PCI AC97 emulation by malc.
[qemu] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item ARM Integrator/CP (ARM)
81 @item ARM Versatile baseboard (ARM)
82 @item ARM RealView Emulation baseboard (ARM)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86 @item Freescale MCF5208EVB (ColdFire V2).
87 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
88 @item Palm Tungsten|E PDA (OMAP310 processor)
89 @end itemize
90
91 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93 @node Installation
94 @chapter Installation
95
96 If you want to compile QEMU yourself, see @ref{compilation}.
97
98 @menu
99 * install_linux::   Linux
100 * install_windows:: Windows
101 * install_mac::     Macintosh
102 @end menu
103
104 @node install_linux
105 @section Linux
106
107 If a precompiled package is available for your distribution - you just
108 have to install it. Otherwise, see @ref{compilation}.
109
110 @node install_windows
111 @section Windows
112
113 Download the experimental binary installer at
114 @url{http://www.free.oszoo.org/@/download.html}.
115
116 @node install_mac
117 @section Mac OS X
118
119 Download the experimental binary installer at
120 @url{http://www.free.oszoo.org/@/download.html}.
121
122 @node QEMU PC System emulator
123 @chapter QEMU PC System emulator
124
125 @menu
126 * pcsys_introduction:: Introduction
127 * pcsys_quickstart::   Quick Start
128 * sec_invocation::     Invocation
129 * pcsys_keys::         Keys
130 * pcsys_monitor::      QEMU Monitor
131 * disk_images::        Disk Images
132 * pcsys_network::      Network emulation
133 * direct_linux_boot::  Direct Linux Boot
134 * pcsys_usb::          USB emulation
135 * vnc_security::       VNC security
136 * gdb_usage::          GDB usage
137 * pcsys_os_specific::  Target OS specific information
138 @end menu
139
140 @node pcsys_introduction
141 @section Introduction
142
143 @c man begin DESCRIPTION
144
145 The QEMU PC System emulator simulates the
146 following peripherals:
147
148 @itemize @minus
149 @item
150 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151 @item
152 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153 extensions (hardware level, including all non standard modes).
154 @item
155 PS/2 mouse and keyboard
156 @item
157 2 PCI IDE interfaces with hard disk and CD-ROM support
158 @item
159 Floppy disk
160 @item
161 PCI/ISA PCI network adapters
162 @item
163 Serial ports
164 @item
165 Creative SoundBlaster 16 sound card
166 @item
167 ENSONIQ AudioPCI ES1370 sound card
168 @item
169 Intel 82801AA AC97 Audio compatible sound card
170 @item
171 Adlib(OPL2) - Yamaha YM3812 compatible chip
172 @item
173 PCI UHCI USB controller and a virtual USB hub.
174 @end itemize
175
176 SMP is supported with up to 255 CPUs.
177
178 Note that adlib and ac97 are only available when QEMU was configured
179 with --enable-adlib, --enable-ac97 respectively.
180
181 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
182 VGA BIOS.
183
184 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
185
186 @c man end
187
188 @node pcsys_quickstart
189 @section Quick Start
190
191 Download and uncompress the linux image (@file{linux.img}) and type:
192
193 @example
194 qemu linux.img
195 @end example
196
197 Linux should boot and give you a prompt.
198
199 @node sec_invocation
200 @section Invocation
201
202 @example
203 @c man begin SYNOPSIS
204 usage: qemu [options] [@var{disk_image}]
205 @c man end
206 @end example
207
208 @c man begin OPTIONS
209 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
210
211 General options:
212 @table @option
213 @item -M @var{machine}
214 Select the emulated @var{machine} (@code{-M ?} for list)
215
216 @item -fda @var{file}
217 @item -fdb @var{file}
218 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
219 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
220
221 @item -hda @var{file}
222 @item -hdb @var{file}
223 @item -hdc @var{file}
224 @item -hdd @var{file}
225 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
226
227 @item -cdrom @var{file}
228 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
229 @option{-cdrom} at the same time). You can use the host CD-ROM by
230 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
231
232 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
233
234 Define a new drive. Valid options are:
235
236 @table @code
237 @item file=@var{file}
238 This option defines which disk image (@pxref{disk_images}) to use with
239 this drive. If the filename contains comma, you must double it
240 (for instance, "file=my,,file" to use file "my,file").
241 @item if=@var{interface}
242 This option defines on which type on interface the drive is connected.
243 Available types are: ide, scsi, sd, mtd, floppy, pflash.
244 @item bus=@var{bus},unit=@var{unit}
245 These options define where is connected the drive by defining the bus number and
246 the unit id.
247 @item index=@var{index}
248 This option defines where is connected the drive by using an index in the list
249 of available connectors of a given interface type.
250 @item media=@var{media}
251 This option defines the type of the media: disk or cdrom.
252 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
253 These options have the same definition as they have in @option{-hdachs}.
254 @item snapshot=@var{snapshot}
255 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
256 @item cache=@var{cache}
257 @var{cache} is "on" or "off" and allows to disable host cache to access data.
258 @end table
259
260 Instead of @option{-cdrom} you can use:
261 @example
262 qemu -drive file=file,index=2,media=cdrom
263 @end example
264
265 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
266 use:
267 @example
268 qemu -drive file=file,index=0,media=disk
269 qemu -drive file=file,index=1,media=disk
270 qemu -drive file=file,index=2,media=disk
271 qemu -drive file=file,index=3,media=disk
272 @end example
273
274 You can connect a CDROM to the slave of ide0:
275 @example
276 qemu -drive file=file,if=ide,index=1,media=cdrom
277 @end example
278
279 If you don't specify the "file=" argument, you define an empty drive:
280 @example
281 qemu -drive if=ide,index=1,media=cdrom
282 @end example
283
284 You can connect a SCSI disk with unit ID 6 on the bus #0:
285 @example
286 qemu -drive file=file,if=scsi,bus=0,unit=6
287 @end example
288
289 Instead of @option{-fda}, @option{-fdb}, you can use:
290 @example
291 qemu -drive file=file,index=0,if=floppy
292 qemu -drive file=file,index=1,if=floppy
293 @end example
294
295 By default, @var{interface} is "ide" and @var{index} is automatically
296 incremented:
297 @example
298 qemu -drive file=a -drive file=b"
299 @end example
300 is interpreted like:
301 @example
302 qemu -hda a -hdb b
303 @end example
304
305 @item -boot [a|c|d|n]
306 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
307 is the default.
308
309 @item -snapshot
310 Write to temporary files instead of disk image files. In this case,
311 the raw disk image you use is not written back. You can however force
312 the write back by pressing @key{C-a s} (@pxref{disk_images}).
313
314 @item -no-fd-bootchk
315 Disable boot signature checking for floppy disks in Bochs BIOS. It may
316 be needed to boot from old floppy disks.
317
318 @item -m @var{megs}
319 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
320
321 @item -smp @var{n}
322 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
323 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
324 to 4.
325
326 @item -audio-help
327
328 Will show the audio subsystem help: list of drivers, tunable
329 parameters.
330
331 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
332
333 Enable audio and selected sound hardware. Use ? to print all
334 available sound hardware.
335
336 @example
337 qemu -soundhw sb16,adlib hda
338 qemu -soundhw es1370 hda
339 qemu -soundhw ac97 hda
340 qemu -soundhw all hda
341 qemu -soundhw ?
342 @end example
343
344 Note that Linux's i810_audio OSS kernel (for AC97) module might
345 require manually specifying clocking.
346
347 @example
348 modprobe i810_audio clocking=48000
349 @end example
350
351 @item -localtime
352 Set the real time clock to local time (the default is to UTC
353 time). This option is needed to have correct date in MS-DOS or
354 Windows.
355
356 @item -startdate @var{date}
357 Set the initial date of the real time clock. Valid format for
358 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
359 @code{2006-06-17}. The default value is @code{now}.
360
361 @item -pidfile @var{file}
362 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
363 from a script.
364
365 @item -daemonize
366 Daemonize the QEMU process after initialization.  QEMU will not detach from
367 standard IO until it is ready to receive connections on any of its devices.
368 This option is a useful way for external programs to launch QEMU without having
369 to cope with initialization race conditions.
370
371 @item -win2k-hack
372 Use it when installing Windows 2000 to avoid a disk full bug. After
373 Windows 2000 is installed, you no longer need this option (this option
374 slows down the IDE transfers).
375
376 @item -option-rom @var{file}
377 Load the contents of @var{file} as an option ROM.
378 This option is useful to load things like EtherBoot.
379
380 @item -name @var{name}
381 Sets the @var{name} of the guest.
382 This name will be display in the SDL window caption.
383 The @var{name} will also be used for the VNC server.
384
385 @end table
386
387 Display options:
388 @table @option
389
390 @item -nographic
391
392 Normally, QEMU uses SDL to display the VGA output. With this option,
393 you can totally disable graphical output so that QEMU is a simple
394 command line application. The emulated serial port is redirected on
395 the console. Therefore, you can still use QEMU to debug a Linux kernel
396 with a serial console.
397
398 @item -no-frame
399
400 Do not use decorations for SDL windows and start them using the whole
401 available screen space. This makes the using QEMU in a dedicated desktop
402 workspace more convenient.
403
404 @item -full-screen
405 Start in full screen.
406
407 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
408
409 Normally, QEMU uses SDL to display the VGA output.  With this option,
410 you can have QEMU listen on VNC display @var{display} and redirect the VGA
411 display over the VNC session.  It is very useful to enable the usb
412 tablet device when using this option (option @option{-usbdevice
413 tablet}). When using the VNC display, you must use the @option{-k}
414 parameter to set the keyboard layout if you are not using en-us. Valid
415 syntax for the @var{display} is
416
417 @table @code
418
419 @item @var{interface}:@var{d}
420
421 TCP connections will only be allowed from @var{interface} on display @var{d}.
422 By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
423 be omitted in which case the server will bind to all interfaces.
