Documentation for MIPS Magnum R4000 machine.
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @end itemize
91
92 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
93
94 @node Installation
95 @chapter Installation
96
97 If you want to compile QEMU yourself, see @ref{compilation}.
98
99 @menu
100 * install_linux::   Linux
101 * install_windows:: Windows
102 * install_mac::     Macintosh
103 @end menu
104
105 @node install_linux
106 @section Linux
107
108 If a precompiled package is available for your distribution - you just
109 have to install it. Otherwise, see @ref{compilation}.
110
111 @node install_windows
112 @section Windows
113
114 Download the experimental binary installer at
115 @url{http://www.free.oszoo.org/@/download.html}.
116
117 @node install_mac
118 @section Mac OS X
119
120 Download the experimental binary installer at
121 @url{http://www.free.oszoo.org/@/download.html}.
122
123 @node QEMU PC System emulator
124 @chapter QEMU PC System emulator
125
126 @menu
127 * pcsys_introduction:: Introduction
128 * pcsys_quickstart::   Quick Start
129 * sec_invocation::     Invocation
130 * pcsys_keys::         Keys
131 * pcsys_monitor::      QEMU Monitor
132 * disk_images::        Disk Images
133 * pcsys_network::      Network emulation
134 * direct_linux_boot::  Direct Linux Boot
135 * pcsys_usb::          USB emulation
136 * vnc_security::       VNC security
137 * gdb_usage::          GDB usage
138 * pcsys_os_specific::  Target OS specific information
139 @end menu
140
141 @node pcsys_introduction
142 @section Introduction
143
144 @c man begin DESCRIPTION
145
146 The QEMU PC System emulator simulates the
147 following peripherals:
148
149 @itemize @minus
150 @item
151 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
152 @item
153 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
154 extensions (hardware level, including all non standard modes).
155 @item
156 PS/2 mouse and keyboard
157 @item
158 2 PCI IDE interfaces with hard disk and CD-ROM support
159 @item
160 Floppy disk
161 @item
162 PCI/ISA PCI network adapters
163 @item
164 Serial ports
165 @item
166 Creative SoundBlaster 16 sound card
167 @item
168 ENSONIQ AudioPCI ES1370 sound card
169 @item
170 Intel 82801AA AC97 Audio compatible sound card
171 @item
172 Adlib(OPL2) - Yamaha YM3812 compatible chip
173 @item
174 Gravis Ultrasound GF1 sound card
175 @item
176 PCI UHCI USB controller and a virtual USB hub.
177 @end itemize
178
179 SMP is supported with up to 255 CPUs.
180
181 Note that adlib, ac97 and gus are only available when QEMU was configured
182 with --enable-adlib, --enable-ac97 or --enable-gus respectively.
183
184 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
185 VGA BIOS.
186
187 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
188
189 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
190 by Tibor "TS" Schütz.
191
192 @c man end
193
194 @node pcsys_quickstart
195 @section Quick Start
196
197 Download and uncompress the linux image (@file{linux.img}) and type:
198
199 @example
200 qemu linux.img
201 @end example
202
203 Linux should boot and give you a prompt.
204
205 @node sec_invocation
206 @section Invocation
207
208 @example
209 @c man begin SYNOPSIS
210 usage: qemu [options] [@var{disk_image}]
211 @c man end
212 @end example
213
214 @c man begin OPTIONS
215 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
216
217 General options:
218 @table @option
219 @item -M @var{machine}
220 Select the emulated @var{machine} (@code{-M ?} for list)
221
222 @item -fda @var{file}
223 @item -fdb @var{file}
224 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
225 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
226
227 @item -hda @var{file}
228 @item -hdb @var{file}
229 @item -hdc @var{file}
230 @item -hdd @var{file}
231 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
232
233 @item -cdrom @var{file}
234 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
235 @option{-cdrom} at the same time). You can use the host CD-ROM by
236 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
237
238 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
239
240 Define a new drive. Valid options are:
241
242 @table @code
243 @item file=@var{file}
244 This option defines which disk image (@pxref{disk_images}) to use with
245 this drive. If the filename contains comma, you must double it
246 (for instance, "file=my,,file" to use file "my,file").
247 @item if=@var{interface}
248 This option defines on which type on interface the drive is connected.
249 Available types are: ide, scsi, sd, mtd, floppy, pflash.
250 @item bus=@var{bus},unit=@var{unit}
251 These options define where is connected the drive by defining the bus number and
252 the unit id.
253 @item index=@var{index}
254 This option defines where is connected the drive by using an index in the list
255 of available connectors of a given interface type.
256 @item media=@var{media}
257 This option defines the type of the media: disk or cdrom.
258 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
259 These options have the same definition as they have in @option{-hdachs}.
260 @item snapshot=@var{snapshot}
261 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
262 @item cache=@var{cache}
263 @var{cache} is "on" or "off" and allows to disable host cache to access data.
264 @end table
265
266 Instead of @option{-cdrom} you can use:
267 @example
268 qemu -drive file=file,index=2,media=cdrom
269 @end example
270
271 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
272 use:
273 @example
274 qemu -drive file=file,index=0,media=disk
275 qemu -drive file=file,index=1,media=disk
276 qemu -drive file=file,index=2,media=disk
277 qemu -drive file=file,index=3,media=disk
278 @end example
279
280 You can connect a CDROM to the slave of ide0:
281 @example
282 qemu -drive file=file,if=ide,index=1,media=cdrom
283 @end example
284
285 If you don't specify the "file=" argument, you define an empty drive:
286 @example
287 qemu -drive if=ide,index=1,media=cdrom
288 @end example
289
290 You can connect a SCSI disk with unit ID 6 on the bus #0:
291 @example
292 qemu -drive file=file,if=scsi,bus=0,unit=6
293 @end example
294
295 Instead of @option{-fda}, @option{-fdb}, you can use:
296 @example
297 qemu -drive file=file,index=0,if=floppy
298 qemu -drive file=file,index=1,if=floppy
299 @end example
300
301 By default, @var{interface} is "ide" and @var{index} is automatically
302 incremented:
303 @example
304 qemu -drive file=a -drive file=b"
305 @end example
306 is interpreted like:
307 @example
308 qemu -hda a -hdb b
309 @end example
310
311 @item -boot [a|c|d|n]
312 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
313 is the default.
314
315 @item -snapshot
316 Write to temporary files instead of disk image files. In this case,
317 the raw disk image you use is not written back. You can however force
318 the write back by pressing @key{C-a s} (@pxref{disk_images}).
319
320 @item -no-fd-bootchk
321 Disable boot signature checking for floppy disks in Bochs BIOS. It may
322 be needed to boot from old floppy disks.
323
324 @item -m @var{megs}
325 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
326
327 @item -smp @var{n}
328 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
329 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
330 to 4.
331
332 @item -audio-help
333
334 Will show the audio subsystem help: list of drivers, tunable
335 parameters.
336
337 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338
339 Enable audio and selected sound hardware. Use ? to print all
340 available sound hardware.
341
342 @example
343 qemu -soundhw sb16,adlib hda
344 qemu -soundhw es1370 hda
345 qemu -soundhw ac97 hda
346 qemu -soundhw all hda
347 qemu -soundhw ?
348 @end example
349
350 Note that Linux's i810_audio OSS kernel (for AC97) module might
351 require manually specifying clocking.
352
353 @example
354 modprobe i810_audio clocking=48000
355 @end example
356
357 @item -localtime
358 Set the real time clock to local time (the default is to UTC
359 time). This option is needed to have correct date in MS-DOS or
360 Windows.
361
362 @item -startdate @var{date}
363 Set the initial date of the real time clock. Valid format for
364 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
365 @code{2006-06-17}. The default value is @code{now}.
366
367 @item -pidfile @var{file}
368 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
369 from a script.
370
371 @item -daemonize
372 Daemonize the QEMU process after initialization.  QEMU will not detach from
373 standard IO until it is ready to receive connections on any of its devices.
374 This option is a useful way for external programs to launch QEMU without having
375 to cope with initialization race conditions.
376
377 @item -win2k-hack
378 Use it when installing Windows 2000 to avoid a disk full bug. After
379 Windows 2000 is installed, you no longer need this option (this option
380 slows down the IDE transfers).
381
382 @item -option-rom @var{file}
383 Load the contents of @var{file} as an option ROM.
384 This option is useful to load things like EtherBoot.
385
386 @item -name @var{name}
387 Sets the @var{name} of the guest.
388 This name will be display in the SDL window caption.
389 The @var{name} will also be used for the VNC server.
390
391 @end table
392
393 Display options:
394 @table @option
395
396 @item -nographic
397
398 Normally, QEMU uses SDL to display the VGA output. With this option,
399 you can totally disable graphical output so that QEMU is a simple
400 command line application. The emulated serial port is redirected on
401 the console. Therefore, you can still use QEMU to debug a Linux kernel
402 with a serial console.
403
404 @item -curses
405
406 Normally, QEMU uses SDL to display the VGA output.  With this option,
407 QEMU can display the VGA output when in text mode using a 
408 curses/ncurses interface.  Nothing is displayed in graphical mode.
409
410 @item -no-frame
411
412 Do not use decorations for SDL windows and start them using the whole
413 available screen space. This makes the using QEMU in a dedicated desktop
414 workspace more convenient.
415
416 @item -full-screen
417 Start in full screen.
418
419 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
420
421 Normally, QEMU uses SDL to display the VGA output.  With this option,
422 you can have QEMU listen on VNC display @var{display} and redirect the VGA
423 display over the VNC session.  It is very useful to enable the usb
424 tablet device when using this option (option @option{-usbdevice
425 tablet}). When using the VNC display, you must use the @option{-k}
426 parameter to set the keyboard layout if you are not using en-us. Valid
427 syntax for the @var{display} is
428
429 @table @code
430
431 @item @var{host}:@var{d}
432
433 TCP connections will only be allowed from @var{host} on display @var{d}.
434 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
435 be omitted in which case the server will accept connections from any host.
436
437 @item @code{unix}:@var{path}
438
439 Connections will be allowed over UNIX domain sockets where @var{path} is the
440 location of a unix socket to listen for connections on.
