977 * Sparc64 System emulator::
1978 * MIPS System emulator::
1979 * ARM System emulator::
1980 * ColdFire System emulator::
1981 @end menu
1982
1983 @node QEMU PowerPC System emulator
1984 @section QEMU PowerPC System emulator
1985
1986 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1987 or PowerMac PowerPC system.
1988
1989 QEMU emulates the following PowerMac peripherals:
1990
1991 @itemize @minus
1992 @item
1993 UniNorth PCI Bridge
1994 @item
1995 PCI VGA compatible card with VESA Bochs Extensions
1996 @item
1997 2 PMAC IDE interfaces with hard disk and CD-ROM support
1998 @item
1999 NE2000 PCI adapters
2000 @item
2001 Non Volatile RAM
2002 @item
2003 VIA-CUDA with ADB keyboard and mouse.
2004 @end itemize
2005
2006 QEMU emulates the following PREP peripherals:
2007
2008 @itemize @minus
2009 @item
2010 PCI Bridge
2011 @item
2012 PCI VGA compatible card with VESA Bochs Extensions
2013 @item
2014 2 IDE interfaces with hard disk and CD-ROM support
2015 @item
2016 Floppy disk
2017 @item
2018 NE2000 network adapters
2019 @item
2020 Serial port
2021 @item
2022 PREP Non Volatile RAM
2023 @item
2024 PC compatible keyboard and mouse.
2025 @end itemize
2026
2027 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2028 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2029
2030 @c man begin OPTIONS
2031
2032 The following options are specific to the PowerPC emulation:
2033
2034 @table @option
2035
2036 @item -g WxH[xDEPTH]
2037
2038 Set the initial VGA graphic mode. The default is 800x600x15.
2039
2040 @end table
2041
2042 @c man end
2043
2044
2045 More information is available at
2046 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2047
2048 @node Sparc32 System emulator
2049 @section Sparc32 System emulator
2050
2051 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2052 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2053 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2054 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2055 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2056 of usable CPUs to 4.
2057
2058 QEMU emulates the following sun4m/sun4d peripherals:
2059
2060 @itemize @minus
2061 @item
2062 IOMMU or IO-UNITs
2063 @item
2064 TCX Frame buffer
2065 @item
2066 Lance (Am7990) Ethernet
2067 @item
2068 Non Volatile RAM M48T08
2069 @item
2070 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2071 and power/reset logic
2072 @item
2073 ESP SCSI controller with hard disk and CD-ROM support
2074 @item
2075 Floppy drive (not on SS-600MP)
2076 @item
2077 CS4231 sound device (only on SS-5, not working yet)
2078 @end itemize
2079
2080 The number of peripherals is fixed in the architecture.  Maximum
2081 memory size depends on the machine type, for SS-5 it is 256MB and for
2082 others 2047MB.
2083
2084 Since version 0.8.2, QEMU uses OpenBIOS
2085 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2086 firmware implementation. The goal is to implement a 100% IEEE
2087 1275-1994 (referred to as Open Firmware) compliant firmware.
2088
2089 A sample Linux 2.6 series kernel and ram disk image are available on
2090 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2091 Solaris kernels don't work.
2092
2093 @c man begin OPTIONS
2094
2095 The following options are specific to the Sparc32 emulation:
2096
2097 @table @option
2098
2099 @item -g WxHx[xDEPTH]
2100
2101 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2102 the only other possible mode is 1024x768x24.
2103
2104 @item -prom-env string
2105
2106 Set OpenBIOS variables in NVRAM, for example:
2107
2108 @example
2109 qemu-system-sparc -prom-env 'auto-boot?=false' \
2110  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2111 @end example
2112
2113 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2114
2115 Set the emulated machine type. Default is SS-5.
2116
2117 @end table
2118
2119 @c man end
2120
2121 @node Sparc64 System emulator
2122 @section Sparc64 System emulator
2123
2124 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2125 The emulator is not usable for anything yet.