424
425 @item @var{unix}:@var{path}
426
427 Connections will be allowed over UNIX domain sockets where @var{path} is the
428 location of a unix socket to listen for connections on.
429
430 @item none
431
432 VNC is initialized by not started. The monitor @code{change} command can be used
433 to later start the VNC server.
434
435 @end table
436
437 Following the @var{display} value there may be one or more @var{option} flags
438 separated by commas. Valid options are
439
440 @table @code
441
442 @item password
443
444 Require that password based authentication is used for client connections.
445 The password must be set separately using the @code{change} command in the
446 @ref{pcsys_monitor}
447
448 @item tls
449
450 Require that client use TLS when communicating with the VNC server. This
451 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
452 attack. It is recommended that this option be combined with either the
453 @var{x509} or @var{x509verify} options.
454
455 @item x509=@var{/path/to/certificate/dir}
456
457 Valid if @option{tls} is specified. Require that x509 credentials are used
458 for negotiating the TLS session. The server will send its x509 certificate
459 to the client. It is recommended that a password be set on the VNC server
460 to provide authentication of the client when this is used. The path following
461 this option specifies where the x509 certificates are to be loaded from.
462 See the @ref{vnc_security} section for details on generating certificates.
463
464 @item x509verify=@var{/path/to/certificate/dir}
465
466 Valid if @option{tls} is specified. Require that x509 credentials are used
467 for negotiating the TLS session. The server will send its x509 certificate
468 to the client, and request that the client send its own x509 certificate.
469 The server will validate the client's certificate against the CA certificate,
470 and reject clients when validation fails. If the certificate authority is
471 trusted, this is a sufficient authentication mechanism. You may still wish
472 to set a password on the VNC server as a second authentication layer. The
473 path following this option specifies where the x509 certificates are to
474 be loaded from. See the @ref{vnc_security} section for details on generating
475 certificates.
476
477 @end table
478
479 @item -k @var{language}
480
481 Use keyboard layout @var{language} (for example @code{fr} for
482 French). This option is only needed where it is not easy to get raw PC
483 keycodes (e.g. on Macs, with some X11 servers or with a VNC
484 display). You don't normally need to use it on PC/Linux or PC/Windows
485 hosts.
486
487 The available layouts are:
488 @example
489 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
490 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
491 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
492 @end example
493
494 The default is @code{en-us}.
495
496 @end table
497
498 USB options:
499 @table @option
500
501 @item -usb
502 Enable the USB driver (will be the default soon)
503
504 @item -usbdevice @var{devname}
505 Add the USB device @var{devname}. @xref{usb_devices}.
506
507 @table @code
508
509 @item mouse
510 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
511
512 @item tablet
513 Pointer device that uses absolute coordinates (like a touchscreen). This
514 means qemu is able to report the mouse position without having to grab the
515 mouse. Also overrides the PS/2 mouse emulation when activated.
516
517 @item disk:file
518 Mass storage device based on file
519
520 @item host:bus.addr
521 Pass through the host device identified by bus.addr (Linux only).
522
523 @item host:vendor_id:product_id
524 Pass through the host device identified by vendor_id:product_id (Linux only).
525
526 @end table
527
528 @end table
529
530 Network options:
531
532 @table @option
533
534 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
535 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
536 = 0 is the default). The NIC is an ne2k_pci by default on the PC
537 target. Optionally, the MAC address can be changed. If no
538 @option{-net} option is specified, a single NIC is created.
539 Qemu can emulate several different models of network card.
540 Valid values for @var{type} are
541 @code{i82551}, @code{i82557b}, @code{i82559er},
542 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
543 @code{smc91c111}, @code{lance} and @code{mcf_fec}.
544 Not all devices are supported on all targets.  Use -net nic,model=?
545 for a list of available devices for your target.
546
547 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
548 Use the user mode network stack which requires no administrator
549 privilege to run.  @option{hostname=name} can be used to specify the client
550 hostname reported by the builtin DHCP server.
551
552 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
553 Connect the host TAP network interface @var{name} to VLAN @var{n} and
554 use the network script @var{file} to configure it. The default
555 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
556 disable script execution. If @var{name} is not
557 provided, the OS automatically provides one. @option{fd}=@var{h} can be
558 used to specify the handle of an already opened host TAP interface. Example:
559
560 @example
561 qemu linux.img -net nic -net tap
562 @end example
563
564 More complicated example (two NICs, each one connected to a TAP device)
565 @example
566 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
567                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
568 @end example
569
570
571 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
572
573 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
574 machine using a TCP socket connection. If @option{listen} is
575 specified, QEMU waits for incoming connections on @var{port}
576 (@var{host} is optional). @option{connect} is used to connect to
577 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
578 specifies an already opened TCP socket.
579
580 Example:
581 @example
582 # launch a first QEMU instance
583 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
584                -net socket,listen=:1234
585 # connect the VLAN 0 of this instance to the VLAN 0
586 # of the first instance
587 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
588                -net socket,connect=127.0.0.1:1234
589 @end example
590
591 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
592
593 Create a VLAN @var{n} shared with another QEMU virtual
594 machines using a UDP multicast socket, effectively making a bus for
595 every QEMU with same multicast address @var{maddr} and @var{port}.
596 NOTES:
597 @enumerate
598 @item
599 Several QEMU can be running on different hosts and share same bus (assuming
600 correct multicast setup for these hosts).
601 @item
602 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
603 @url{http://user-mode-linux.sf.net}.
604 @item
605 Use @option{fd=h} to specify an already opened UDP multicast socket.
606 @end enumerate
607
608 Example:
609 @example
610 # launch one QEMU instance
611 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
612                -net socket,mcast=230.0.0.1:1234
613 # launch another QEMU instance on same "bus"
614 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
615                -net socket,mcast=230.0.0.1:1234
616 # launch yet another QEMU instance on same "bus"
617 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
618                -net socket,mcast=230.0.0.1:1234
619 @end example
620
621 Example (User Mode Linux compat.):
622 @example
623 # launch QEMU instance (note mcast address selected
624 # is UML's default)
625 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
626                -net socket,mcast=239.192.168.1:1102
627 # launch UML
628 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
629 @end example
630
631 @item -net none
632 Indicate that no network devices should be configured. It is used to
633 override the default configuration (@option{-net nic -net user}) which
634 is activated if no @option{-net} options are provided.
635
636 @item -tftp @var{dir}
637 When using the user mode network stack, activate a built-in TFTP
638 server. The files in @var{dir} will be exposed as the root of a TFTP server.
639 The TFTP client on the guest must be configured in binary mode (use the command
640 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
641 usual 10.0.2.2.
642
643 @item -bootp @var{file}
644 When using the user mode network stack, broadcast @var{file} as the BOOTP
645 filename.  In conjunction with @option{-tftp}, this can be used to network boot
646 a guest from a local directory.
647
648 Example (using pxelinux):
649 @example
650 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
651 @end example
652
653 @item -smb @var{dir}
654 When using the user mode network stack, activate a built-in SMB
655 server so that Windows OSes can access to the host files in @file{@var{dir}}
656 transparently.
657
658 In the guest Windows OS, the line:
659 @example
660 10.0.2.4 smbserver
661 @end example
662 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
663 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
664
665 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
666
667 Note that a SAMBA server must be installed on the host OS in
668 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
669 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
670
671 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
672
673 When using the user mode network stack, redirect incoming TCP or UDP
674 connections to the host port @var{host-port} to the guest
675 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
676 is not specified, its value is 10.0.2.15 (default address given by the
677 built-in DHCP server).
678
679 For example, to redirect host X11 connection from screen 1 to guest
680 screen 0, use the following:
681
682 @example
683 # on the host
684 qemu -redir tcp:6001::6000 [...]
685 # this host xterm should open in the guest X11 server
686 xterm -display :1
687 @end example
688
689 To redirect telnet connections from host port 5555 to telnet port on
690 the guest, use the following:
691
692 @example
693 # on the host
694 qemu -redir tcp:5555::23 [...]
695 telnet localhost 5555
696 @end example
697
698 Then when you use on the host @code{telnet localhost 5555}, you
699 connect to the guest telnet server.
700
701 @end table
702
703 Linux boot specific: When using these options, you can use a given
704 Linux kernel without installing it in the disk image. It can be useful
705 for easier testing of various kernels.
706
707 @table @option
708
709 @item -kernel @var{bzImage}
710 Use @var{bzImage} as kernel image.
711
712 @item -append @var{cmdline}
713 Use @var{cmdline} as kernel command line
714
715 @item -initrd @var{file}
716 Use @var{file} as initial ram disk.
717
718 @end table
719
720 Debug/Expert options:
721 @table @option
722
723 @item -serial @var{dev}
724 Redirect the virtual serial port to host character device
725 @var{dev}. The default device is @code{vc} in graphical mode and
726 @code{stdio} in non graphical mode.
727
728 This option can be used several times to simulate up to 4 serials
729 ports.
730
731 Use @code{-serial none} to disable all serial ports.
732
733 Available character devices are:
734 @table @code
735 @item vc[:WxH]
736 Virtual console. Optionally, a width and height can be given in pixel with
737 @example
738 vc:800x600
739 @end example
740 It is also possible to specify width or height in characters:
741 @example
742 vc:80Cx24C
743 @end example
744 @item pty
745 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
746 @item none
747 No device is allocated.
748 @item null
749 void device
750 @item /dev/XXX
751 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
752 parameters are set according to the emulated ones.
753 @item /dev/parport@var{N}
754 [Linux only, parallel port only] Use host parallel port
755 @var{N}. Currently SPP and EPP parallel port features can be used.
756 @item file:@var{filename}
757 Write output to @var{filename}. No character can be read.
758 @item stdio
759 [Unix only] standard input/output
760 @item pipe:@var{filename}
761 name pipe @var{filename}
762 @item COM@var{n}
763 [Windows only] Use host serial port @var{n}
764 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
765 This implements UDP Net Console.
766 When @var{remote_host} or @var{src_ip} are not specified
767 they default to @code{0.0.0.0}.