441
442 @item none
443
444 VNC is initialized but not started. The monitor @code{change} command
445 can be used to later start the VNC server.
446
447 @end table
448
449 Following the @var{display} value there may be one or more @var{option} flags
450 separated by commas. Valid options are
451
452 @table @code
453
454 @item reverse
455
456 Connect to a listening VNC client via a ``reverse'' connection. The
457 client is specified by the @var{display}. For reverse network
458 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
459 is a TCP port number, not a display number.
460
461 @item password
462
463 Require that password based authentication is used for client connections.
464 The password must be set separately using the @code{change} command in the
465 @ref{pcsys_monitor}
466
467 @item tls
468
469 Require that client use TLS when communicating with the VNC server. This
470 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
471 attack. It is recommended that this option be combined with either the
472 @var{x509} or @var{x509verify} options.
473
474 @item x509=@var{/path/to/certificate/dir}
475
476 Valid if @option{tls} is specified. Require that x509 credentials are used
477 for negotiating the TLS session. The server will send its x509 certificate
478 to the client. It is recommended that a password be set on the VNC server
479 to provide authentication of the client when this is used. The path following
480 this option specifies where the x509 certificates are to be loaded from.
481 See the @ref{vnc_security} section for details on generating certificates.
482
483 @item x509verify=@var{/path/to/certificate/dir}
484
485 Valid if @option{tls} is specified. Require that x509 credentials are used
486 for negotiating the TLS session. The server will send its x509 certificate
487 to the client, and request that the client send its own x509 certificate.
488 The server will validate the client's certificate against the CA certificate,
489 and reject clients when validation fails. If the certificate authority is
490 trusted, this is a sufficient authentication mechanism. You may still wish
491 to set a password on the VNC server as a second authentication layer. The
492 path following this option specifies where the x509 certificates are to
493 be loaded from. See the @ref{vnc_security} section for details on generating
494 certificates.
495
496 @end table
497
498 @item -k @var{language}
499
500 Use keyboard layout @var{language} (for example @code{fr} for
501 French). This option is only needed where it is not easy to get raw PC
502 keycodes (e.g. on Macs, with some X11 servers or with a VNC
503 display). You don't normally need to use it on PC/Linux or PC/Windows
504 hosts.
505
506 The available layouts are:
507 @example
508 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
509 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
510 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
511 @end example
512
513 The default is @code{en-us}.
514
515 @end table
516
517 USB options:
518 @table @option
519
520 @item -usb
521 Enable the USB driver (will be the default soon)
522
523 @item -usbdevice @var{devname}
524 Add the USB device @var{devname}. @xref{usb_devices}.
525
526 @table @code
527
528 @item mouse
529 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
530
531 @item tablet
532 Pointer device that uses absolute coordinates (like a touchscreen). This
533 means qemu is able to report the mouse position without having to grab the
534 mouse. Also overrides the PS/2 mouse emulation when activated.
535
536 @item disk:file
537 Mass storage device based on file
538
539 @item host:bus.addr
540 Pass through the host device identified by bus.addr (Linux only).
541
542 @item host:vendor_id:product_id
543 Pass through the host device identified by vendor_id:product_id (Linux only).
544
545 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
546 Serial converter to host character device @var{dev}, see @code{-serial} for the
547 available devices.
548
549 @end table
550
551 @end table
552
553 Network options:
554
555 @table @option
556
557 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
558 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
559 = 0 is the default). The NIC is an ne2k_pci by default on the PC
560 target. Optionally, the MAC address can be changed. If no
561 @option{-net} option is specified, a single NIC is created.
562 Qemu can emulate several different models of network card.
563 Valid values for @var{type} are
564 @code{i82551}, @code{i82557b}, @code{i82559er},
565 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
566 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
567 Not all devices are supported on all targets.  Use -net nic,model=?
568 for a list of available devices for your target.
569
570 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
571 Use the user mode network stack which requires no administrator
572 privilege to run.  @option{hostname=name} can be used to specify the client
573 hostname reported by the builtin DHCP server.
574
575 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
576 Connect the host TAP network interface @var{name} to VLAN @var{n} and
577 use the network script @var{file} to configure it. The default
578 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
579 disable script execution. If @var{name} is not
580 provided, the OS automatically provides one. @option{fd}=@var{h} can be
581 used to specify the handle of an already opened host TAP interface. Example:
582
583 @example
584 qemu linux.img -net nic -net tap
585 @end example
586
587 More complicated example (two NICs, each one connected to a TAP device)
588 @example
589 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
590                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
591 @end example
592
593
594 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
595
596 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
597 machine using a TCP socket connection. If @option{listen} is
598 specified, QEMU waits for incoming connections on @var{port}
599 (@var{host} is optional). @option{connect} is used to connect to
600 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
601 specifies an already opened TCP socket.
602
603 Example:
604 @example
605 # launch a first QEMU instance
606 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
607                -net socket,listen=:1234
608 # connect the VLAN 0 of this instance to the VLAN 0
609 # of the first instance
610 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
611                -net socket,connect=127.0.0.1:1234
612 @end example
613
614 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
615
616 Create a VLAN @var{n} shared with another QEMU virtual
617 machines using a UDP multicast socket, effectively making a bus for
618 every QEMU with same multicast address @var{maddr} and @var{port}.
619 NOTES:
620 @enumerate
621 @item
622 Several QEMU can be running on different hosts and share same bus (assuming
623 correct multicast setup for these hosts).
624 @item
625 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
626 @url{http://user-mode-linux.sf.net}.
627 @item
628 Use @option{fd=h} to specify an already opened UDP multicast socket.
629 @end enumerate
630
631 Example:
632 @example
633 # launch one QEMU instance
634 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
635                -net socket,mcast=230.0.0.1:1234
636 # launch another QEMU instance on same "bus"
637 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
638                -net socket,mcast=230.0.0.1:1234
639 # launch yet another QEMU instance on same "bus"
640 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
641                -net socket,mcast=230.0.0.1:1234
642 @end example
643
644 Example (User Mode Linux compat.):
645 @example
646 # launch QEMU instance (note mcast address selected
647 # is UML's default)
648 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
649                -net socket,mcast=239.192.168.1:1102
650 # launch UML
651 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
652 @end example
653
654 @item -net none
655 Indicate that no network devices should be configured. It is used to
656 override the default configuration (@option{-net nic -net user}) which
657 is activated if no @option{-net} options are provided.
658
659 @item -tftp @var{dir}
660 When using the user mode network stack, activate a built-in TFTP
661 server. The files in @var{dir} will be exposed as the root of a TFTP server.
662 The TFTP client on the guest must be configured in binary mode (use the command
663 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
664 usual 10.0.2.2.
665
666 @item -bootp @var{file}
667 When using the user mode network stack, broadcast @var{file} as the BOOTP
668 filename.  In conjunction with @option{-tftp}, this can be used to network boot
669 a guest from a local directory.
670
671 Example (using pxelinux):
672 @example
673 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
674 @end example
675
676 @item -smb @var{dir}
677 When using the user mode network stack, activate a built-in SMB
678 server so that Windows OSes can access to the host files in @file{@var{dir}}
679 transparently.
680
681 In the guest Windows OS, the line:
682 @example
683 10.0.2.4 smbserver
684 @end example
685 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
686 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
687
688 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
689
690 Note that a SAMBA server must be installed on the host OS in
691 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
692 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
693
694 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
695
696 When using the user mode network stack, redirect incoming TCP or UDP
697 connections to the host port @var{host-port} to the guest
698 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
699 is not specified, its value is 10.0.2.15 (default address given by the
700 built-in DHCP server).
701
702 For example, to redirect host X11 connection from screen 1 to guest
703 screen 0, use the following:
704
705 @example
706 # on the host
707 qemu -redir tcp:6001::6000 [...]
708 # this host xterm should open in the guest X11 server
709 xterm -display :1
710 @end example
711
712 To redirect telnet connections from host port 5555 to telnet port on
713 the guest, use the following:
714
715 @example
716 # on the host
717 qemu -redir tcp:5555::23 [...]
718 telnet localhost 5555
719 @end example
720
721 Then when you use on the host @code{telnet localhost 5555}, you
722 connect to the guest telnet server.
723
724 @end table
725
726 Linux boot specific: When using these options, you can use a given
727 Linux kernel without installing it in the disk image. It can be useful
728 for easier testing of various kernels.
729
730 @table @option
731
732 @item -kernel @var{bzImage}
733 Use @var{bzImage} as kernel image.
734
735 @item -append @var{cmdline}
736 Use @var{cmdline} as kernel command line
737
738 @item -initrd @var{file}
739 Use @var{file} as initial ram disk.
740
741 @end table
742
743 Debug/Expert options:
744 @table @option
745
746 @item -serial @var{dev}
747 Redirect the virtual serial port to host character device
748 @var{dev}. The default device is @code{vc} in graphical mode and
749 @code{stdio} in non graphical mode.
750
751 This option can be used several times to simulate up to 4 serials
752 ports.
753
754 Use @code{-serial none} to disable all serial ports.
755
756 Available character devices are:
757 @table @code
758 @item vc[:WxH]
759 Virtual console. Optionally, a width and height can be given in pixel with
760 @example
761 vc:800x600
762 @end example
763 It is also possible to specify width or height in characters:
764 @example
765 vc:80Cx24C
766 @end example
767 @item pty
768 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
769 @item none
770 No device is allocated.
771 @item null
772 void device
773 @item /dev/XXX
774 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
775 parameters are set according to the emulated ones.
776 @item /dev/parport@var{N}
777 [Linux only, parallel port only] Use host parallel port
778 @var{N}. Currently SPP and EPP parallel port features can be used.
779 @item file:@var{filename}
780 Write output to @var{filename}. No character can be read.
781 @item stdio
782 [Unix only] standard input/output
783 @item pipe:@var{filename}
784 name pipe @var{filename}
785 @item COM@var{n}
786 [Windows only] Use host serial port @var{n}
787 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
788 This implements UDP Net Console.
789 When @var{remote_host} or @var{src_ip} are not specified
790 they default to @code{0.0.0.0}.