2126
2127 QEMU emulates the following sun4u peripherals:
2128
2129 @itemize @minus
2130 @item
2131 UltraSparc IIi APB PCI Bridge
2132 @item
2133 PCI VGA compatible card with VESA Bochs Extensions
2134 @item
2135 Non Volatile RAM M48T59
2136 @item
2137 PC-compatible serial ports
2138 @end itemize
2139
2140 @node MIPS System emulator
2141 @section MIPS System emulator
2142
2143 Four executables cover simulation of 32 and 64-bit MIPS systems in
2144 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2145 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2146 Four different machine types are emulated:
2147
2148 @itemize @minus
2149 @item
2150 A generic ISA PC-like machine "mips"
2151 @item
2152 The MIPS Malta prototype board "malta"
2153 @item
2154 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2155 @item
2156 MIPS emulator pseudo board "mipssim"
2157 @end itemize
2158
2159 The generic emulation is supported by Debian 'Etch' and is able to
2160 install Debian into a virtual disk image. The following devices are
2161 emulated:
2162
2163 @itemize @minus
2164 @item
2165 A range of MIPS CPUs, default is the 24Kf
2166 @item
2167 PC style serial port
2168 @item
2169 PC style IDE disk
2170 @item
2171 NE2000 network card
2172 @end itemize
2173
2174 The Malta emulation supports the following devices:
2175
2176 @itemize @minus
2177 @item
2178 Core board with MIPS 24Kf CPU and Galileo system controller
2179 @item
2180 PIIX4 PCI/USB/SMbus controller
2181 @item
2182 The Multi-I/O chip's serial device
2183 @item
2184 PCnet32 PCI network card
2185 @item
2186 Malta FPGA serial device
2187 @item
2188 Cirrus VGA graphics card
2189 @end itemize
2190
2191 The ACER Pica emulation supports:
2192
2193 @itemize @minus
2194 @item
2195 MIPS R4000 CPU
2196 @item
2197 PC-style IRQ and DMA controllers
2198 @item
2199 PC Keyboard
2200 @item
2201 IDE controller
2202 @end itemize
2203
2204 The mipssim pseudo board emulation provides an environment similiar
2205 to what the proprietary MIPS emulator uses for running Linux.
2206 It supports:
2207
2208 @itemize @minus
2209 @item
2210 A range of MIPS CPUs, default is the 24Kf
2211 @item
2212 PC style serial port
2213 @item
2214 MIPSnet network emulation
2215 @end itemize
2216
2217 @node ARM System emulator
2218 @section ARM System emulator
2219
2220 Use the executable @file{qemu-system-arm} to simulate a ARM
2221 machine. The ARM Integrator/CP board is emulated with the following
2222 devices:
2223
2224 @itemize @minus
2225 @item
2226 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2227 @item
2228 Two PL011 UARTs
2229 @item
2230 SMC 91c111 Ethernet adapter
2231 @item
2232 PL110 LCD controller
2233 @item
2234 PL050 KMI with PS/2 keyboard and mouse.
2235 @item
2236 PL181 MultiMedia Card Interface with SD card.
2237 @end itemize
2238
2239 The ARM Versatile baseboard is emulated with the following devices:
2240
2241 @itemize @minus
2242 @item
2243 ARM926E, ARM1136 or Cortex-A8 CPU
2244 @item
2245 PL190 Vectored Interrupt Controller
2246 @item
2247 Four PL011 UARTs
2248 @item
2249 SMC 91c111 Ethernet adapter
2250 @item
2251 PL110 LCD controller
2252 @item
2253 PL050 KMI with PS/2 keyboard and mouse.
2254 @item
2255 PCI host bridge.  Note the emulated PCI bridge only provides access to
2256 PCI memory space.  It does not provide access to PCI IO space.
2257 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2258 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2259 mapped control registers.