768 When not using a specified @var{src_port} a random port is automatically chosen.
769
770 If you just want a simple readonly console you can use @code{netcat} or
771 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
772 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
773 will appear in the netconsole session.
774
775 If you plan to send characters back via netconsole or you want to stop
776 and start qemu a lot of times, you should have qemu use the same
777 source port each time by using something like @code{-serial
778 udp::4555@@:4556} to qemu. Another approach is to use a patched
779 version of netcat which can listen to a TCP port and send and receive
780 characters via udp.  If you have a patched version of netcat which
781 activates telnet remote echo and single char transfer, then you can
782 use the following options to step up a netcat redirector to allow
783 telnet on port 5555 to access the qemu port.
784 @table @code
785 @item Qemu Options:
786 -serial udp::4555@@:4556
787 @item netcat options:
788 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
789 @item telnet options:
790 localhost 5555
791 @end table
792
793
794 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
795 The TCP Net Console has two modes of operation.  It can send the serial
796 I/O to a location or wait for a connection from a location.  By default
797 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
798 the @var{server} option QEMU will wait for a client socket application
799 to connect to the port before continuing, unless the @code{nowait}
800 option was specified.  The @code{nodelay} option disables the Nagle buffering
801 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
802 one TCP connection at a time is accepted. You can use @code{telnet} to
803 connect to the corresponding character device.
804 @table @code
805 @item Example to send tcp console to 192.168.0.2 port 4444
806 -serial tcp:192.168.0.2:4444
807 @item Example to listen and wait on port 4444 for connection
808 -serial tcp::4444,server
809 @item Example to not wait and listen on ip 192.168.0.100 port 4444
810 -serial tcp:192.168.0.100:4444,server,nowait
811 @end table
812
813 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
814 The telnet protocol is used instead of raw tcp sockets.  The options
815 work the same as if you had specified @code{-serial tcp}.  The
816 difference is that the port acts like a telnet server or client using
817 telnet option negotiation.  This will also allow you to send the
818 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
819 sequence.  Typically in unix telnet you do it with Control-] and then
820 type "send break" followed by pressing the enter key.
821
822 @item unix:@var{path}[,server][,nowait]
823 A unix domain socket is used instead of a tcp socket.  The option works the
824 same as if you had specified @code{-serial tcp} except the unix domain socket
825 @var{path} is used for connections.
826
827 @item mon:@var{dev_string}
828 This is a special option to allow the monitor to be multiplexed onto
829 another serial port.  The monitor is accessed with key sequence of
830 @key{Control-a} and then pressing @key{c}. See monitor access
831 @ref{pcsys_keys} in the -nographic section for more keys.
832 @var{dev_string} should be any one of the serial devices specified
833 above.  An example to multiplex the monitor onto a telnet server
834 listening on port 4444 would be:
835 @table @code
836 @item -serial mon:telnet::4444,server,nowait
837 @end table
838
839 @end table
840
841 @item -parallel @var{dev}
842 Redirect the virtual parallel port to host device @var{dev} (same
843 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
844 be used to use hardware devices connected on the corresponding host
845 parallel port.
846
847 This option can be used several times to simulate up to 3 parallel
848 ports.
849
850 Use @code{-parallel none} to disable all parallel ports.
851
852 @item -monitor @var{dev}
853 Redirect the monitor to host device @var{dev} (same devices as the
854 serial port).
855 The default device is @code{vc} in graphical mode and @code{stdio} in
856 non graphical mode.
857
858 @item -echr numeric_ascii_value
859 Change the escape character used for switching to the monitor when using
860 monitor and serial sharing.  The default is @code{0x01} when using the
861 @code{-nographic} option.  @code{0x01} is equal to pressing
862 @code{Control-a}.  You can select a different character from the ascii
863 control keys where 1 through 26 map to Control-a through Control-z.  For
864 instance you could use the either of the following to change the escape
865 character to Control-t.
866 @table @code
867 @item -echr 0x14
868 @item -echr 20
869 @end table
870
871 @item -s
872 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
873 @item -p @var{port}
874 Change gdb connection port.  @var{port} can be either a decimal number
875 to specify a TCP port, or a host device (same devices as the serial port).
876 @item -S
877 Do not start CPU at startup (you must type 'c' in the monitor).
878 @item -d
879 Output log in /tmp/qemu.log
880 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
881 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
882 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
883 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
884 all those parameters. This option is useful for old MS-DOS disk
885 images.
886
887 @item -L path
888 Set the directory for the BIOS, VGA BIOS and keymaps.
889
890 @item -std-vga
891 Simulate a standard VGA card with Bochs VBE extensions (default is
892 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
893 VBE extensions (e.g. Windows XP) and if you want to use high
894 resolution modes (>= 1280x1024x16) then you should use this option.
895
896 @item -no-acpi
897 Disable ACPI (Advanced Configuration and Power Interface) support. Use
898 it if your guest OS complains about ACPI problems (PC target machine
899 only).
900
901 @item -no-reboot
902 Exit instead of rebooting.
903
904 @item -loadvm file
905 Start right away with a saved state (@code{loadvm} in monitor)
906
907 @item -semihosting
908 Enable semihosting syscall emulation (ARM and M68K target machines only).
909
910 On ARM this implements the "Angel" interface.
911 On M68K this implements the "ColdFire GDB" interface used by libgloss.
912
913 Note that this allows guest direct access to the host filesystem,
914 so should only be used with trusted guest OS.
915 @end table
916
917 @c man end
918
919 @node pcsys_keys
920 @section Keys
921
922 @c man begin OPTIONS
923
924 During the graphical emulation, you can use the following keys:
925 @table @key
926 @item Ctrl-Alt-f
927 Toggle full screen
928
929 @item Ctrl-Alt-n
930 Switch to virtual console 'n'. Standard console mappings are:
931 @table @emph
932 @item 1
933 Target system display
934 @item 2
935 Monitor
936 @item 3
937 Serial port
938 @end table
939
940 @item Ctrl-Alt
941 Toggle mouse and keyboard grab.
942 @end table
943
944 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
945 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
946
947 During emulation, if you are using the @option{-nographic} option, use
948 @key{Ctrl-a h} to get terminal commands:
949
950 @table @key
951 @item Ctrl-a h
952 Print this help
953 @item Ctrl-a x
954 Exit emulator
955 @item Ctrl-a s
956 Save disk data back to file (if -snapshot)
957 @item Ctrl-a t
958 toggle console timestamps
959 @item Ctrl-a b
960 Send break (magic sysrq in Linux)
961 @item Ctrl-a c
962 Switch between console and monitor
963 @item Ctrl-a Ctrl-a
964 Send Ctrl-a
965 @end table
966 @c man end
967
968 @ignore
969
970 @c man begin SEEALSO
971 The HTML documentation of QEMU for more precise information and Linux
972 user mode emulator invocation.
973 @c man end
974
975 @c man begin AUTHOR
976 Fabrice Bellard
977 @c man end
978
979 @end ignore
980
981 @node pcsys_monitor
982 @section QEMU Monitor
983
984 The QEMU monitor is used to give complex commands to the QEMU
985 emulator. You can use it to:
986
987 @itemize @minus
988
989 @item
990 Remove or insert removable media images
991 (such as CD-ROM or floppies).
992
993 @item
994 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
995 from a disk file.
996
997 @item Inspect the VM state without an external debugger.
998
999 @end itemize
1000
1001 @subsection Commands
1002
1003 The following commands are available:
1004
1005 @table @option
1006
1007 @item help or ? [@var{cmd}]
1008 Show the help for all commands or just for command @var{cmd}.
1009
1010 @item commit
1011 Commit changes to the disk images (if -snapshot is used).
1012
1013 @item info @var{subcommand}
1014 Show various information about the system state.
1015
1016 @table @option
1017 @item info network
1018 show the various VLANs and the associated devices
1019 @item info block
1020 show the block devices
1021 @item info registers
1022 show the cpu registers
1023 @item info history
1024 show the command line history
1025 @item info pci
1026 show emulated PCI device
1027 @item info usb
1028 show USB devices plugged on the virtual USB hub
1029 @item info usbhost
1030 show all USB host devices
1031 @item info capture
1032 show information about active capturing
1033 @item info snapshots
1034 show list of VM snapshots
1035 @item info mice
1036 show which guest mouse is receiving events
1037 @end table
1038
1039 @item q or quit
1040 Quit the emulator.
1041
1042 @item eject [-f] @var{device}
1043 Eject a removable medium (use -f to force it).
1044
1045 @item change @var{device} @var{setting}
1046
1047 Change the configuration of a device.
1048
1049 @table @option
1050 @item change @var{diskdevice} @var{filename}
1051 Change the medium for a removable disk device to point to @var{filename}. eg
1052
1053 @example
1054 (qemu) change cdrom /path/to/some.iso
1055 @end example
1056
1057 @item change vnc @var{display},@var{options}
1058 Change the configuration of the VNC server. The valid syntax for @var{display}
1059 and @var{options} are described at @ref{sec_invocation}. eg
1060
1061 @example
1062 (qemu) change vnc localhost:1
1063 @end example
1064
1065 @item change vnc password
1066
1067 Change the password associated with the VNC server. The monitor will prompt for
1068 the new password to be entered. VNC passwords are only significant upto 8 letters.
1069 eg.
1070
1071 @example
1072 (qemu) change vnc password
1073 Password: ********
1074 @end example
1075
1076 @end table
1077
1078 @item screendump @var{filename}
1079 Save screen into PPM image @var{filename}.
1080
1081 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1082 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1083 with optional scroll axis @var{dz}.
1084
1085 @item mouse_button @var{val}
1086 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1087
1088 @item mouse_set @var{index}
1089 Set which mouse device receives events at given @var{index}, index
1090 can be obtained with
1091 @example
1092 info mice
1093 @end example
1094
1095 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1096 Capture audio into @var{filename}. Using sample rate @var{frequency}
1097 bits per sample @var{bits} and number of channels @var{channels}.