791 When not using a specified @var{src_port} a random port is automatically chosen.
792
793 If you just want a simple readonly console you can use @code{netcat} or
794 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
795 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
796 will appear in the netconsole session.
797
798 If you plan to send characters back via netconsole or you want to stop
799 and start qemu a lot of times, you should have qemu use the same
800 source port each time by using something like @code{-serial
801 udp::4555@@:4556} to qemu. Another approach is to use a patched
802 version of netcat which can listen to a TCP port and send and receive
803 characters via udp.  If you have a patched version of netcat which
804 activates telnet remote echo and single char transfer, then you can
805 use the following options to step up a netcat redirector to allow
806 telnet on port 5555 to access the qemu port.
807 @table @code
808 @item Qemu Options:
809 -serial udp::4555@@:4556
810 @item netcat options:
811 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
812 @item telnet options:
813 localhost 5555
814 @end table
815
816
817 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
818 The TCP Net Console has two modes of operation.  It can send the serial
819 I/O to a location or wait for a connection from a location.  By default
820 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
821 the @var{server} option QEMU will wait for a client socket application
822 to connect to the port before continuing, unless the @code{nowait}
823 option was specified.  The @code{nodelay} option disables the Nagle buffering
824 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
825 one TCP connection at a time is accepted. You can use @code{telnet} to
826 connect to the corresponding character device.
827 @table @code
828 @item Example to send tcp console to 192.168.0.2 port 4444
829 -serial tcp:192.168.0.2:4444
830 @item Example to listen and wait on port 4444 for connection
831 -serial tcp::4444,server
832 @item Example to not wait and listen on ip 192.168.0.100 port 4444
833 -serial tcp:192.168.0.100:4444,server,nowait
834 @end table
835
836 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
837 The telnet protocol is used instead of raw tcp sockets.  The options
838 work the same as if you had specified @code{-serial tcp}.  The
839 difference is that the port acts like a telnet server or client using
840 telnet option negotiation.  This will also allow you to send the
841 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
842 sequence.  Typically in unix telnet you do it with Control-] and then
843 type "send break" followed by pressing the enter key.
844
845 @item unix:@var{path}[,server][,nowait]
846 A unix domain socket is used instead of a tcp socket.  The option works the
847 same as if you had specified @code{-serial tcp} except the unix domain socket
848 @var{path} is used for connections.
849
850 @item mon:@var{dev_string}
851 This is a special option to allow the monitor to be multiplexed onto
852 another serial port.  The monitor is accessed with key sequence of
853 @key{Control-a} and then pressing @key{c}. See monitor access
854 @ref{pcsys_keys} in the -nographic section for more keys.
855 @var{dev_string} should be any one of the serial devices specified
856 above.  An example to multiplex the monitor onto a telnet server
857 listening on port 4444 would be:
858 @table @code
859 @item -serial mon:telnet::4444,server,nowait
860 @end table
861
862 @end table
863
864 @item -parallel @var{dev}
865 Redirect the virtual parallel port to host device @var{dev} (same
866 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
867 be used to use hardware devices connected on the corresponding host
868 parallel port.
869
870 This option can be used several times to simulate up to 3 parallel
871 ports.
872
873 Use @code{-parallel none} to disable all parallel ports.
874
875 @item -monitor @var{dev}
876 Redirect the monitor to host device @var{dev} (same devices as the
877 serial port).
878 The default device is @code{vc} in graphical mode and @code{stdio} in
879 non graphical mode.
880
881 @item -echr numeric_ascii_value
882 Change the escape character used for switching to the monitor when using
883 monitor and serial sharing.  The default is @code{0x01} when using the
884 @code{-nographic} option.  @code{0x01} is equal to pressing
885 @code{Control-a}.  You can select a different character from the ascii
886 control keys where 1 through 26 map to Control-a through Control-z.  For
887 instance you could use the either of the following to change the escape
888 character to Control-t.
889 @table @code
890 @item -echr 0x14
891 @item -echr 20
892 @end table
893
894 @item -s
895 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
896 @item -p @var{port}
897 Change gdb connection port.  @var{port} can be either a decimal number
898 to specify a TCP port, or a host device (same devices as the serial port).
899 @item -S
900 Do not start CPU at startup (you must type 'c' in the monitor).
901 @item -d
902 Output log in /tmp/qemu.log
903 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
904 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
905 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
906 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
907 all those parameters. This option is useful for old MS-DOS disk
908 images.
909
910 @item -L path
911 Set the directory for the BIOS, VGA BIOS and keymaps.
912
913 @item -std-vga
914 Simulate a standard VGA card with Bochs VBE extensions (default is
915 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
916 VBE extensions (e.g. Windows XP) and if you want to use high
917 resolution modes (>= 1280x1024x16) then you should use this option.
918
919 @item -no-acpi
920 Disable ACPI (Advanced Configuration and Power Interface) support. Use
921 it if your guest OS complains about ACPI problems (PC target machine
922 only).
923
924 @item -no-reboot
925 Exit instead of rebooting.
926
927 @item -loadvm file
928 Start right away with a saved state (@code{loadvm} in monitor)
929
930 @item -semihosting
931 Enable semihosting syscall emulation (ARM and M68K target machines only).
932
933 On ARM this implements the "Angel" interface.
934 On M68K this implements the "ColdFire GDB" interface used by libgloss.
935
936 Note that this allows guest direct access to the host filesystem,
937 so should only be used with trusted guest OS.
938 @end table
939
940 @c man end
941
942 @node pcsys_keys
943 @section Keys
944
945 @c man begin OPTIONS
946
947 During the graphical emulation, you can use the following keys:
948 @table @key
949 @item Ctrl-Alt-f
950 Toggle full screen
951
952 @item Ctrl-Alt-n
953 Switch to virtual console 'n'. Standard console mappings are:
954 @table @emph
955 @item 1
956 Target system display
957 @item 2
958 Monitor
959 @item 3
960 Serial port
961 @end table
962
963 @item Ctrl-Alt
964 Toggle mouse and keyboard grab.
965 @end table
966
967 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
968 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
969
970 During emulation, if you are using the @option{-nographic} option, use
971 @key{Ctrl-a h} to get terminal commands:
972
973 @table @key
974 @item Ctrl-a h
975 Print this help
976 @item Ctrl-a x
977 Exit emulator
978 @item Ctrl-a s
979 Save disk data back to file (if -snapshot)
980 @item Ctrl-a t
981 toggle console timestamps
982 @item Ctrl-a b
983 Send break (magic sysrq in Linux)
984 @item Ctrl-a c
985 Switch between console and monitor
986 @item Ctrl-a Ctrl-a
987 Send Ctrl-a
988 @end table
989 @c man end
990
991 @ignore
992
993 @c man begin SEEALSO
994 The HTML documentation of QEMU for more precise information and Linux
995 user mode emulator invocation.
996 @c man end
997
998 @c man begin AUTHOR
999 Fabrice Bellard
1000 @c man end
1001
1002 @end ignore
1003
1004 @node pcsys_monitor
1005 @section QEMU Monitor
1006
1007 The QEMU monitor is used to give complex commands to the QEMU
1008 emulator. You can use it to:
1009
1010 @itemize @minus
1011
1012 @item
1013 Remove or insert removable media images
1014 (such as CD-ROM or floppies).
1015
1016 @item
1017 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1018 from a disk file.
1019
1020 @item Inspect the VM state without an external debugger.
1021
1022 @end itemize
1023
1024 @subsection Commands
1025
1026 The following commands are available:
1027
1028 @table @option
1029
1030 @item help or ? [@var{cmd}]
1031 Show the help for all commands or just for command @var{cmd}.
1032
1033 @item commit
1034 Commit changes to the disk images (if -snapshot is used).
1035
1036 @item info @var{subcommand}
1037 Show various information about the system state.
1038
1039 @table @option
1040 @item info network
1041 show the various VLANs and the associated devices
1042 @item info block
1043 show the block devices
1044 @item info registers
1045 show the cpu registers
1046 @item info history
1047 show the command line history
1048 @item info pci
1049 show emulated PCI device
1050 @item info usb
1051 show USB devices plugged on the virtual USB hub
1052 @item info usbhost
1053 show all USB host devices
1054 @item info capture
1055 show information about active capturing
1056 @item info snapshots
1057 show list of VM snapshots
1058 @item info mice
1059 show which guest mouse is receiving events
1060 @end table
1061
1062 @item q or quit
1063 Quit the emulator.
1064
1065 @item eject [-f] @var{device}
1066 Eject a removable medium (use -f to force it).
1067
1068 @item change @var{device} @var{setting}
1069
1070 Change the configuration of a device.
1071
1072 @table @option
1073 @item change @var{diskdevice} @var{filename}
1074 Change the medium for a removable disk device to point to @var{filename}. eg
1075
1076 @example
1077 (qemu) change ide1-cd0 /path/to/some.iso
1078 @end example
1079
1080 @item change vnc @var{display},@var{options}
1081 Change the configuration of the VNC server. The valid syntax for @var{display}
1082 and @var{options} are described at @ref{sec_invocation}. eg
1083
1084 @example
1085 (qemu) change vnc localhost:1
1086 @end example
1087
1088 @item change vnc password
1089
1090 Change the password associated with the VNC server. The monitor will prompt for
1091 the new password to be entered. VNC passwords are only significant upto 8 letters.
1092 eg.
1093
1094 @example
1095 (qemu) change vnc password
1096 Password: ********
1097 @end example
1098
1099 @end table
1100
1101 @item screendump @var{filename}
1102 Save screen into PPM image @var{filename}.
1103
1104 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1105 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1106 with optional scroll axis @var{dz}.
1107
1108 @item mouse_button @var{val}
1109 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1110
1111 @item mouse_set @var{index}
1112 Set which mouse device receives events at given @var{index}, index
1113 can be obtained with
1114 @example
1115 info mice
1116 @end example
1117
1118 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1119 Capture audio into @var{filename}. Using sample rate @var{frequency}
1120 bits per sample @var{bits} and number of channels @var{channels}.
1121
1122 Defaults:
1123 @itemize @minus
1124 @item Sample rate = 44100 Hz - CD quality
1125 @item Bits = 16
1126 @item Number of channels = 2 - Stereo
1127 @end itemize
1128
1129 @item stopcapture @var{index}
1130 Stop capture with a given @var{index}, index can be obtained with
1131 @example
1132 info capture
1133 @end example
1134
1135 @item log @var{item1}[,...]