2260 @item
2261 PCI OHCI USB controller.
2262 @item
2263 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2264 @item
2265 PL181 MultiMedia Card Interface with SD card.
2266 @end itemize
2267
2268 The ARM RealView Emulation baseboard is emulated with the following devices:
2269
2270 @itemize @minus
2271 @item
2272 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2273 @item
2274 ARM AMBA Generic/Distributed Interrupt Controller
2275 @item
2276 Four PL011 UARTs
2277 @item
2278 SMC 91c111 Ethernet adapter
2279 @item
2280 PL110 LCD controller
2281 @item
2282 PL050 KMI with PS/2 keyboard and mouse
2283 @item
2284 PCI host bridge
2285 @item
2286 PCI OHCI USB controller
2287 @item
2288 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2289 @item
2290 PL181 MultiMedia Card Interface with SD card.
2291 @end itemize
2292
2293 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2294 and "Terrier") emulation includes the following peripherals:
2295
2296 @itemize @minus
2297 @item
2298 Intel PXA270 System-on-chip (ARM V5TE core)
2299 @item
2300 NAND Flash memory
2301 @item
2302 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2303 @item
2304 On-chip OHCI USB controller
2305 @item
2306 On-chip LCD controller
2307 @item
2308 On-chip Real Time Clock
2309 @item
2310 TI ADS7846 touchscreen controller on SSP bus
2311 @item
2312 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2313 @item
2314 GPIO-connected keyboard controller and LEDs
2315 @item
2316 Secure Digital card connected to PXA MMC/SD host
2317 @item
2318 Three on-chip UARTs
2319 @item
2320 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2321 @end itemize
2322
2323 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2324 following elements:
2325
2326 @itemize @minus
2327 @item
2328 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2329 @item
2330 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2331 @item
2332 On-chip LCD controller
2333 @item
2334 On-chip Real Time Clock
2335 @item
2336 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2337 CODEC, connected through MicroWire and I@math{^2}S busses
2338 @item
2339 GPIO-connected matrix keypad
2340 @item
2341 Secure Digital card connected to OMAP MMC/SD host
2342 @item
2343 Three on-chip UARTs
2344 @end itemize
2345
2346 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2347 devices:
2348
2349 @itemize @minus
2350 @item
2351 Cortex-M3 CPU core.
2352 @item
2353 64k Flash and 8k SRAM.
2354 @item
2355 Timers, UARTs, ADC and I@math{^2}C interface.
2356 @item
2357 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2358 @end itemize
2359
2360 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2361 devices:
2362
2363 @itemize @minus
2364 @item
2365 Cortex-M3 CPU core.
2366 @item
2367 256k Flash and 64k SRAM.
2368 @item
2369 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2370 @item
2371 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2372 @end itemize
2373
2374 A Linux 2.6 test image is available on the QEMU web site. More
2375 information is available in the QEMU mailing-list archive.
2376
2377 @node ColdFire System emulator
2378 @section ColdFire System emulator
2379
2380 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2381 The emulator is able to boot a uClinux kernel.
2382
2383 The M5208EVB emulation includes the following devices:
2384
2385 @itemize @minus
2386 @item
2387 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2388 @item
2389 Three Two on-chip UARTs.
2390 @item
2391 Fast Ethernet Controller (FEC)
2392 @end itemize
2393
2394 The AN5206 emulation includes the following devices:
2395
2396 @itemize @minus
2397 @item
2398 MCF5206 ColdFire V2 Microprocessor.
2399 @item
2400 Two on-chip UARTs.
2401 @end itemize
2402
2403 @node QEMU User space emulator
2404 @chapter QEMU User space emulator
2405
2406 @menu
2407 * Supported Operating Systems ::
2408 * Linux User space emulator::
2409 * Mac OS X/Darwin User space emulator ::
2410 @end menu
2411
2412 @node Supported Operating Systems
2413 @section Supported Operating Systems
2414
2415 The following OS are supported in user space emulation:
2416
2417 @itemize @minus
2418 @item
2419 Linux (referred as qemu-linux-user)
2420 @item
2421 Mac OS X/Darwin (referred as qemu-darwin-user)
2422 @end itemize
2423
2424 @node Linux User space emulator
2425 @section Linux User space emulator
2426
2427 @menu
2428 * Quick Start::
2429 * Wine launch::
2430 * Command line options::
2431 * Other binaries::
2432 @end menu
2433
2434 @node Quick Start
2435 @subsection Quick Start
2436
2437 In order to launch a Linux process, QEMU needs the process executable
2438 itself and all the target (x86) dynamic libraries used by it.
2439
2440 @itemize
2441
2442 @item On x86, you can just try to launch any process by using the native
2443 libraries:
2444
2445 @example
2446 qemu-i386 -L / /bin/ls
2447 @end example
2448
2449 @code{-L /} tells that the x86 dynamic linker must be searched with a
2450 @file{/} prefix.