1098
1099 Defaults:
1100 @itemize @minus
1101 @item Sample rate = 44100 Hz - CD quality
1102 @item Bits = 16
1103 @item Number of channels = 2 - Stereo
1104 @end itemize
1105
1106 @item stopcapture @var{index}
1107 Stop capture with a given @var{index}, index can be obtained with
1108 @example
1109 info capture
1110 @end example
1111
1112 @item log @var{item1}[,...]
1113 Activate logging of the specified items to @file{/tmp/qemu.log}.
1114
1115 @item savevm [@var{tag}|@var{id}]
1116 Create a snapshot of the whole virtual machine. If @var{tag} is
1117 provided, it is used as human readable identifier. If there is already
1118 a snapshot with the same tag or ID, it is replaced. More info at
1119 @ref{vm_snapshots}.
1120
1121 @item loadvm @var{tag}|@var{id}
1122 Set the whole virtual machine to the snapshot identified by the tag
1123 @var{tag} or the unique snapshot ID @var{id}.
1124
1125 @item delvm @var{tag}|@var{id}
1126 Delete the snapshot identified by @var{tag} or @var{id}.
1127
1128 @item stop
1129 Stop emulation.
1130
1131 @item c or cont
1132 Resume emulation.
1133
1134 @item gdbserver [@var{port}]
1135 Start gdbserver session (default @var{port}=1234)
1136
1137 @item x/fmt @var{addr}
1138 Virtual memory dump starting at @var{addr}.
1139
1140 @item xp /@var{fmt} @var{addr}
1141 Physical memory dump starting at @var{addr}.
1142
1143 @var{fmt} is a format which tells the command how to format the
1144 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1145
1146 @table @var
1147 @item count
1148 is the number of items to be dumped.
1149
1150 @item format
1151 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1152 c (char) or i (asm instruction).
1153
1154 @item size
1155 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1156 @code{h} or @code{w} can be specified with the @code{i} format to
1157 respectively select 16 or 32 bit code instruction size.
1158
1159 @end table
1160
1161 Examples:
1162 @itemize
1163 @item
1164 Dump 10 instructions at the current instruction pointer:
1165 @example
1166 (qemu) x/10i $eip
1167 0x90107063:  ret
1168 0x90107064:  sti
1169 0x90107065:  lea    0x0(%esi,1),%esi
1170 0x90107069:  lea    0x0(%edi,1),%edi
1171 0x90107070:  ret
1172 0x90107071:  jmp    0x90107080
1173 0x90107073:  nop
1174 0x90107074:  nop
1175 0x90107075:  nop
1176 0x90107076:  nop
1177 @end example
1178
1179 @item
1180 Dump 80 16 bit values at the start of the video memory.
1181 @smallexample
1182 (qemu) xp/80hx 0xb8000
1183 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1184 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1185 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1186 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1187 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1188 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1189 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1190 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1191 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1192 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1193 @end smallexample
1194 @end itemize
1195
1196 @item p or print/@var{fmt} @var{expr}
1197
1198 Print expression value. Only the @var{format} part of @var{fmt} is
1199 used.
1200
1201 @item sendkey @var{keys}
1202
1203 Send @var{keys} to the emulator. Use @code{-} to press several keys
1204 simultaneously. Example:
1205 @example
1206 sendkey ctrl-alt-f1
1207 @end example
1208
1209 This command is useful to send keys that your graphical user interface
1210 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1211
1212 @item system_reset
1213
1214 Reset the system.
1215
1216 @item usb_add @var{devname}
1217
1218 Add the USB device @var{devname}.  For details of available devices see
1219 @ref{usb_devices}
1220
1221 @item usb_del @var{devname}
1222
1223 Remove the USB device @var{devname} from the QEMU virtual USB
1224 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1225 command @code{info usb} to see the devices you can remove.
1226
1227 @end table
1228
1229 @subsection Integer expressions
1230
1231 The monitor understands integers expressions for every integer
1232 argument. You can use register names to get the value of specifics
1233 CPU registers by prefixing them with @emph{$}.
1234
1235 @node disk_images
1236 @section Disk Images
1237
1238 Since version 0.6.1, QEMU supports many disk image formats, including
1239 growable disk images (their size increase as non empty sectors are
1240 written), compressed and encrypted disk images. Version 0.8.3 added
1241 the new qcow2 disk image format which is essential to support VM
1242 snapshots.
1243
1244 @menu
1245 * disk_images_quickstart::    Quick start for disk image creation
1246 * disk_images_snapshot_mode:: Snapshot mode
1247 * vm_snapshots::              VM snapshots
1248 * qemu_img_invocation::       qemu-img Invocation
1249 * host_drives::               Using host drives
1250 * disk_images_fat_images::    Virtual FAT disk images
1251 @end menu
1252
1253 @node disk_images_quickstart
1254 @subsection Quick start for disk image creation
1255
1256 You can create a disk image with the command:
1257 @example
1258 qemu-img create myimage.img mysize
1259 @end example
1260 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1261 size in kilobytes. You can add an @code{M} suffix to give the size in
1262 megabytes and a @code{G} suffix for gigabytes.
1263
1264 See @ref{qemu_img_invocation} for more information.
1265
1266 @node disk_images_snapshot_mode
1267 @subsection Snapshot mode
1268
1269 If you use the option @option{-snapshot}, all disk images are
1270 considered as read only. When sectors in written, they are written in
1271 a temporary file created in @file{/tmp}. You can however force the
1272 write back to the raw disk images by using the @code{commit} monitor
1273 command (or @key{C-a s} in the serial console).
1274
1275 @node vm_snapshots
1276 @subsection VM snapshots
1277
1278 VM snapshots are snapshots of the complete virtual machine including
1279 CPU state, RAM, device state and the content of all the writable
1280 disks. In order to use VM snapshots, you must have at least one non
1281 removable and writable block device using the @code{qcow2} disk image
1282 format. Normally this device is the first virtual hard drive.
1283
1284 Use the monitor command @code{savevm} to create a new VM snapshot or
1285 replace an existing one. A human readable name can be assigned to each
1286 snapshot in addition to its numerical ID.
1287
1288 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1289 a VM snapshot. @code{info snapshots} lists the available snapshots
1290 with their associated information:
1291
1292 @example
1293 (qemu) info snapshots
1294 Snapshot devices: hda
1295 Snapshot list (from hda):
1296 ID        TAG                 VM SIZE                DATE       VM CLOCK
1297 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1298 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1299 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1300 @end example
1301
1302 A VM snapshot is made of a VM state info (its size is shown in
1303 @code{info snapshots}) and a snapshot of every writable disk image.
1304 The VM state info is stored in the first @code{qcow2} non removable
1305 and writable block device. The disk image snapshots are stored in
1306 every disk image. The size of a snapshot in a disk image is difficult
1307 to evaluate and is not shown by @code{info snapshots} because the
1308 associated disk sectors are shared among all the snapshots to save
1309 disk space (otherwise each snapshot would need a full copy of all the
1310 disk images).
1311
1312 When using the (unrelated) @code{-snapshot} option
1313 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1314 but they are deleted as soon as you exit QEMU.
1315
1316 VM snapshots currently have the following known limitations:
1317 @itemize
1318 @item
1319 They cannot cope with removable devices if they are removed or
1320 inserted after a snapshot is done.
1321 @item
1322 A few device drivers still have incomplete snapshot support so their
1323 state is not saved or restored properly (in particular USB).
1324 @end itemize
1325
1326 @node qemu_img_invocation
1327 @subsection @code{qemu-img} Invocation
1328
1329 @include qemu-img.texi
1330
1331 @node host_drives
1332 @subsection Using host drives
1333
1334 In addition to disk image files, QEMU can directly access host
1335 devices. We describe here the usage for QEMU version >= 0.8.3.
1336
1337 @subsubsection Linux
1338
1339 On Linux, you can directly use the host device filename instead of a
1340 disk image filename provided you have enough privileges to access
1341 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1342 @file{/dev/fd0} for the floppy.
1343
1344 @table @code
1345 @item CD
1346 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1347 specific code to detect CDROM insertion or removal. CDROM ejection by
1348 the guest OS is supported. Currently only data CDs are supported.
1349 @item Floppy
1350 You can specify a floppy device even if no floppy is loaded. Floppy
1351 removal is currently not detected accurately (if you change floppy
1352 without doing floppy access while the floppy is not loaded, the guest
1353 OS will think that the same floppy is loaded).
1354 @item Hard disks
1355 Hard disks can be used. Normally you must specify the whole disk
1356 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1357 see it as a partitioned disk. WARNING: unless you know what you do, it
1358 is better to only make READ-ONLY accesses to the hard disk otherwise
1359 you may corrupt your host data (use the @option{-snapshot} command
1360 line option or modify the device permissions accordingly).
1361 @end table
1362
1363 @subsubsection Windows
1364
1365 @table @code
1366 @item CD
1367 The preferred syntax is the drive letter (e.g. @file{d:}). The
1368 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1369 supported as an alias to the first CDROM drive.
1370
1371 Currently there is no specific code to handle removable media, so it
1372 is better to use the @code{change} or @code{eject} monitor commands to
1373 change or eject media.
1374 @item Hard disks
1375 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1376 where @var{N} is the drive number (0 is the first hard disk).
1377
1378 WARNING: unless you know what you do, it is better to only make
1379 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1380 host data (use the @option{-snapshot} command line so that the
1381 modifications are written in a temporary file).
1382 @end table
1383
1384
1385 @subsubsection Mac OS X
1386
1387 @file{/dev/cdrom} is an alias to the first CDROM.
1388
1389 Currently there is no specific code to handle removable media, so it
1390 is better to use the @code{change} or @code{eject} monitor commands to
1391 change or eject media.