1136 Activate logging of the specified items to @file{/tmp/qemu.log}.
1137
1138 @item savevm [@var{tag}|@var{id}]
1139 Create a snapshot of the whole virtual machine. If @var{tag} is
1140 provided, it is used as human readable identifier. If there is already
1141 a snapshot with the same tag or ID, it is replaced. More info at
1142 @ref{vm_snapshots}.
1143
1144 @item loadvm @var{tag}|@var{id}
1145 Set the whole virtual machine to the snapshot identified by the tag
1146 @var{tag} or the unique snapshot ID @var{id}.
1147
1148 @item delvm @var{tag}|@var{id}
1149 Delete the snapshot identified by @var{tag} or @var{id}.
1150
1151 @item stop
1152 Stop emulation.
1153
1154 @item c or cont
1155 Resume emulation.
1156
1157 @item gdbserver [@var{port}]
1158 Start gdbserver session (default @var{port}=1234)
1159
1160 @item x/fmt @var{addr}
1161 Virtual memory dump starting at @var{addr}.
1162
1163 @item xp /@var{fmt} @var{addr}
1164 Physical memory dump starting at @var{addr}.
1165
1166 @var{fmt} is a format which tells the command how to format the
1167 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1168
1169 @table @var
1170 @item count
1171 is the number of items to be dumped.
1172
1173 @item format
1174 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1175 c (char) or i (asm instruction).
1176
1177 @item size
1178 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1179 @code{h} or @code{w} can be specified with the @code{i} format to
1180 respectively select 16 or 32 bit code instruction size.
1181
1182 @end table
1183
1184 Examples:
1185 @itemize
1186 @item
1187 Dump 10 instructions at the current instruction pointer:
1188 @example
1189 (qemu) x/10i $eip
1190 0x90107063:  ret
1191 0x90107064:  sti
1192 0x90107065:  lea    0x0(%esi,1),%esi
1193 0x90107069:  lea    0x0(%edi,1),%edi
1194 0x90107070:  ret
1195 0x90107071:  jmp    0x90107080
1196 0x90107073:  nop
1197 0x90107074:  nop
1198 0x90107075:  nop
1199 0x90107076:  nop
1200 @end example
1201
1202 @item
1203 Dump 80 16 bit values at the start of the video memory.
1204 @smallexample
1205 (qemu) xp/80hx 0xb8000
1206 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1207 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1208 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1209 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1210 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1211 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1212 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1213 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1214 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1215 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1216 @end smallexample
1217 @end itemize
1218
1219 @item p or print/@var{fmt} @var{expr}
1220
1221 Print expression value. Only the @var{format} part of @var{fmt} is
1222 used.
1223
1224 @item sendkey @var{keys}
1225
1226 Send @var{keys} to the emulator. Use @code{-} to press several keys
1227 simultaneously. Example:
1228 @example
1229 sendkey ctrl-alt-f1
1230 @end example
1231
1232 This command is useful to send keys that your graphical user interface
1233 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1234
1235 @item system_reset
1236
1237 Reset the system.
1238
1239 @item usb_add @var{devname}
1240
1241 Add the USB device @var{devname}.  For details of available devices see
1242 @ref{usb_devices}
1243
1244 @item usb_del @var{devname}
1245
1246 Remove the USB device @var{devname} from the QEMU virtual USB
1247 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1248 command @code{info usb} to see the devices you can remove.
1249
1250 @end table
1251
1252 @subsection Integer expressions
1253
1254 The monitor understands integers expressions for every integer
1255 argument. You can use register names to get the value of specifics
1256 CPU registers by prefixing them with @emph{$}.
1257
1258 @node disk_images
1259 @section Disk Images
1260
1261 Since version 0.6.1, QEMU supports many disk image formats, including
1262 growable disk images (their size increase as non empty sectors are
1263 written), compressed and encrypted disk images. Version 0.8.3 added
1264 the new qcow2 disk image format which is essential to support VM
1265 snapshots.
1266
1267 @menu
1268 * disk_images_quickstart::    Quick start for disk image creation
1269 * disk_images_snapshot_mode:: Snapshot mode
1270 * vm_snapshots::              VM snapshots
1271 * qemu_img_invocation::       qemu-img Invocation
1272 * host_drives::               Using host drives
1273 * disk_images_fat_images::    Virtual FAT disk images
1274 @end menu
1275
1276 @node disk_images_quickstart
1277 @subsection Quick start for disk image creation
1278
1279 You can create a disk image with the command:
1280 @example
1281 qemu-img create myimage.img mysize
1282 @end example
1283 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1284 size in kilobytes. You can add an @code{M} suffix to give the size in
1285 megabytes and a @code{G} suffix for gigabytes.
1286
1287 See @ref{qemu_img_invocation} for more information.
1288
1289 @node disk_images_snapshot_mode
1290 @subsection Snapshot mode
1291
1292 If you use the option @option{-snapshot}, all disk images are
1293 considered as read only. When sectors in written, they are written in
1294 a temporary file created in @file{/tmp}. You can however force the
1295 write back to the raw disk images by using the @code{commit} monitor
1296 command (or @key{C-a s} in the serial console).
1297
1298 @node vm_snapshots
1299 @subsection VM snapshots
1300
1301 VM snapshots are snapshots of the complete virtual machine including
1302 CPU state, RAM, device state and the content of all the writable
1303 disks. In order to use VM snapshots, you must have at least one non
1304 removable and writable block device using the @code{qcow2} disk image
1305 format. Normally this device is the first virtual hard drive.
1306
1307 Use the monitor command @code{savevm} to create a new VM snapshot or
1308 replace an existing one. A human readable name can be assigned to each
1309 snapshot in addition to its numerical ID.
1310
1311 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1312 a VM snapshot. @code{info snapshots} lists the available snapshots
1313 with their associated information:
1314
1315 @example
1316 (qemu) info snapshots
1317 Snapshot devices: hda
1318 Snapshot list (from hda):
1319 ID        TAG                 VM SIZE                DATE       VM CLOCK
1320 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1321 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1322 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1323 @end example
1324
1325 A VM snapshot is made of a VM state info (its size is shown in
1326 @code{info snapshots}) and a snapshot of every writable disk image.
1327 The VM state info is stored in the first @code{qcow2} non removable
1328 and writable block device. The disk image snapshots are stored in
1329 every disk image. The size of a snapshot in a disk image is difficult
1330 to evaluate and is not shown by @code{info snapshots} because the
1331 associated disk sectors are shared among all the snapshots to save
1332 disk space (otherwise each snapshot would need a full copy of all the
1333 disk images).
1334
1335 When using the (unrelated) @code{-snapshot} option
1336 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1337 but they are deleted as soon as you exit QEMU.
1338
1339 VM snapshots currently have the following known limitations:
1340 @itemize
1341 @item
1342 They cannot cope with removable devices if they are removed or
1343 inserted after a snapshot is done.
1344 @item
1345 A few device drivers still have incomplete snapshot support so their
1346 state is not saved or restored properly (in particular USB).
1347 @end itemize
1348
1349 @node qemu_img_invocation
1350 @subsection @code{qemu-img} Invocation
1351
1352 @include qemu-img.texi
1353
1354 @node host_drives
1355 @subsection Using host drives
1356
1357 In addition to disk image files, QEMU can directly access host
1358 devices. We describe here the usage for QEMU version >= 0.8.3.
1359
1360 @subsubsection Linux
1361
1362 On Linux, you can directly use the host device filename instead of a
1363 disk image filename provided you have enough privileges to access
1364 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1365 @file{/dev/fd0} for the floppy.
1366
1367 @table @code
1368 @item CD
1369 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1370 specific code to detect CDROM insertion or removal. CDROM ejection by
1371 the guest OS is supported. Currently only data CDs are supported.
1372 @item Floppy
1373 You can specify a floppy device even if no floppy is loaded. Floppy
1374 removal is currently not detected accurately (if you change floppy
1375 without doing floppy access while the floppy is not loaded, the guest
1376 OS will think that the same floppy is loaded).
1377 @item Hard disks
1378 Hard disks can be used. Normally you must specify the whole disk
1379 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1380 see it as a partitioned disk. WARNING: unless you know what you do, it
1381 is better to only make READ-ONLY accesses to the hard disk otherwise
1382 you may corrupt your host data (use the @option{-snapshot} command
1383 line option or modify the device permissions accordingly).
1384 @end table
1385
1386 @subsubsection Windows
1387
1388 @table @code
1389 @item CD
1390 The preferred syntax is the drive letter (e.g. @file{d:}). The
1391 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1392 supported as an alias to the first CDROM drive.
1393
1394 Currently there is no specific code to handle removable media, so it
1395 is better to use the @code{change} or @code{eject} monitor commands to
1396 change or eject media.
1397 @item Hard disks
1398 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1399 where @var{N} is the drive number (0 is the first hard disk).
1400
1401 WARNING: unless you know what you do, it is better to only make
1402 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1403 host data (use the @option{-snapshot} command line so that the
1404 modifications are written in a temporary file).
1405 @end table
1406
1407
1408 @subsubsection Mac OS X
1409
1410 @file{/dev/cdrom} is an alias to the first CDROM.
1411
1412 Currently there is no specific code to handle removable media, so it
1413 is better to use the @code{change} or @code{eject} monitor commands to
1414 change or eject media.
1415
1416 @node disk_images_fat_images
1417 @subsection Virtual FAT disk images
1418
1419 QEMU can automatically create a virtual FAT disk image from a
1420 directory tree. In order to use it, just type:
1421
1422 @example
1423 qemu linux.img -hdb fat:/my_directory
1424 @end example
1425
1426 Then you access access to all the files in the @file{/my_directory}
1427 directory without having to copy them in a disk image or to export
1428 them via SAMBA or NFS. The default access is @emph{read-only}.