2451
2452 @item Since QEMU is also a linux process, you can launch qemu with
2453 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2454
2455 @example
2456 qemu-i386 -L / qemu-i386 -L / /bin/ls
2457 @end example
2458
2459 @item On non x86 CPUs, you need first to download at least an x86 glibc
2460 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2461 @code{LD_LIBRARY_PATH} is not set:
2462
2463 @example
2464 unset LD_LIBRARY_PATH
2465 @end example
2466
2467 Then you can launch the precompiled @file{ls} x86 executable:
2468
2469 @example
2470 qemu-i386 tests/i386/ls
2471 @end example
2472 You can look at @file{qemu-binfmt-conf.sh} so that
2473 QEMU is automatically launched by the Linux kernel when you try to
2474 launch x86 executables. It requires the @code{binfmt_misc} module in the
2475 Linux kernel.
2476
2477 @item The x86 version of QEMU is also included. You can try weird things such as:
2478 @example
2479 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2480           /usr/local/qemu-i386/bin/ls-i386
2481 @end example
2482
2483 @end itemize
2484
2485 @node Wine launch
2486 @subsection Wine launch
2487
2488 @itemize
2489
2490 @item Ensure that you have a working QEMU with the x86 glibc
2491 distribution (see previous section). In order to verify it, you must be
2492 able to do:
2493
2494 @example
2495 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2496 @end example
2497
2498 @item Download the binary x86 Wine install
2499 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2500
2501 @item Configure Wine on your account. Look at the provided script
2502 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2503 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2504
2505 @item Then you can try the example @file{putty.exe}:
2506
2507 @example
2508 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2509           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2510 @end example
2511
2512 @end itemize
2513
2514 @node Command line options
2515 @subsection Command line options
2516
2517 @example
2518 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2519 @end example
2520
2521 @table @option
2522 @item -h
2523 Print the help
2524 @item -L path
2525 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2526 @item -s size
2527 Set the x86 stack size in bytes (default=524288)
2528 @end table
2529
2530 Debug options:
2531
2532 @table @option
2533 @item -d
2534 Activate log (logfile=/tmp/qemu.log)
2535 @item -p pagesize
2536 Act as if the host page size was 'pagesize' bytes
2537 @end table
2538
2539 Environment variables:
2540
2541 @table @env
2542 @item QEMU_STRACE
2543 Print system calls and arguments similar to the 'strace' program
2544 (NOTE: the actual 'strace' program will not work because the user
2545 space emulator hasn't implemented ptrace).  At the moment this is
2546 incomplete.  All system calls that don't have a specific argument
2547 format are printed with information for six arguments.  Many
2548 flag-style arguments don't have decoders and will show up as numbers.
2549 @end table
2550
2551 @node Other binaries
2552 @subsection Other binaries
2553
2554 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2555 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2556 configurations), and arm-uclinux bFLT format binaries.
2557
2558 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2559 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2560 coldfire uClinux bFLT format binaries.
2561
2562 The binary format is detected automatically.
2563
2564 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2565 (Sparc64 CPU, 32 bit ABI).
2566
2567 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2568 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2569
2570 @node Mac OS X/Darwin User space emulator
2571 @section Mac OS X/Darwin User space emulator
2572
2573 @menu
2574 * Mac OS X/Darwin Status::
2575 * Mac OS X/Darwin Quick Start::
2576 * Mac OS X/Darwin Command line options::
2577 @end menu
2578
2579 @node Mac OS X/Darwin Status
2580 @subsection Mac OS X/Darwin Status
2581
2582 @itemize @minus
2583 @item
2584 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2585 @item
2586 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2587 @item
2588 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2589 @item
2590 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2591 @end itemize
2592
2593 [1] If you're host commpage can be executed by qemu.
2594
2595 @node Mac OS X/Darwin Quick Start
2596 @subsection Quick Start
2597
2598 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2599 itself and all the target dynamic libraries used by it. If you don't have the FAT
2600 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2601 CD or compile them by hand.
2602
2603 @itemize
2604
2605 @item On x86, you can just try to launch any process by using the native
2606 libraries:
2607
2608 @example
2609 qemu-i386 /bin/ls
2610 @end example
2611
2612 or to run the ppc version of the executable:
2613
2614 @example
2615 qemu-ppc /bin/ls
2616 @end example
2617
2618 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2619 are installed:
2620
2621 @example
2622 qemu-i386 -L /opt/x86_root/ /bin/ls
2623 @end example
2624
2625 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2626 @file{/opt/x86_root/usr/bin/dyld}.