1392
1393 @node disk_images_fat_images
1394 @subsection Virtual FAT disk images
1395
1396 QEMU can automatically create a virtual FAT disk image from a
1397 directory tree. In order to use it, just type:
1398
1399 @example
1400 qemu linux.img -hdb fat:/my_directory
1401 @end example
1402
1403 Then you access access to all the files in the @file{/my_directory}
1404 directory without having to copy them in a disk image or to export
1405 them via SAMBA or NFS. The default access is @emph{read-only}.
1406
1407 Floppies can be emulated with the @code{:floppy:} option:
1408
1409 @example
1410 qemu linux.img -fda fat:floppy:/my_directory
1411 @end example
1412
1413 A read/write support is available for testing (beta stage) with the
1414 @code{:rw:} option:
1415
1416 @example
1417 qemu linux.img -fda fat:floppy:rw:/my_directory
1418 @end example
1419
1420 What you should @emph{never} do:
1421 @itemize
1422 @item use non-ASCII filenames ;
1423 @item use "-snapshot" together with ":rw:" ;
1424 @item expect it to work when loadvm'ing ;
1425 @item write to the FAT directory on the host system while accessing it with the guest system.
1426 @end itemize
1427
1428 @node pcsys_network
1429 @section Network emulation
1430
1431 QEMU can simulate several network cards (PCI or ISA cards on the PC
1432 target) and can connect them to an arbitrary number of Virtual Local
1433 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1434 VLAN. VLAN can be connected between separate instances of QEMU to
1435 simulate large networks. For simpler usage, a non privileged user mode
1436 network stack can replace the TAP device to have a basic network
1437 connection.
1438
1439 @subsection VLANs
1440
1441 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1442 connection between several network devices. These devices can be for
1443 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1444 (TAP devices).
1445
1446 @subsection Using TAP network interfaces
1447
1448 This is the standard way to connect QEMU to a real network. QEMU adds
1449 a virtual network device on your host (called @code{tapN}), and you
1450 can then configure it as if it was a real ethernet card.
1451
1452 @subsubsection Linux host
1453
1454 As an example, you can download the @file{linux-test-xxx.tar.gz}
1455 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1456 configure properly @code{sudo} so that the command @code{ifconfig}
1457 contained in @file{qemu-ifup} can be executed as root. You must verify
1458 that your host kernel supports the TAP network interfaces: the
1459 device @file{/dev/net/tun} must be present.
1460
1461 See @ref{sec_invocation} to have examples of command lines using the
1462 TAP network interfaces.
1463
1464 @subsubsection Windows host
1465
1466 There is a virtual ethernet driver for Windows 2000/XP systems, called
1467 TAP-Win32. But it is not included in standard QEMU for Windows,
1468 so you will need to get it separately. It is part of OpenVPN package,
1469 so download OpenVPN from : @url{http://openvpn.net/}.
1470
1471 @subsection Using the user mode network stack
1472
1473 By using the option @option{-net user} (default configuration if no
1474 @option{-net} option is specified), QEMU uses a completely user mode
1475 network stack (you don't need root privilege to use the virtual
1476 network). The virtual network configuration is the following:
1477
1478 @example
1479
1480          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1481                            |          (10.0.2.2)
1482                            |
1483                            ---->  DNS server (10.0.2.3)
1484                            |
1485                            ---->  SMB server (10.0.2.4)
1486 @end example
1487
1488 The QEMU VM behaves as if it was behind a firewall which blocks all
1489 incoming connections. You can use a DHCP client to automatically
1490 configure the network in the QEMU VM. The DHCP server assign addresses
1491 to the hosts starting from 10.0.2.15.
1492
1493 In order to check that the user mode network is working, you can ping
1494 the address 10.0.2.2 and verify that you got an address in the range
1495 10.0.2.x from the QEMU virtual DHCP server.
1496
1497 Note that @code{ping} is not supported reliably to the internet as it
1498 would require root privileges. It means you can only ping the local
1499 router (10.0.2.2).
1500
1501 When using the built-in TFTP server, the router is also the TFTP
1502 server.
1503
1504 When using the @option{-redir} option, TCP or UDP connections can be
1505 redirected from the host to the guest. It allows for example to
1506 redirect X11, telnet or SSH connections.
1507
1508 @subsection Connecting VLANs between QEMU instances
1509
1510 Using the @option{-net socket} option, it is possible to make VLANs
1511 that span several QEMU instances. See @ref{sec_invocation} to have a
1512 basic example.
1513
1514 @node direct_linux_boot
1515 @section Direct Linux Boot
1516
1517 This section explains how to launch a Linux kernel inside QEMU without
1518 having to make a full bootable image. It is very useful for fast Linux
1519 kernel testing.
1520
1521 The syntax is:
1522 @example
1523 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1524 @end example
1525
1526 Use @option{-kernel} to provide the Linux kernel image and
1527 @option{-append} to give the kernel command line arguments. The
1528 @option{-initrd} option can be used to provide an INITRD image.
1529
1530 When using the direct Linux boot, a disk image for the first hard disk
1531 @file{hda} is required because its boot sector is used to launch the
1532 Linux kernel.
1533
1534 If you do not need graphical output, you can disable it and redirect
1535 the virtual serial port and the QEMU monitor to the console with the
1536 @option{-nographic} option. The typical command line is:
1537 @example
1538 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1539      -append "root=/dev/hda console=ttyS0" -nographic
1540 @end example
1541
1542 Use @key{Ctrl-a c} to switch between the serial console and the
1543 monitor (@pxref{pcsys_keys}).
1544
1545 @node pcsys_usb
1546 @section USB emulation
1547
1548 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1549 virtual USB devices or real host USB devices (experimental, works only
1550 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1551 as necessary to connect multiple USB devices.
1552
1553 @menu
1554 * usb_devices::
1555 * host_usb_devices::
1556 @end menu
1557 @node usb_devices
1558 @subsection Connecting USB devices
1559
1560 USB devices can be connected with the @option{-usbdevice} commandline option
1561 or the @code{usb_add} monitor command.  Available devices are:
1562
1563 @table @var
1564 @item @code{mouse}
1565 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1566 @item @code{tablet}
1567 Pointer device that uses absolute coordinates (like a touchscreen).
1568 This means qemu is able to report the mouse position without having
1569 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1570 @item @code{disk:@var{file}}
1571 Mass storage device based on @var{file} (@pxref{disk_images})
1572 @item @code{host:@var{bus.addr}}
1573 Pass through the host device identified by @var{bus.addr}
1574 (Linux only)
1575 @item @code{host:@var{vendor_id:product_id}}
1576 Pass through the host device identified by @var{vendor_id:product_id}
1577 (Linux only)
1578 @item @code{wacom-tablet}
1579 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1580 above but it can be used with the tslib library because in addition to touch
1581 coordinates it reports touch pressure.
1582 @item @code{keyboard}
1583 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1584 @end table
1585
1586 @node host_usb_devices
1587 @subsection Using host USB devices on a Linux host
1588
1589 WARNING: this is an experimental feature. QEMU will slow down when
1590 using it. USB devices requiring real time streaming (i.e. USB Video
1591 Cameras) are not supported yet.
1592
1593 @enumerate
1594 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1595 is actually using the USB device. A simple way to do that is simply to
1596 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1597 to @file{mydriver.o.disabled}.
1598
1599 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1600 @example
1601 ls /proc/bus/usb
1602 001  devices  drivers
1603 @end example
1604
1605 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1606 @example
1607 chown -R myuid /proc/bus/usb
1608 @end example
1609
1610 @item Launch QEMU and do in the monitor:
1611 @example
1612 info usbhost
1613   Device 1.2, speed 480 Mb/s
1614     Class 00: USB device 1234:5678, USB DISK
1615 @end example
1616 You should see the list of the devices you can use (Never try to use
1617 hubs, it won't work).
1618
1619 @item Add the device in QEMU by using:
1620 @example
1621 usb_add host:1234:5678
1622 @end example
1623
1624 Normally the guest OS should report that a new USB device is
1625 plugged. You can use the option @option{-usbdevice} to do the same.
1626
1627 @item Now you can try to use the host USB device in QEMU.
1628
1629 @end enumerate
1630
1631 When relaunching QEMU, you may have to unplug and plug again the USB
1632 device to make it work again (this is a bug).
1633
1634 @node vnc_security
1635 @section VNC security
1636
1637 The VNC server capability provides access to the graphical console
1638 of the guest VM across the network. This has a number of security
1639 considerations depending on the deployment scenarios.
1640
1641 @menu
1642 * vnc_sec_none::
1643 * vnc_sec_password::
1644 * vnc_sec_certificate::
1645 * vnc_sec_certificate_verify::
1646 * vnc_sec_certificate_pw::
1647 * vnc_generate_cert::
1648 @end menu
1649 @node vnc_sec_none
1650 @subsection Without passwords
1651
1652 The simplest VNC server setup does not include any form of authentication.
1653 For this setup it is recommended to restrict it to listen on a UNIX domain
1654 socket only. For example
1655
1656 @example
1657 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1658 @end example
1659
1660 This ensures that only users on local box with read/write access to that
1661 path can access the VNC server. To securely access the VNC server from a
1662 remote machine, a combination of netcat+ssh can be used to provide a secure
1663 tunnel.
1664
1665 @node vnc_sec_password
1666 @subsection With passwords
1667
1668 The VNC protocol has limited support for password based authentication. Since
1669 the protocol limits passwords to 8 characters it should not be considered
1670 to provide high security. The password can be fairly easily brute-forced by
1671 a client making repeat connections. For this reason, a VNC server using password
1672 authentication should be restricted to only listen on the loopback interface
1673 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1674 option, and then once QEMU is running the password is set with the monitor. Until
1675 the monitor is used to set the password all clients will be rejected.
1676
1677 @example
1678 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1679 (qemu) change vnc password
1680 Password: ********
1681 (qemu)
1682 @end example
1683
1684 @node vnc_sec_certificate
1685 @subsection With x509 certificates
1686
1687 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1688 TLS for encryption of the session, and x509 certificates for authentication.