1429
1430 Floppies can be emulated with the @code{:floppy:} option:
1431
1432 @example
1433 qemu linux.img -fda fat:floppy:/my_directory
1434 @end example
1435
1436 A read/write support is available for testing (beta stage) with the
1437 @code{:rw:} option:
1438
1439 @example
1440 qemu linux.img -fda fat:floppy:rw:/my_directory
1441 @end example
1442
1443 What you should @emph{never} do:
1444 @itemize
1445 @item use non-ASCII filenames ;
1446 @item use "-snapshot" together with ":rw:" ;
1447 @item expect it to work when loadvm'ing ;
1448 @item write to the FAT directory on the host system while accessing it with the guest system.
1449 @end itemize
1450
1451 @node pcsys_network
1452 @section Network emulation
1453
1454 QEMU can simulate several network cards (PCI or ISA cards on the PC
1455 target) and can connect them to an arbitrary number of Virtual Local
1456 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1457 VLAN. VLAN can be connected between separate instances of QEMU to
1458 simulate large networks. For simpler usage, a non privileged user mode
1459 network stack can replace the TAP device to have a basic network
1460 connection.
1461
1462 @subsection VLANs
1463
1464 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1465 connection between several network devices. These devices can be for
1466 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1467 (TAP devices).
1468
1469 @subsection Using TAP network interfaces
1470
1471 This is the standard way to connect QEMU to a real network. QEMU adds
1472 a virtual network device on your host (called @code{tapN}), and you
1473 can then configure it as if it was a real ethernet card.
1474
1475 @subsubsection Linux host
1476
1477 As an example, you can download the @file{linux-test-xxx.tar.gz}
1478 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1479 configure properly @code{sudo} so that the command @code{ifconfig}
1480 contained in @file{qemu-ifup} can be executed as root. You must verify
1481 that your host kernel supports the TAP network interfaces: the
1482 device @file{/dev/net/tun} must be present.
1483
1484 See @ref{sec_invocation} to have examples of command lines using the
1485 TAP network interfaces.
1486
1487 @subsubsection Windows host
1488
1489 There is a virtual ethernet driver for Windows 2000/XP systems, called
1490 TAP-Win32. But it is not included in standard QEMU for Windows,
1491 so you will need to get it separately. It is part of OpenVPN package,
1492 so download OpenVPN from : @url{http://openvpn.net/}.
1493
1494 @subsection Using the user mode network stack
1495
1496 By using the option @option{-net user} (default configuration if no
1497 @option{-net} option is specified), QEMU uses a completely user mode
1498 network stack (you don't need root privilege to use the virtual
1499 network). The virtual network configuration is the following:
1500
1501 @example
1502
1503          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1504                            |          (10.0.2.2)
1505                            |
1506                            ---->  DNS server (10.0.2.3)
1507                            |
1508                            ---->  SMB server (10.0.2.4)
1509 @end example
1510
1511 The QEMU VM behaves as if it was behind a firewall which blocks all
1512 incoming connections. You can use a DHCP client to automatically
1513 configure the network in the QEMU VM. The DHCP server assign addresses
1514 to the hosts starting from 10.0.2.15.
1515
1516 In order to check that the user mode network is working, you can ping
1517 the address 10.0.2.2 and verify that you got an address in the range
1518 10.0.2.x from the QEMU virtual DHCP server.
1519
1520 Note that @code{ping} is not supported reliably to the internet as it
1521 would require root privileges. It means you can only ping the local
1522 router (10.0.2.2).
1523
1524 When using the built-in TFTP server, the router is also the TFTP
1525 server.
1526
1527 When using the @option{-redir} option, TCP or UDP connections can be
1528 redirected from the host to the guest. It allows for example to
1529 redirect X11, telnet or SSH connections.
1530
1531 @subsection Connecting VLANs between QEMU instances
1532
1533 Using the @option{-net socket} option, it is possible to make VLANs
1534 that span several QEMU instances. See @ref{sec_invocation} to have a
1535 basic example.
1536
1537 @node direct_linux_boot
1538 @section Direct Linux Boot
1539
1540 This section explains how to launch a Linux kernel inside QEMU without
1541 having to make a full bootable image. It is very useful for fast Linux
1542 kernel testing.
1543
1544 The syntax is:
1545 @example
1546 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1547 @end example
1548
1549 Use @option{-kernel} to provide the Linux kernel image and
1550 @option{-append} to give the kernel command line arguments. The
1551 @option{-initrd} option can be used to provide an INITRD image.
1552
1553 When using the direct Linux boot, a disk image for the first hard disk
1554 @file{hda} is required because its boot sector is used to launch the
1555 Linux kernel.
1556
1557 If you do not need graphical output, you can disable it and redirect
1558 the virtual serial port and the QEMU monitor to the console with the
1559 @option{-nographic} option. The typical command line is:
1560 @example
1561 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1562      -append "root=/dev/hda console=ttyS0" -nographic
1563 @end example
1564
1565 Use @key{Ctrl-a c} to switch between the serial console and the
1566 monitor (@pxref{pcsys_keys}).
1567
1568 @node pcsys_usb
1569 @section USB emulation
1570
1571 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1572 virtual USB devices or real host USB devices (experimental, works only
1573 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1574 as necessary to connect multiple USB devices.
1575
1576 @menu
1577 * usb_devices::
1578 * host_usb_devices::
1579 @end menu
1580 @node usb_devices
1581 @subsection Connecting USB devices
1582
1583 USB devices can be connected with the @option{-usbdevice} commandline option
1584 or the @code{usb_add} monitor command.  Available devices are:
1585
1586 @table @code
1587 @item mouse
1588 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1589 @item tablet
1590 Pointer device that uses absolute coordinates (like a touchscreen).
1591 This means qemu is able to report the mouse position without having
1592 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1593 @item disk:@var{file}
1594 Mass storage device based on @var{file} (@pxref{disk_images})
1595 @item host:@var{bus.addr}
1596 Pass through the host device identified by @var{bus.addr}
1597 (Linux only)
1598 @item host:@var{vendor_id:product_id}
1599 Pass through the host device identified by @var{vendor_id:product_id}
1600 (Linux only)
1601 @item wacom-tablet
1602 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1603 above but it can be used with the tslib library because in addition to touch
1604 coordinates it reports touch pressure.
1605 @item keyboard
1606 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1607 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1608 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1609 device @var{dev}. The available character devices are the same as for the
1610 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1611 used to override the default 0403:6001. For instance, 
1612 @example
1613 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1614 @end example
1615 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1616 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1617 @end table
1618
1619 @node host_usb_devices
1620 @subsection Using host USB devices on a Linux host
1621
1622 WARNING: this is an experimental feature. QEMU will slow down when
1623 using it. USB devices requiring real time streaming (i.e. USB Video
1624 Cameras) are not supported yet.
1625
1626 @enumerate
1627 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1628 is actually using the USB device. A simple way to do that is simply to
1629 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1630 to @file{mydriver.o.disabled}.
1631
1632 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1633 @example
1634 ls /proc/bus/usb
1635 001  devices  drivers
1636 @end example
1637
1638 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1639 @example
1640 chown -R myuid /proc/bus/usb
1641 @end example
1642
1643 @item Launch QEMU and do in the monitor:
1644 @example
1645 info usbhost
1646   Device 1.2, speed 480 Mb/s
1647     Class 00: USB device 1234:5678, USB DISK
1648 @end example
1649 You should see the list of the devices you can use (Never try to use
1650 hubs, it won't work).
1651
1652 @item Add the device in QEMU by using:
1653 @example
1654 usb_add host:1234:5678
1655 @end example
1656
1657 Normally the guest OS should report that a new USB device is
1658 plugged. You can use the option @option{-usbdevice} to do the same.
1659
1660 @item Now you can try to use the host USB device in QEMU.
1661
1662 @end enumerate
1663
1664 When relaunching QEMU, you may have to unplug and plug again the USB
1665 device to make it work again (this is a bug).
1666
1667 @node vnc_security
1668 @section VNC security
1669
1670 The VNC server capability provides access to the graphical console
1671 of the guest VM across the network. This has a number of security
1672 considerations depending on the deployment scenarios.
1673
1674 @menu
1675 * vnc_sec_none::
1676 * vnc_sec_password::
1677 * vnc_sec_certificate::
1678 * vnc_sec_certificate_verify::
1679 * vnc_sec_certificate_pw::
1680 * vnc_generate_cert::
1681 @end menu
1682 @node vnc_sec_none
1683 @subsection Without passwords
1684
1685 The simplest VNC server setup does not include any form of authentication.
1686 For this setup it is recommended to restrict it to listen on a UNIX domain
1687 socket only. For example
1688
1689 @example
1690 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1691 @end example
1692
1693 This ensures that only users on local box with read/write access to that
1694 path can access the VNC server. To securely access the VNC server from a
1695 remote machine, a combination of netcat+ssh can be used to provide a secure
1696 tunnel.
1697
1698 @node vnc_sec_password
1699 @subsection With passwords
1700
1701 The VNC protocol has limited support for password based authentication. Since
1702 the protocol limits passwords to 8 characters it should not be considered
1703 to provide high security. The password can be fairly easily brute-forced by
1704 a client making repeat connections. For this reason, a VNC server using password
1705 authentication should be restricted to only listen on the loopback interface
1706 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1707 option, and then once QEMU is running the password is set with the monitor. Until
1708 the monitor is used to set the password all clients will be rejected.
1709
1710 @example
1711 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1712 (qemu) change vnc password
1713 Password: ********
1714 (qemu)
1715 @end example
1716
1717 @node vnc_sec_certificate
1718 @subsection With x509 certificates
1719
1720 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1721 TLS for encryption of the session, and x509 certificates for authentication.
1722 The use of x509 certificates is strongly recommended, because TLS on its
1723 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1724 support provides a secure session, but no authentication. This allows any
1725 client to connect, and provides an encrypted session.
1726
1727 @example
1728 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1729 @end example
1730
1731 In the above example @code{/etc/pki/qemu} should contain at least three files,
1732 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1733 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1734 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1735 only be readable by the user owning it.
1736
1737 @node vnc_sec_certificate_verify
1738 @subsection With x509 certificates and client verification
1739
1740 Certificates can also provide a means to authenticate the client connecting.
1741 The server will request that the client provide a certificate, which it will
1742 then validate against the CA certificate. This is a good choice if deploying
1743 in an environment with a private internal certificate authority.