2627
2628 @end itemize
2629
2630 @node Mac OS X/Darwin Command line options
2631 @subsection Command line options
2632
2633 @example
2634 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2635 @end example
2636
2637 @table @option
2638 @item -h
2639 Print the help
2640 @item -L path
2641 Set the library root path (default=/)
2642 @item -s size
2643 Set the stack size in bytes (default=524288)
2644 @end table
2645
2646 Debug options:
2647
2648 @table @option
2649 @item -d
2650 Activate log (logfile=/tmp/qemu.log)
2651 @item -p pagesize
2652 Act as if the host page size was 'pagesize' bytes
2653 @end table
2654
2655 @node compilation
2656 @chapter Compilation from the sources
2657
2658 @menu
2659 * Linux/Unix::
2660 * Windows::
2661 * Cross compilation for Windows with Linux::
2662 * Mac OS X::
2663 @end menu
2664
2665 @node Linux/Unix
2666 @section Linux/Unix
2667
2668 @subsection Compilation
2669
2670 First you must decompress the sources:
2671 @example
2672 cd /tmp
2673 tar zxvf qemu-x.y.z.tar.gz
2674 cd qemu-x.y.z
2675 @end example
2676
2677 Then you configure QEMU and build it (usually no options are needed):
2678 @example
2679 ./configure
2680 make
2681 @end example
2682
2683 Then type as root user:
2684 @example
2685 make install
2686 @end example
2687 to install QEMU in @file{/usr/local}.
2688
2689 @subsection GCC version
2690
2691 In order to compile QEMU successfully, it is very important that you
2692 have the right tools. The most important one is gcc. On most hosts and
2693 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2694 Linux distribution includes a gcc 4.x compiler, you can usually
2695 install an older version (it is invoked by @code{gcc32} or
2696 @code{gcc34}). The QEMU configure script automatically probes for
2697 these older versions so that usually you don't have to do anything.
2698
2699 @node Windows
2700 @section Windows
2701
2702 @itemize
2703 @item Install the current versions of MSYS and MinGW from
2704 @url{http://www.mingw.org/}. You can find detailed installation
2705 instructions in the download section and the FAQ.
2706
2707 @item Download
2708 the MinGW development library of SDL 1.2.x
2709 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2710 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2711 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2712 directory. Edit the @file{sdl-config} script so that it gives the
2713 correct SDL directory when invoked.
2714
2715 @item Extract the current version of QEMU.
2716
2717 @item Start the MSYS shell (file @file{msys.bat}).
2718
2719 @item Change to the QEMU directory. Launch @file{./configure} and
2720 @file{make}.  If you have problems using SDL, verify that
2721 @file{sdl-config} can be launched from the MSYS command line.
2722
2723 @item You can install QEMU in @file{Program Files/Qemu} by typing
2724 @file{make install}. Don't forget to copy @file{SDL.dll} in
2725 @file{Program Files/Qemu}.
2726
2727 @end itemize
2728
2729 @node Cross compilation for Windows with Linux
2730 @section Cross compilation for Windows with Linux
2731
2732 @itemize
2733 @item
2734 Install the MinGW cross compilation tools available at
2735 @url{http://www.mingw.org/}.
2736
2737 @item
2738 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2739 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2740 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2741 the QEMU configuration script.
2742
2743 @item
2744 Configure QEMU for Windows cross compilation:
2745 @example
2746 ./configure --enable-mingw32
2747 @end example
2748 If necessary, you can change the cross-prefix according to the prefix
2749 chosen for the MinGW tools with --cross-prefix. You can also use
2750 --prefix to set the Win32 install path.
2751
2752 @item You can install QEMU in the installation directory by typing
2753 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2754 installation directory.
2755
2756 @end itemize
2757
2758 Note: Currently, Wine does not seem able to launch
2759 QEMU for Win32.
2760
2761 @node Mac OS X
2762 @section Mac OS X
2763
2764 The Mac OS X patches are not fully merged in QEMU, so you should look
2765 at the QEMU mailing list archive to have all the necessary
2766 information.
2767
2768 @node Index
2769 @chapter Index
2770 @printindex cp
2771
2772 @bye