1689 The use of x509 certificates is strongly recommended, because TLS on its
1690 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1691 support provides a secure session, but no authentication. This allows any
1692 client to connect, and provides an encrypted session.
1693
1694 @example
1695 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1696 @end example
1697
1698 In the above example @code{/etc/pki/qemu} should contain at least three files,
1699 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1700 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1701 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1702 only be readable by the user owning it.
1703
1704 @node vnc_sec_certificate_verify
1705 @subsection With x509 certificates and client verification
1706
1707 Certificates can also provide a means to authenticate the client connecting.
1708 The server will request that the client provide a certificate, which it will
1709 then validate against the CA certificate. This is a good choice if deploying
1710 in an environment with a private internal certificate authority.
1711
1712 @example
1713 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1714 @end example
1715
1716
1717 @node vnc_sec_certificate_pw
1718 @subsection With x509 certificates, client verification and passwords
1719
1720 Finally, the previous method can be combined with VNC password authentication
1721 to provide two layers of authentication for clients.
1722
1723 @example
1724 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1725 (qemu) change vnc password
1726 Password: ********
1727 (qemu)
1728 @end example
1729
1730 @node vnc_generate_cert
1731 @subsection Generating certificates for VNC
1732
1733 The GNU TLS packages provides a command called @code{certtool} which can
1734 be used to generate certificates and keys in PEM format. At a minimum it
1735 is neccessary to setup a certificate authority, and issue certificates to
1736 each server. If using certificates for authentication, then each client
1737 will also need to be issued a certificate. The recommendation is for the
1738 server to keep its certificates in either @code{/etc/pki/qemu} or for
1739 unprivileged users in @code{$HOME/.pki/qemu}.
1740
1741 @menu
1742 * vnc_generate_ca::
1743 * vnc_generate_server::
1744 * vnc_generate_client::
1745 @end menu
1746 @node vnc_generate_ca
1747 @subsubsection Setup the Certificate Authority
1748
1749 This step only needs to be performed once per organization / organizational
1750 unit. First the CA needs a private key. This key must be kept VERY secret
1751 and secure. If this key is compromised the entire trust chain of the certificates
1752 issued with it is lost.
1753
1754 @example
1755 # certtool --generate-privkey > ca-key.pem
1756 @end example
1757
1758 A CA needs to have a public certificate. For simplicity it can be a self-signed
1759 certificate, or one issue by a commercial certificate issuing authority. To
1760 generate a self-signed certificate requires one core piece of information, the
1761 name of the organization.
1762
1763 @example
1764 # cat > ca.info <<EOF
1765 cn = Name of your organization
1766 ca
1767 cert_signing_key
1768 EOF
1769 # certtool --generate-self-signed \
1770            --load-privkey ca-key.pem
1771            --template ca.info \
1772            --outfile ca-cert.pem
1773 @end example
1774
1775 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1776 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1777
1778 @node vnc_generate_server
1779 @subsubsection Issuing server certificates
1780
1781 Each server (or host) needs to be issued with a key and certificate. When connecting
1782 the certificate is sent to the client which validates it against the CA certificate.
1783 The core piece of information for a server certificate is the hostname. This should
1784 be the fully qualified hostname that the client will connect with, since the client
1785 will typically also verify the hostname in the certificate. On the host holding the
1786 secure CA private key:
1787
1788 @example
1789 # cat > server.info <<EOF
1790 organization = Name  of your organization
1791 cn = server.foo.example.com
1792 tls_www_server
1793 encryption_key
1794 signing_key
1795 EOF
1796 # certtool --generate-privkey > server-key.pem
1797 # certtool --generate-certificate \
1798            --load-ca-certificate ca-cert.pem \
1799            --load-ca-privkey ca-key.pem \
1800            --load-privkey server server-key.pem \
1801            --template server.info \
1802            --outfile server-cert.pem
1803 @end example
1804
1805 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1806 to the server for which they were generated. The @code{server-key.pem} is security
1807 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1808
1809 @node vnc_generate_client
1810 @subsubsection Issuing client certificates
1811
1812 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1813 certificates as its authentication mechanism, each client also needs to be issued
1814 a certificate. The client certificate contains enough metadata to uniquely identify
1815 the client, typically organization, state, city, building, etc. On the host holding
1816 the secure CA private key:
1817
1818 @example
1819 # cat > client.info <<EOF
1820 country = GB
1821 state = London
1822 locality = London
1823 organiazation = Name of your organization
1824 cn = client.foo.example.com
1825 tls_www_client
1826 encryption_key
1827 signing_key
1828 EOF
1829 # certtool --generate-privkey > client-key.pem
1830 # certtool --generate-certificate \
1831            --load-ca-certificate ca-cert.pem \
1832            --load-ca-privkey ca-key.pem \
1833            --load-privkey client-key.pem \
1834            --template client.info \
1835            --outfile client-cert.pem
1836 @end example
1837
1838 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1839 copied to the client for which they were generated.
1840
1841 @node gdb_usage
1842 @section GDB usage
1843
1844 QEMU has a primitive support to work with gdb, so that you can do
1845 'Ctrl-C' while the virtual machine is running and inspect its state.
1846
1847 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1848 gdb connection:
1849 @example
1850 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1851        -append "root=/dev/hda"
1852 Connected to host network interface: tun0
1853 Waiting gdb connection on port 1234
1854 @end example
1855
1856 Then launch gdb on the 'vmlinux' executable:
1857 @example
1858 > gdb vmlinux
1859 @end example
1860
1861 In gdb, connect to QEMU:
1862 @example
1863 (gdb) target remote localhost:1234
1864 @end example
1865
1866 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1867 @example
1868 (gdb) c
1869 @end example
1870
1871 Here are some useful tips in order to use gdb on system code:
1872
1873 @enumerate
1874 @item
1875 Use @code{info reg} to display all the CPU registers.
1876 @item
1877 Use @code{x/10i $eip} to display the code at the PC position.
1878 @item
1879 Use @code{set architecture i8086} to dump 16 bit code. Then use
1880 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1881 @end enumerate
1882
1883 @node pcsys_os_specific
1884 @section Target OS specific information
1885
1886 @subsection Linux
1887
1888 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1889 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1890 color depth in the guest and the host OS.
1891
1892 When using a 2.6 guest Linux kernel, you should add the option
1893 @code{clock=pit} on the kernel command line because the 2.6 Linux
1894 kernels make very strict real time clock checks by default that QEMU
1895 cannot simulate exactly.
1896
1897 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1898 not activated because QEMU is slower with this patch. The QEMU
1899 Accelerator Module is also much slower in this case. Earlier Fedora
1900 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1901 patch by default. Newer kernels don't have it.
1902
1903 @subsection Windows
1904
1905 If you have a slow host, using Windows 95 is better as it gives the
1906 best speed. Windows 2000 is also a good choice.
1907
1908 @subsubsection SVGA graphic modes support
1909
1910 QEMU emulates a Cirrus Logic GD5446 Video
1911 card. All Windows versions starting from Windows 95 should recognize
1912 and use this graphic card. For optimal performances, use 16 bit color
1913 depth in the guest and the host OS.
1914
1915 If you are using Windows XP as guest OS and if you want to use high
1916 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1917 1280x1024x16), then you should use the VESA VBE virtual graphic card
1918 (option @option{-std-vga}).
1919
1920 @subsubsection CPU usage reduction
1921
1922 Windows 9x does not correctly use the CPU HLT
1923 instruction. The result is that it takes host CPU cycles even when
1924 idle. You can install the utility from
1925 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1926 problem. Note that no such tool is needed for NT, 2000 or XP.
1927
1928 @subsubsection Windows 2000 disk full problem
1929
1930 Windows 2000 has a bug which gives a disk full problem during its
1931 installation. When installing it, use the @option{-win2k-hack} QEMU
1932 option to enable a specific workaround. After Windows 2000 is
1933 installed, you no longer need this option (this option slows down the
1934 IDE transfers).
1935
1936 @subsubsection Windows 2000 shutdown
1937
1938 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1939 can. It comes from the fact that Windows 2000 does not automatically
1940 use the APM driver provided by the BIOS.
1941
1942 In order to correct that, do the following (thanks to Struan
1943 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1944 Add/Troubleshoot a device => Add a new device & Next => No, select the
1945 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1946 (again) a few times. Now the driver is installed and Windows 2000 now
1947 correctly instructs QEMU to shutdown at the appropriate moment.
1948
1949 @subsubsection Share a directory between Unix and Windows
1950
1951 See @ref{sec_invocation} about the help of the option @option{-smb}.
1952
1953 @subsubsection Windows XP security problem
1954
1955 Some releases of Windows XP install correctly but give a security
1956 error when booting:
1957 @example
1958 A problem is preventing Windows from accurately checking the
1959 license for this computer. Error code: 0x800703e6.
1960 @end example
1961
1962 The workaround is to install a service pack for XP after a boot in safe
1963 mode. Then reboot, and the problem should go away. Since there is no
1964 network while in safe mode, its recommended to download the full
1965 installation of SP1 or SP2 and transfer that via an ISO or using the
1966 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1967
1968 @subsection MS-DOS and FreeDOS
1969
1970 @subsubsection CPU usage reduction
1971
1972 DOS does not correctly use the CPU HLT instruction. The result is that
1973 it takes host CPU cycles even when idle. You can install the utility
1974 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1975 problem.
1976
1977 @node QEMU System emulator for non PC targets
1978 @chapter QEMU System emulator for non PC targets
1979
1980 QEMU is a generic emulator and it emulates many non PC
1981 machines. Most of the options are similar to the PC emulator. The
1982 differences are mentioned in the following sections.