1744
1745 @example
1746 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1747 @end example
1748
1749
1750 @node vnc_sec_certificate_pw
1751 @subsection With x509 certificates, client verification and passwords
1752
1753 Finally, the previous method can be combined with VNC password authentication
1754 to provide two layers of authentication for clients.
1755
1756 @example
1757 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1758 (qemu) change vnc password
1759 Password: ********
1760 (qemu)
1761 @end example
1762
1763 @node vnc_generate_cert
1764 @subsection Generating certificates for VNC
1765
1766 The GNU TLS packages provides a command called @code{certtool} which can
1767 be used to generate certificates and keys in PEM format. At a minimum it
1768 is neccessary to setup a certificate authority, and issue certificates to
1769 each server. If using certificates for authentication, then each client
1770 will also need to be issued a certificate. The recommendation is for the
1771 server to keep its certificates in either @code{/etc/pki/qemu} or for
1772 unprivileged users in @code{$HOME/.pki/qemu}.
1773
1774 @menu
1775 * vnc_generate_ca::
1776 * vnc_generate_server::
1777 * vnc_generate_client::
1778 @end menu
1779 @node vnc_generate_ca
1780 @subsubsection Setup the Certificate Authority
1781
1782 This step only needs to be performed once per organization / organizational
1783 unit. First the CA needs a private key. This key must be kept VERY secret
1784 and secure. If this key is compromised the entire trust chain of the certificates
1785 issued with it is lost.
1786
1787 @example
1788 # certtool --generate-privkey > ca-key.pem
1789 @end example
1790
1791 A CA needs to have a public certificate. For simplicity it can be a self-signed
1792 certificate, or one issue by a commercial certificate issuing authority. To
1793 generate a self-signed certificate requires one core piece of information, the
1794 name of the organization.
1795
1796 @example
1797 # cat > ca.info <<EOF
1798 cn = Name of your organization
1799 ca
1800 cert_signing_key
1801 EOF
1802 # certtool --generate-self-signed \
1803            --load-privkey ca-key.pem
1804            --template ca.info \
1805            --outfile ca-cert.pem
1806 @end example
1807
1808 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1809 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1810
1811 @node vnc_generate_server
1812 @subsubsection Issuing server certificates
1813
1814 Each server (or host) needs to be issued with a key and certificate. When connecting
1815 the certificate is sent to the client which validates it against the CA certificate.
1816 The core piece of information for a server certificate is the hostname. This should
1817 be the fully qualified hostname that the client will connect with, since the client
1818 will typically also verify the hostname in the certificate. On the host holding the
1819 secure CA private key:
1820
1821 @example
1822 # cat > server.info <<EOF
1823 organization = Name  of your organization
1824 cn = server.foo.example.com
1825 tls_www_server
1826 encryption_key
1827 signing_key
1828 EOF
1829 # certtool --generate-privkey > server-key.pem
1830 # certtool --generate-certificate \
1831            --load-ca-certificate ca-cert.pem \
1832            --load-ca-privkey ca-key.pem \
1833            --load-privkey server server-key.pem \
1834            --template server.info \
1835            --outfile server-cert.pem
1836 @end example
1837
1838 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1839 to the server for which they were generated. The @code{server-key.pem} is security
1840 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1841
1842 @node vnc_generate_client
1843 @subsubsection Issuing client certificates
1844
1845 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1846 certificates as its authentication mechanism, each client also needs to be issued
1847 a certificate. The client certificate contains enough metadata to uniquely identify
1848 the client, typically organization, state, city, building, etc. On the host holding
1849 the secure CA private key:
1850
1851 @example
1852 # cat > client.info <<EOF
1853 country = GB
1854 state = London
1855 locality = London
1856 organiazation = Name of your organization
1857 cn = client.foo.example.com
1858 tls_www_client
1859 encryption_key
1860 signing_key
1861 EOF
1862 # certtool --generate-privkey > client-key.pem
1863 # certtool --generate-certificate \
1864            --load-ca-certificate ca-cert.pem \
1865            --load-ca-privkey ca-key.pem \
1866            --load-privkey client-key.pem \
1867            --template client.info \
1868            --outfile client-cert.pem
1869 @end example
1870
1871 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1872 copied to the client for which they were generated.
1873
1874 @node gdb_usage
1875 @section GDB usage
1876
1877 QEMU has a primitive support to work with gdb, so that you can do
1878 'Ctrl-C' while the virtual machine is running and inspect its state.
1879
1880 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1881 gdb connection:
1882 @example
1883 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1884        -append "root=/dev/hda"
1885 Connected to host network interface: tun0
1886 Waiting gdb connection on port 1234
1887 @end example
1888
1889 Then launch gdb on the 'vmlinux' executable:
1890 @example
1891 > gdb vmlinux
1892 @end example
1893
1894 In gdb, connect to QEMU:
1895 @example
1896 (gdb) target remote localhost:1234
1897 @end example
1898
1899 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1900 @example
1901 (gdb) c
1902 @end example
1903
1904 Here are some useful tips in order to use gdb on system code:
1905
1906 @enumerate
1907 @item
1908 Use @code{info reg} to display all the CPU registers.
1909 @item
1910 Use @code{x/10i $eip} to display the code at the PC position.
1911 @item
1912 Use @code{set architecture i8086} to dump 16 bit code. Then use
1913 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1914 @end enumerate
1915
1916 @node pcsys_os_specific
1917 @section Target OS specific information
1918
1919 @subsection Linux
1920
1921 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1922 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1923 color depth in the guest and the host OS.
1924
1925 When using a 2.6 guest Linux kernel, you should add the option
1926 @code{clock=pit} on the kernel command line because the 2.6 Linux
1927 kernels make very strict real time clock checks by default that QEMU
1928 cannot simulate exactly.
1929
1930 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1931 not activated because QEMU is slower with this patch. The QEMU
1932 Accelerator Module is also much slower in this case. Earlier Fedora
1933 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1934 patch by default. Newer kernels don't have it.
1935
1936 @subsection Windows
1937
1938 If you have a slow host, using Windows 95 is better as it gives the
1939 best speed. Windows 2000 is also a good choice.
1940
1941 @subsubsection SVGA graphic modes support
1942
1943 QEMU emulates a Cirrus Logic GD5446 Video
1944 card. All Windows versions starting from Windows 95 should recognize
1945 and use this graphic card. For optimal performances, use 16 bit color
1946 depth in the guest and the host OS.
1947
1948 If you are using Windows XP as guest OS and if you want to use high
1949 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1950 1280x1024x16), then you should use the VESA VBE virtual graphic card
1951 (option @option{-std-vga}).
1952
1953 @subsubsection CPU usage reduction
1954
1955 Windows 9x does not correctly use the CPU HLT
1956 instruction. The result is that it takes host CPU cycles even when
1957 idle. You can install the utility from
1958 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1959 problem. Note that no such tool is needed for NT, 2000 or XP.
1960
1961 @subsubsection Windows 2000 disk full problem
1962
1963 Windows 2000 has a bug which gives a disk full problem during its
1964 installation. When installing it, use the @option{-win2k-hack} QEMU
1965 option to enable a specific workaround. After Windows 2000 is
1966 installed, you no longer need this option (this option slows down the
1967 IDE transfers).
1968
1969 @subsubsection Windows 2000 shutdown
1970
1971 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1972 can. It comes from the fact that Windows 2000 does not automatically
1973 use the APM driver provided by the BIOS.
1974
1975 In order to correct that, do the following (thanks to Struan
1976 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1977 Add/Troubleshoot a device => Add a new device & Next => No, select the
1978 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1979 (again) a few times. Now the driver is installed and Windows 2000 now
1980 correctly instructs QEMU to shutdown at the appropriate moment.
1981
1982 @subsubsection Share a directory between Unix and Windows
1983
1984 See @ref{sec_invocation} about the help of the option @option{-smb}.
1985
1986 @subsubsection Windows XP security problem
1987
1988 Some releases of Windows XP install correctly but give a security
1989 error when booting:
1990 @example
1991 A problem is preventing Windows from accurately checking the
1992 license for this computer. Error code: 0x800703e6.
1993 @end example
1994
1995 The workaround is to install a service pack for XP after a boot in safe
1996 mode. Then reboot, and the problem should go away. Since there is no
1997 network while in safe mode, its recommended to download the full
1998 installation of SP1 or SP2 and transfer that via an ISO or using the
1999 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2000
2001 @subsection MS-DOS and FreeDOS
2002
2003 @subsubsection CPU usage reduction
2004
2005 DOS does not correctly use the CPU HLT instruction. The result is that
2006 it takes host CPU cycles even when idle. You can install the utility
2007 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2008 problem.
2009
2010 @node QEMU System emulator for non PC targets
2011 @chapter QEMU System emulator for non PC targets
2012
2013 QEMU is a generic emulator and it emulates many non PC
2014 machines. Most of the options are similar to the PC emulator. The
2015 differences are mentioned in the following sections.
2016
2017 @menu
2018 * QEMU PowerPC System emulator::
2019 * Sparc32 System emulator::
2020 * Sparc64 System emulator::
2021 * MIPS System emulator::
2022 * ARM System emulator::
2023 * ColdFire System emulator::
2024 @end menu
2025
2026 @node QEMU PowerPC System emulator
2027 @section QEMU PowerPC System emulator
2028
2029 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2030 or PowerMac PowerPC system.
2031
2032 QEMU emulates the following PowerMac peripherals:
2033
2034 @itemize @minus
2035 @item
2036 UniNorth PCI Bridge
2037 @item
2038 PCI VGA compatible card with VESA Bochs Extensions
2039 @item
2040 2 PMAC IDE interfaces with hard disk and CD-ROM support
2041 @item
2042 NE2000 PCI adapters
2043 @item
2044 Non Volatile RAM
2045 @item
2046 VIA-CUDA with ADB keyboard and mouse.
2047 @end itemize
2048
2049 QEMU emulates the following PREP peripherals:
2050
2051 @itemize @minus
2052 @item
2053 PCI Bridge
2054 @item
2055 PCI VGA compatible card with VESA Bochs Extensions
2056 @item
2057 2 IDE interfaces with hard disk and CD-ROM support
2058 @item
2059 Floppy disk
2060 @item
2061 NE2000 network adapters
2062 @item
2063 Serial port
2064 @item
2065 PREP Non Volatile RAM
2066 @item
2067 PC compatible keyboard and mouse.
2068 @end itemize
2069
2070 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2071 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2072
2073 @c man begin OPTIONS
2074
2075 The following options are specific to the PowerPC emulation:
2076
2077 @table @option
2078
2079 @item -g WxH[xDEPTH]
2080
2081 Set the initial VGA graphic mode. The default is 800x600x15.
2082
2083 @end table
2084
2085 @c man end
2086
2087
2088 More information is available at
2089 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2090
2091 @node Sparc32 System emulator
2092 @section Sparc32 System emulator
2093
2094 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2095 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2096 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2097 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2098 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2099 of usable CPUs to 4.
2100
2101 QEMU emulates the following sun4m/sun4d peripherals:
2102
2103 @itemize @minus
2104 @item
2105 IOMMU or IO-UNITs
2106 @item
2107 TCX Frame buffer
2108 @item
2109 Lance (Am7990) Ethernet
2110 @item
2111 Non Volatile RAM M48T08
2112 @item
2113 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2114 and power/reset logic
2115 @item
2116 ESP SCSI controller with hard disk and CD-ROM support
2117 @item
2118 Floppy drive (not on SS-600MP)
2119 @item
2120 CS4231 sound device (only on SS-5, not working yet)
2121 @end itemize
2122
2123 The number of peripherals is fixed in the architecture.  Maximum
2124 memory size depends on the machine type, for SS-5 it is 256MB and for
2125 others 2047MB.
2126
2127 Since version 0.8.2, QEMU uses OpenBIOS
2128 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2129 firmware implementation. The goal is to implement a 100% IEEE
2130 1275-1994 (referred to as Open Firmware) compliant firmware.
2131
2132 A sample Linux 2.6 series kernel and ram disk image are available on
2133 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2134 Solaris kernels don't work.
2135
2136 @c man begin OPTIONS
2137
2138 The following options are specific to the Sparc32 emulation:
2139
2140 @table @option
2141
2142 @item -g WxHx[xDEPTH]
2143
2144 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2145 the only other possible mode is 1024x768x24.
2146
2147 @item -prom-env string
2148
2149 Set OpenBIOS variables in NVRAM, for example:
2150
2151 @example
2152 qemu-system-sparc -prom-env 'auto-boot?=false' \
2153  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2154 @end example
2155
2156 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2157
2158 Set the emulated machine type. Default is SS-5.
2159
2160 @end table
2161
2162 @c man end
2163
2164 @node Sparc64 System emulator
2165 @section Sparc64 System emulator
2166
2167 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2168 The emulator is not usable for anything yet.
2169
2170 QEMU emulates the following sun4u peripherals:
2171
2172 @itemize @minus
2173 @item
2174 UltraSparc IIi APB PCI Bridge
2175 @item
2176 PCI VGA compatible card with VESA Bochs Extensions
2177 @item
2178 Non Volatile RAM M48T59
2179 @item
2180 PC-compatible serial ports
2181 @end itemize
2182
2183 @node MIPS System emulator
2184 @section MIPS System emulator
2185
2186 Four executables cover simulation of 32 and 64-bit MIPS systems in
2187 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2188 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2189 Five different machine types are emulated:
2190
2191 @itemize @minus
2192 @item
2193 A generic ISA PC-like machine "mips"
2194 @item
2195 The MIPS Malta prototype board "malta"
2196 @item
2197 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2198 @item
2199 MIPS emulator pseudo board "mipssim"
2200 @item
2201 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2202 @end itemize
2203
2204 The generic emulation is supported by Debian 'Etch' and is able to
2205 install Debian into a virtual disk image. The following devices are
2206 emulated:
2207
2208 @itemize @minus
2209 @item
2210 A range of MIPS CPUs, default is the 24Kf
2211 @item
2212 PC style serial port
2213 @item
2214 PC style IDE disk
2215 @item
2216 NE2000 network card
2217 @end itemize
2218
2219 The Malta emulation supports the following devices:
2220
2221 @itemize @minus
2222 @item
2223 Core board with MIPS 24Kf CPU and Galileo system controller
2224 @item
2225 PIIX4 PCI/USB/SMbus controller
2226 @item
2227 The Multi-I/O chip's serial device
2228 @item
2229 PCnet32 PCI network card
2230 @item
2231 Malta FPGA serial device
2232 @item
2233 Cirrus VGA graphics card
2234 @end itemize
2235
2236 The ACER Pica emulation supports:
2237
2238 @itemize @minus
2239 @item
2240 MIPS R4000 CPU
2241 @item
2242 PC-style IRQ and DMA controllers
2243 @item
2244 PC Keyboard
2245 @item
2246 IDE controller
2247 @end itemize
2248
2249 The mipssim pseudo board emulation provides an environment similiar
2250 to what the proprietary MIPS emulator uses for running Linux.
2251 It supports:
2252
2253 @itemize @minus
2254 @item
2255 A range of MIPS CPUs, default is the 24Kf
2256 @item
2257 PC style serial port
2258 @item
2259 MIPSnet network emulation
2260 @end itemize
2261
2262 The MIPS Magnum R4000 emulation supports:
2263
2264 @itemize @minus
2265 @item
2266 MIPS R4000 CPU
2267 @item
2268 PC-style IRQ controller
2269 @item
2270 PC Keyboard
2271 @item
2272 SCSI controller
2273 @item
2274 G364 framebuffer
2275 @end itemize
2276
2277
2278 @node ARM System emulator
2279 @section ARM System emulator
2280
2281 Use the executable @file{qemu-system-arm} to simulate a ARM
2282 machine. The ARM Integrator/CP board is emulated with the following
2283 devices:
2284
2285 @itemize @minus
2286 @item
2287 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2288 @item
2289 Two PL011 UARTs
2290 @item
2291 SMC 91c111 Ethernet adapter
2292 @item
2293 PL110 LCD controller
2294 @item
2295 PL050 KMI with PS/2 keyboard and mouse.
2296 @item
2297 PL181 MultiMedia Card Interface with SD card.
2298 @end itemize
2299
2300 The ARM Versatile baseboard is emulated with the following devices:
2301
2302 @itemize @minus
2303 @item
2304 ARM926E, ARM1136 or Cortex-A8 CPU
2305 @item
2306 PL190 Vectored Interrupt Controller
2307 @item
2308 Four PL011 UARTs
2309 @item
2310 SMC 91c111 Ethernet adapter
2311 @item
2312 PL110 LCD controller
2313 @item
2314 PL050 KMI with PS/2 keyboard and mouse.
2315 @item
2316 PCI host bridge.  Note the emulated PCI bridge only provides access to
2317 PCI memory space.  It does not provide access to PCI IO space.
2318 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2319 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2320 mapped control registers.
2321 @item
2322 PCI OHCI USB controller.
2323 @item
2324 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2325 @item
2326 PL181 MultiMedia Card Interface with SD card.
2327 @end itemize
2328
2329 The ARM RealView Emulation baseboard is emulated with the following devices:
2330
2331 @itemize @minus
2332 @item
2333 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2334 @item
2335 ARM AMBA Generic/Distributed Interrupt Controller
2336 @item
2337 Four PL011 UARTs
2338 @item
2339 SMC 91c111 Ethernet adapter
2340 @item
2341 PL110 LCD controller
2342 @item
2343 PL050 KMI with PS/2 keyboard and mouse
2344 @item
2345 PCI host bridge
2346 @item
2347 PCI OHCI USB controller
2348 @item
2349 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2350 @item
2351 PL181 MultiMedia Card Interface with SD card.
2352 @end itemize
2353
2354 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2355 and "Terrier") emulation includes the following peripherals:
2356
2357 @itemize @minus
2358 @item
2359 Intel PXA270 System-on-chip (ARM V5TE core)
2360 @item
2361 NAND Flash memory
2362 @item
2363 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2364 @item
2365 On-chip OHCI USB controller
2366 @item
2367 On-chip LCD controller
2368 @item
2369 On-chip Real Time Clock
2370 @item
2371 TI ADS7846 touchscreen controller on SSP bus
2372 @item
2373 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2374 @item
2375 GPIO-connected keyboard controller and LEDs
2376 @item
2377 Secure Digital card connected to PXA MMC/SD host
2378 @item
2379 Three on-chip UARTs
2380 @item
2381 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2382 @end itemize
2383
2384 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2385 following elements:
2386
2387 @itemize @minus
2388 @item
2389 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2390 @item
2391 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2392 @item
2393 On-chip LCD controller
2394 @item
2395 On-chip Real Time Clock
2396 @item
2397 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2398 CODEC, connected through MicroWire and I@math{^2}S busses
2399 @item
2400 GPIO-connected matrix keypad
2401 @item
2402 Secure Digital card connected to OMAP MMC/SD host
2403 @item
2404 Three on-chip UARTs
2405 @end itemize
2406
2407 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2408 devices:
2409
2410 @itemize @minus
2411 @item
2412 Cortex-M3 CPU core.
2413 @item
2414 64k Flash and 8k SRAM.
2415 @item
2416 Timers, UARTs, ADC and I@math{^2}C interface.
2417 @item
2418 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2419 @end itemize
2420
2421 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2422 devices:
2423
2424 @itemize @minus
2425 @item
2426 Cortex-M3 CPU core.
2427 @item
2428 256k Flash and 64k SRAM.
2429 @item
2430 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2431 @item
2432 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2433 @end itemize
2434
2435 A Linux 2.6 test image is available on the QEMU web site. More
2436 information is available in the QEMU mailing-list archive.
2437
2438 @node ColdFire System emulator
2439 @section ColdFire System emulator
2440
2441 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2442 The emulator is able to boot a uClinux kernel.