1983
1984 @menu
1985 * QEMU PowerPC System emulator::
1986 * Sparc32 System emulator::
1987 * Sparc64 System emulator::
1988 * MIPS System emulator::
1989 * ARM System emulator::
1990 * ColdFire System emulator::
1991 @end menu
1992
1993 @node QEMU PowerPC System emulator
1994 @section QEMU PowerPC System emulator
1995
1996 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1997 or PowerMac PowerPC system.
1998
1999 QEMU emulates the following PowerMac peripherals:
2000
2001 @itemize @minus
2002 @item
2003 UniNorth PCI Bridge
2004 @item
2005 PCI VGA compatible card with VESA Bochs Extensions
2006 @item
2007 2 PMAC IDE interfaces with hard disk and CD-ROM support
2008 @item
2009 NE2000 PCI adapters
2010 @item
2011 Non Volatile RAM
2012 @item
2013 VIA-CUDA with ADB keyboard and mouse.
2014 @end itemize
2015
2016 QEMU emulates the following PREP peripherals:
2017
2018 @itemize @minus
2019 @item
2020 PCI Bridge
2021 @item
2022 PCI VGA compatible card with VESA Bochs Extensions
2023 @item
2024 2 IDE interfaces with hard disk and CD-ROM support
2025 @item
2026 Floppy disk
2027 @item
2028 NE2000 network adapters
2029 @item
2030 Serial port
2031 @item
2032 PREP Non Volatile RAM
2033 @item
2034 PC compatible keyboard and mouse.
2035 @end itemize
2036
2037 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2038 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2039
2040 @c man begin OPTIONS
2041
2042 The following options are specific to the PowerPC emulation:
2043
2044 @table @option
2045
2046 @item -g WxH[xDEPTH]
2047
2048 Set the initial VGA graphic mode. The default is 800x600x15.
2049
2050 @end table
2051
2052 @c man end
2053
2054
2055 More information is available at
2056 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2057
2058 @node Sparc32 System emulator
2059 @section Sparc32 System emulator
2060
2061 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2062 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2063 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2064 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2065 complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2066 of usable CPUs to 4.
2067
2068 QEMU emulates the following sun4m/sun4d peripherals:
2069
2070 @itemize @minus
2071 @item
2072 IOMMU or IO-UNITs
2073 @item
2074 TCX Frame buffer
2075 @item
2076 Lance (Am7990) Ethernet
2077 @item
2078 Non Volatile RAM M48T08
2079 @item
2080 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2081 and power/reset logic
2082 @item
2083 ESP SCSI controller with hard disk and CD-ROM support
2084 @item
2085 Floppy drive (not on SS-600MP)
2086 @item
2087 CS4231 sound device (only on SS-5, not working yet)
2088 @end itemize
2089
2090 The number of peripherals is fixed in the architecture.  Maximum
2091 memory size depends on the machine type, for SS-5 it is 256MB and for
2092 others 2047MB.
2093
2094 Since version 0.8.2, QEMU uses OpenBIOS
2095 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2096 firmware implementation. The goal is to implement a 100% IEEE
2097 1275-1994 (referred to as Open Firmware) compliant firmware.
2098
2099 A sample Linux 2.6 series kernel and ram disk image are available on
2100 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2101 Solaris kernels don't work.
2102
2103 @c man begin OPTIONS
2104
2105 The following options are specific to the Sparc32 emulation:
2106
2107 @table @option
2108
2109 @item -g WxHx[xDEPTH]
2110
2111 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2112 the only other possible mode is 1024x768x24.
2113
2114 @item -prom-env string
2115
2116 Set OpenBIOS variables in NVRAM, for example:
2117
2118 @example
2119 qemu-system-sparc -prom-env 'auto-boot?=false' \
2120  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2121 @end example
2122
2123 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2124
2125 Set the emulated machine type. Default is SS-5.
2126
2127 @end table
2128
2129 @c man end
2130
2131 @node Sparc64 System emulator
2132 @section Sparc64 System emulator
2133
2134 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2135 The emulator is not usable for anything yet.
2136
2137 QEMU emulates the following sun4u peripherals:
2138
2139 @itemize @minus
2140 @item
2141 UltraSparc IIi APB PCI Bridge
2142 @item
2143 PCI VGA compatible card with VESA Bochs Extensions
2144 @item
2145 Non Volatile RAM M48T59
2146 @item
2147 PC-compatible serial ports
2148 @end itemize
2149
2150 @node MIPS System emulator
2151 @section MIPS System emulator
2152
2153 Four executables cover simulation of 32 and 64-bit MIPS systems in
2154 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2155 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2156 Four different machine types are emulated:
2157
2158 @itemize @minus
2159 @item
2160 A generic ISA PC-like machine "mips"
2161 @item
2162 The MIPS Malta prototype board "malta"
2163 @item
2164 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2165 @item
2166 MIPS emulator pseudo board "mipssim"
2167 @end itemize
2168
2169 The generic emulation is supported by Debian 'Etch' and is able to
2170 install Debian into a virtual disk image. The following devices are
2171 emulated:
2172
2173 @itemize @minus
2174 @item
2175 A range of MIPS CPUs, default is the 24Kf
2176 @item
2177 PC style serial port
2178 @item
2179 PC style IDE disk
2180 @item
2181 NE2000 network card
2182 @end itemize
2183
2184 The Malta emulation supports the following devices:
2185
2186 @itemize @minus
2187 @item
2188 Core board with MIPS 24Kf CPU and Galileo system controller
2189 @item
2190 PIIX4 PCI/USB/SMbus controller
2191 @item
2192 The Multi-I/O chip's serial device
2193 @item
2194 PCnet32 PCI network card
2195 @item
2196 Malta FPGA serial device
2197 @item
2198 Cirrus VGA graphics card
2199 @end itemize
2200
2201 The ACER Pica emulation supports:
2202
2203 @itemize @minus
2204 @item
2205 MIPS R4000 CPU
2206 @item
2207 PC-style IRQ and DMA controllers
2208 @item
2209 PC Keyboard
2210 @item
2211 IDE controller
2212 @end itemize
2213
2214 The mipssim pseudo board emulation provides an environment similiar
2215 to what the proprietary MIPS emulator uses for running Linux.
2216 It supports:
2217
2218 @itemize @minus
2219 @item
2220 A range of MIPS CPUs, default is the 24Kf
2221 @item
2222 PC style serial port
2223 @item
2224 MIPSnet network emulation
2225 @end itemize
2226
2227 @node ARM System emulator
2228 @section ARM System emulator
2229
2230 Use the executable @file{qemu-system-arm} to simulate a ARM
2231 machine. The ARM Integrator/CP board is emulated with the following
2232 devices:
2233
2234 @itemize @minus
2235 @item
2236 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2237 @item
2238 Two PL011 UARTs
2239 @item
2240 SMC 91c111 Ethernet adapter
2241 @item
2242 PL110 LCD controller
2243 @item
2244 PL050 KMI with PS/2 keyboard and mouse.
2245 @item
2246 PL181 MultiMedia Card Interface with SD card.
2247 @end itemize
2248
2249 The ARM Versatile baseboard is emulated with the following devices:
2250
2251 @itemize @minus
2252 @item
2253 ARM926E, ARM1136 or Cortex-A8 CPU
2254 @item
2255 PL190 Vectored Interrupt Controller
2256 @item
2257 Four PL011 UARTs
2258 @item
2259 SMC 91c111 Ethernet adapter
2260 @item
2261 PL110 LCD controller
2262 @item
2263 PL050 KMI with PS/2 keyboard and mouse.
2264 @item
2265 PCI host bridge.  Note the emulated PCI bridge only provides access to
2266 PCI memory space.  It does not provide access to PCI IO space.
2267 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2268 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2269 mapped control registers.
2270 @item
2271 PCI OHCI USB controller.
2272 @item
2273 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2274 @item
2275 PL181 MultiMedia Card Interface with SD card.
2276 @end itemize
2277
2278 The ARM RealView Emulation baseboard is emulated with the following devices:
2279
2280 @itemize @minus
2281 @item
2282 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2283 @item
2284 ARM AMBA Generic/Distributed Interrupt Controller
2285 @item
2286 Four PL011 UARTs
2287 @item
2288 SMC 91c111 Ethernet adapter
2289 @item
2290 PL110 LCD controller
2291 @item
2292 PL050 KMI with PS/2 keyboard and mouse
2293 @item
2294 PCI host bridge
2295 @item
2296 PCI OHCI USB controller
2297 @item
2298 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2299 @item
2300 PL181 MultiMedia Card Interface with SD card.
2301 @end itemize
2302
2303 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2304 and "Terrier") emulation includes the following peripherals:
2305
2306 @itemize @minus
2307 @item
2308 Intel PXA270 System-on-chip (ARM V5TE core)
2309 @item
2310 NAND Flash memory
2311 @item
2312 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2313 @item
2314 On-chip OHCI USB controller
2315 @item
2316 On-chip LCD controller
2317 @item
2318 On-chip Real Time Clock
2319 @item
2320 TI ADS7846 touchscreen controller on SSP bus
2321 @item
2322 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2323 @item
2324 GPIO-connected keyboard controller and LEDs
2325 @item
2326 Secure Digital card connected to PXA MMC/SD host
2327 @item
2328 Three on-chip UARTs
2329 @item
2330 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2331 @end itemize
2332
2333 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2334 following elements:
2335
2336 @itemize @minus
2337 @item
2338 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2339 @item
2340 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2341 @item
2342 On-chip LCD controller
2343 @item
2344 On-chip Real Time Clock
2345 @item
2346 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2347 CODEC, connected through MicroWire and I@math{^2}S busses
2348 @item
2349 GPIO-connected matrix keypad
2350 @item
2351 Secure Digital card connected to OMAP MMC/SD host
2352 @item
2353 Three on-chip UARTs
2354 @end itemize
2355
2356 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2357 devices:
2358
2359 @itemize @minus
2360 @item
2361 Cortex-M3 CPU core.
2362 @item
2363 64k Flash and 8k SRAM.