2443
2444 The M5208EVB emulation includes the following devices:
2445
2446 @itemize @minus
2447 @item
2448 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2449 @item
2450 Three Two on-chip UARTs.
2451 @item
2452 Fast Ethernet Controller (FEC)
2453 @end itemize
2454
2455 The AN5206 emulation includes the following devices:
2456
2457 @itemize @minus
2458 @item
2459 MCF5206 ColdFire V2 Microprocessor.
2460 @item
2461 Two on-chip UARTs.
2462 @end itemize
2463
2464 @node QEMU User space emulator
2465 @chapter QEMU User space emulator
2466
2467 @menu
2468 * Supported Operating Systems ::
2469 * Linux User space emulator::
2470 * Mac OS X/Darwin User space emulator ::
2471 @end menu
2472
2473 @node Supported Operating Systems
2474 @section Supported Operating Systems
2475
2476 The following OS are supported in user space emulation:
2477
2478 @itemize @minus
2479 @item
2480 Linux (referred as qemu-linux-user)
2481 @item
2482 Mac OS X/Darwin (referred as qemu-darwin-user)
2483 @end itemize
2484
2485 @node Linux User space emulator
2486 @section Linux User space emulator
2487
2488 @menu
2489 * Quick Start::
2490 * Wine launch::
2491 * Command line options::
2492 * Other binaries::
2493 @end menu
2494
2495 @node Quick Start
2496 @subsection Quick Start
2497
2498 In order to launch a Linux process, QEMU needs the process executable
2499 itself and all the target (x86) dynamic libraries used by it.
2500
2501 @itemize
2502
2503 @item On x86, you can just try to launch any process by using the native
2504 libraries:
2505
2506 @example
2507 qemu-i386 -L / /bin/ls
2508 @end example
2509
2510 @code{-L /} tells that the x86 dynamic linker must be searched with a
2511 @file{/} prefix.
2512
2513 @item Since QEMU is also a linux process, you can launch qemu with
2514 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2515
2516 @example
2517 qemu-i386 -L / qemu-i386 -L / /bin/ls
2518 @end example
2519
2520 @item On non x86 CPUs, you need first to download at least an x86 glibc
2521 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2522 @code{LD_LIBRARY_PATH} is not set:
2523
2524 @example
2525 unset LD_LIBRARY_PATH
2526 @end example
2527
2528 Then you can launch the precompiled @file{ls} x86 executable:
2529
2530 @example
2531 qemu-i386 tests/i386/ls
2532 @end example
2533 You can look at @file{qemu-binfmt-conf.sh} so that
2534 QEMU is automatically launched by the Linux kernel when you try to
2535 launch x86 executables. It requires the @code{binfmt_misc} module in the
2536 Linux kernel.
2537
2538 @item The x86 version of QEMU is also included. You can try weird things such as:
2539 @example
2540 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2541           /usr/local/qemu-i386/bin/ls-i386
2542 @end example
2543
2544 @end itemize
2545
2546 @node Wine launch
2547 @subsection Wine launch
2548
2549 @itemize
2550
2551 @item Ensure that you have a working QEMU with the x86 glibc
2552 distribution (see previous section). In order to verify it, you must be
2553 able to do:
2554
2555 @example
2556 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2557 @end example
2558
2559 @item Download the binary x86 Wine install
2560 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2561
2562 @item Configure Wine on your account. Look at the provided script
2563 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2564 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2565
2566 @item Then you can try the example @file{putty.exe}:
2567
2568 @example
2569 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2570           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2571 @end example
2572
2573 @end itemize
2574
2575 @node Command line options
2576 @subsection Command line options
2577
2578 @example
2579 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2580 @end example
2581
2582 @table @option
2583 @item -h
2584 Print the help
2585 @item -L path
2586 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2587 @item -s size
2588 Set the x86 stack size in bytes (default=524288)
2589 @end table
2590
2591 Debug options:
2592
2593 @table @option
2594 @item -d
2595 Activate log (logfile=/tmp/qemu.log)
2596 @item -p pagesize
2597 Act as if the host page size was 'pagesize' bytes
2598 @end table
2599
2600 Environment variables:
2601
2602 @table @env
2603 @item QEMU_STRACE
2604 Print system calls and arguments similar to the 'strace' program
2605 (NOTE: the actual 'strace' program will not work because the user
2606 space emulator hasn't implemented ptrace).  At the moment this is
2607 incomplete.  All system calls that don't have a specific argument
2608 format are printed with information for six arguments.  Many
2609 flag-style arguments don't have decoders and will show up as numbers.
2610 @end table
2611
2612 @node Other binaries
2613 @subsection Other binaries
2614
2615 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2616 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2617 configurations), and arm-uclinux bFLT format binaries.
2618
2619 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2620 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2621 coldfire uClinux bFLT format binaries.
2622
2623 The binary format is detected automatically.
2624
2625 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2626 (Sparc64 CPU, 32 bit ABI).
2627
2628 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2629 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2630
2631 @node Mac OS X/Darwin User space emulator
2632 @section Mac OS X/Darwin User space emulator
2633
2634 @menu
2635 * Mac OS X/Darwin Status::
2636 * Mac OS X/Darwin Quick Start::
2637 * Mac OS X/Darwin Command line options::
2638 @end menu
2639
2640 @node Mac OS X/Darwin Status
2641 @subsection Mac OS X/Darwin Status
2642
2643 @itemize @minus
2644 @item
2645 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2646 @item
2647 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2648 @item
2649 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2650 @item
2651 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2652 @end itemize
2653
2654 [1] If you're host commpage can be executed by qemu.
2655
2656 @node Mac OS X/Darwin Quick Start
2657 @subsection Quick Start
2658
2659 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2660 itself and all the target dynamic libraries used by it. If you don't have the FAT
2661 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2662 CD or compile them by hand.
2663
2664 @itemize
2665
2666 @item On x86, you can just try to launch any process by using the native
2667 libraries:
2668
2669 @example
2670 qemu-i386 /bin/ls
2671 @end example
2672
2673 or to run the ppc version of the executable:
2674
2675 @example
2676 qemu-ppc /bin/ls
2677 @end example
2678
2679 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2680 are installed:
2681
2682 @example
2683 qemu-i386 -L /opt/x86_root/ /bin/ls
2684 @end example
2685
2686 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2687 @file{/opt/x86_root/usr/bin/dyld}.
2688
2689 @end itemize
2690
2691 @node Mac OS X/Darwin Command line options
2692 @subsection Command line options
2693
2694 @example
2695 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2696 @end example
2697
2698 @table @option
2699 @item -h
2700 Print the help
2701 @item -L path
2702 Set the library root path (default=/)
2703 @item -s size
2704 Set the stack size in bytes (default=524288)
2705 @end table
2706
2707 Debug options:
2708
2709 @table @option
2710 @item -d
2711 Activate log (logfile=/tmp/qemu.log)
2712 @item -p pagesize
2713 Act as if the host page size was 'pagesize' bytes
2714 @end table
2715
2716 @node compilation
2717 @chapter Compilation from the sources
2718
2719 @menu
2720 * Linux/Unix::
2721 * Windows::
2722 * Cross compilation for Windows with Linux::
2723 * Mac OS X::
2724 @end menu
2725
2726 @node Linux/Unix
2727 @section Linux/Unix
2728
2729 @subsection Compilation
2730
2731 First you must decompress the sources:
2732 @example
2733 cd /tmp
2734 tar zxvf qemu-x.y.z.tar.gz
2735 cd qemu-x.y.z
2736 @end example
2737
2738 Then you configure QEMU and build it (usually no options are needed):
2739 @example
2740 ./configure
2741 make
2742 @end example
2743
2744 Then type as root user:
2745 @example
2746 make install
2747 @end example
2748 to install QEMU in @file{/usr/local}.
2749
2750 @subsection GCC version
2751
2752 In order to compile QEMU successfully, it is very important that you
2753 have the right tools. The most important one is gcc. On most hosts and
2754 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2755 Linux distribution includes a gcc 4.x compiler, you can usually
2756 install an older version (it is invoked by @code{gcc32} or
2757 @code{gcc34}). The QEMU configure script automatically probes for
2758 these older versions so that usually you don't have to do anything.
2759
2760 @node Windows
2761 @section Windows
2762
2763 @itemize
2764 @item Install the current versions of MSYS and MinGW from
2765 @url{http://www.mingw.org/}. You can find detailed installation
2766 instructions in the download section and the FAQ.
2767
2768 @item Download
2769 the MinGW development library of SDL 1.2.x
2770 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2771 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2772 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2773 directory. Edit the @file{sdl-config} script so that it gives the
2774 correct SDL directory when invoked.
2775
2776 @item Extract the current version of QEMU.
2777
2778 @item Start the MSYS shell (file @file{msys.bat}).
2779
2780 @item Change to the QEMU directory. Launch @file{./configure} and
2781 @file{make}.  If you have problems using SDL, verify that
2782 @file{sdl-config} can be launched from the MSYS command line.
2783
2784 @item You can install QEMU in @file{Program Files/Qemu} by typing
2785 @file{make install}. Don't forget to copy @file{SDL.dll} in
2786 @file{Program Files/Qemu}.
2787
2788 @end itemize
2789
2790 @node Cross compilation for Windows with Linux
2791 @section Cross compilation for Windows with Linux
2792
2793 @itemize
2794 @item
2795 Install the MinGW cross compilation tools available at
2796 @url{http://www.mingw.org/}.
2797
2798 @item
2799 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2800 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2801 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2802 the QEMU configuration script.
2803
2804 @item
2805 Configure QEMU for Windows cross compilation:
2806 @example
2807 ./configure --enable-mingw32
2808 @end example
2809 If necessary, you can change the cross-prefix according to the prefix
2810 chosen for the MinGW tools with --cross-prefix. You can also use
2811 --prefix to set the Win32 install path.
2812
2813 @item You can install QEMU in the installation directory by typing
2814 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2815 installation directory.
2816
2817 @end itemize
2818
2819 Note: Currently, Wine does not seem able to launch
2820 QEMU for Win32.
2821
2822 @node Mac OS X
2823 @section Mac OS X
2824
2825 The Mac OS X patches are not fully merged in QEMU, so you should look
2826 at the QEMU mailing list archive to have all the necessary
2827 information.
2828
2829 @node Index
2830 @chapter Index
2831 @printindex cp
2832
2833 @bye