2364 @item
2365 Timers, UARTs, ADC and I@math{^2}C interface.
2366 @item
2367 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2368 @end itemize
2369
2370 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2371 devices:
2372
2373 @itemize @minus
2374 @item
2375 Cortex-M3 CPU core.
2376 @item
2377 256k Flash and 64k SRAM.
2378 @item
2379 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2380 @item
2381 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2382 @end itemize
2383
2384 A Linux 2.6 test image is available on the QEMU web site. More
2385 information is available in the QEMU mailing-list archive.
2386
2387 @node ColdFire System emulator
2388 @section ColdFire System emulator
2389
2390 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2391 The emulator is able to boot a uClinux kernel.
2392
2393 The M5208EVB emulation includes the following devices:
2394
2395 @itemize @minus
2396 @item
2397 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2398 @item
2399 Three Two on-chip UARTs.
2400 @item
2401 Fast Ethernet Controller (FEC)
2402 @end itemize
2403
2404 The AN5206 emulation includes the following devices:
2405
2406 @itemize @minus
2407 @item
2408 MCF5206 ColdFire V2 Microprocessor.
2409 @item
2410 Two on-chip UARTs.
2411 @end itemize
2412
2413 @node QEMU User space emulator
2414 @chapter QEMU User space emulator
2415
2416 @menu
2417 * Supported Operating Systems ::
2418 * Linux User space emulator::
2419 * Mac OS X/Darwin User space emulator ::
2420 @end menu
2421
2422 @node Supported Operating Systems
2423 @section Supported Operating Systems
2424
2425 The following OS are supported in user space emulation:
2426
2427 @itemize @minus
2428 @item
2429 Linux (referred as qemu-linux-user)
2430 @item
2431 Mac OS X/Darwin (referred as qemu-darwin-user)
2432 @end itemize
2433
2434 @node Linux User space emulator
2435 @section Linux User space emulator
2436
2437 @menu
2438 * Quick Start::
2439 * Wine launch::
2440 * Command line options::
2441 * Other binaries::
2442 @end menu
2443
2444 @node Quick Start
2445 @subsection Quick Start
2446
2447 In order to launch a Linux process, QEMU needs the process executable
2448 itself and all the target (x86) dynamic libraries used by it.
2449
2450 @itemize
2451
2452 @item On x86, you can just try to launch any process by using the native
2453 libraries:
2454
2455 @example
2456 qemu-i386 -L / /bin/ls
2457 @end example
2458
2459 @code{-L /} tells that the x86 dynamic linker must be searched with a
2460 @file{/} prefix.
2461
2462 @item Since QEMU is also a linux process, you can launch qemu with
2463 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2464
2465 @example
2466 qemu-i386 -L / qemu-i386 -L / /bin/ls
2467 @end example
2468
2469 @item On non x86 CPUs, you need first to download at least an x86 glibc
2470 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2471 @code{LD_LIBRARY_PATH} is not set:
2472
2473 @example
2474 unset LD_LIBRARY_PATH
2475 @end example
2476
2477 Then you can launch the precompiled @file{ls} x86 executable:
2478
2479 @example
2480 qemu-i386 tests/i386/ls
2481 @end example
2482 You can look at @file{qemu-binfmt-conf.sh} so that
2483 QEMU is automatically launched by the Linux kernel when you try to
2484 launch x86 executables. It requires the @code{binfmt_misc} module in the
2485 Linux kernel.
2486
2487 @item The x86 version of QEMU is also included. You can try weird things such as:
2488 @example
2489 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2490           /usr/local/qemu-i386/bin/ls-i386
2491 @end example
2492
2493 @end itemize
2494
2495 @node Wine launch
2496 @subsection Wine launch
2497
2498 @itemize
2499
2500 @item Ensure that you have a working QEMU with the x86 glibc
2501 distribution (see previous section). In order to verify it, you must be
2502 able to do:
2503
2504 @example
2505 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2506 @end example
2507
2508 @item Download the binary x86 Wine install
2509 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2510
2511 @item Configure Wine on your account. Look at the provided script
2512 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2513 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2514
2515 @item Then you can try the example @file{putty.exe}:
2516
2517 @example
2518 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2519           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2520 @end example
2521
2522 @end itemize
2523
2524 @node Command line options
2525 @subsection Command line options
2526
2527 @example
2528 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2529 @end example
2530
2531 @table @option
2532 @item -h
2533 Print the help
2534 @item -L path
2535 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2536 @item -s size
2537 Set the x86 stack size in bytes (default=524288)
2538 @end table
2539
2540 Debug options:
2541
2542 @table @option
2543 @item -d
2544 Activate log (logfile=/tmp/qemu.log)
2545 @item -p pagesize
2546 Act as if the host page size was 'pagesize' bytes
2547 @end table
2548
2549 Environment variables:
2550
2551 @table @env
2552 @item QEMU_STRACE
2553 Print system calls and arguments similar to the 'strace' program
2554 (NOTE: the actual 'strace' program will not work because the user
2555 space emulator hasn't implemented ptrace).  At the moment this is
2556 incomplete.  All system calls that don't have a specific argument
2557 format are printed with information for six arguments.  Many
2558 flag-style arguments don't have decoders and will show up as numbers.
2559 @end table
2560
2561 @node Other binaries
2562 @subsection Other binaries
2563
2564 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2565 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2566 configurations), and arm-uclinux bFLT format binaries.
2567
2568 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2569 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2570 coldfire uClinux bFLT format binaries.
2571
2572 The binary format is detected automatically.
2573
2574 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2575 (Sparc64 CPU, 32 bit ABI).
2576
2577 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2578 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2579
2580 @node Mac OS X/Darwin User space emulator
2581 @section Mac OS X/Darwin User space emulator
2582
2583 @menu
2584 * Mac OS X/Darwin Status::
2585 * Mac OS X/Darwin Quick Start::
2586 * Mac OS X/Darwin Command line options::
2587 @end menu
2588
2589 @node Mac OS X/Darwin Status
2590 @subsection Mac OS X/Darwin Status
2591
2592 @itemize @minus
2593 @item
2594 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2595 @item
2596 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2597 @item
2598 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2599 @item
2600 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2601 @end itemize
2602
2603 [1] If you're host commpage can be executed by qemu.
2604
2605 @node Mac OS X/Darwin Quick Start
2606 @subsection Quick Start
2607
2608 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2609 itself and all the target dynamic libraries used by it. If you don't have the FAT
2610 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2611 CD or compile them by hand.
2612
2613 @itemize
2614
2615 @item On x86, you can just try to launch any process by using the native
2616 libraries:
2617
2618 @example
2619 qemu-i386 /bin/ls
2620 @end example
2621
2622 or to run the ppc version of the executable:
2623
2624 @example
2625 qemu-ppc /bin/ls
2626 @end example
2627
2628 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2629 are installed:
2630
2631 @example
2632 qemu-i386 -L /opt/x86_root/ /bin/ls
2633 @end example
2634
2635 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2636 @file{/opt/x86_root/usr/bin/dyld}.
2637
2638 @end itemize
2639
2640 @node Mac OS X/Darwin Command line options
2641 @subsection Command line options
2642
2643 @example
2644 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2645 @end example
2646
2647 @table @option
2648 @item -h
2649 Print the help
2650 @item -L path
2651 Set the library root path (default=/)
2652 @item -s size
2653 Set the stack size in bytes (default=524288)
2654 @end table
2655
2656 Debug options:
2657
2658 @table @option
2659 @item -d
2660 Activate log (logfile=/tmp/qemu.log)
2661 @item -p pagesize
2662 Act as if the host page size was 'pagesize' bytes
2663 @end table
2664
2665 @node compilation
2666 @chapter Compilation from the sources
2667
2668 @menu
2669 * Linux/Unix::
2670 * Windows::
2671 * Cross compilation for Windows with Linux::
2672 * Mac OS X::
2673 @end menu
2674
2675 @node Linux/Unix
2676 @section Linux/Unix
2677
2678 @subsection Compilation
2679
2680 First you must decompress the sources:
2681 @example
2682 cd /tmp
2683 tar zxvf qemu-x.y.z.tar.gz
2684 cd qemu-x.y.z
2685 @end example
2686
2687 Then you configure QEMU and build it (usually no options are needed):
2688 @example
2689 ./configure
2690 make
2691 @end example
2692
2693 Then type as root user:
2694 @example
2695 make install
2696 @end example
2697 to install QEMU in @file{/usr/local}.
2698
2699 @subsection GCC version
2700
2701 In order to compile QEMU successfully, it is very important that you
2702 have the right tools. The most important one is gcc. On most hosts and
2703 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2704 Linux distribution includes a gcc 4.x compiler, you can usually
2705 install an older version (it is invoked by @code{gcc32} or
2706 @code{gcc34}). The QEMU configure script automatically probes for
2707 these older versions so that usually you don't have to do anything.
2708
2709 @node Windows
2710 @section Windows
2711
2712 @itemize
2713 @item Install the current versions of MSYS and MinGW from
2714 @url{http://www.mingw.org/}. You can find detailed installation
2715 instructions in the download section and the FAQ.
2716
2717 @item Download
2718 the MinGW development library of SDL 1.2.x
2719 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2720 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2721 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2722 directory. Edit the @file{sdl-config} script so that it gives the
2723 correct SDL directory when invoked.
2724
2725 @item Extract the current version of QEMU.
2726
2727 @item Start the MSYS shell (file @file{msys.bat}).
2728
2729 @item Change to the QEMU directory. Launch @file{./configure} and
2730 @file{make}.  If you have problems using SDL, verify that
2731 @file{sdl-config} can be launched from the MSYS command line.
2732
2733 @item You can install QEMU in @file{Program Files/Qemu} by typing
2734 @file{make install}. Don't forget to copy @file{SDL.dll} in
2735 @file{Program Files/Qemu}.
2736
2737 @end itemize
2738
2739 @node Cross compilation for Windows with Linux
2740 @section Cross compilation for Windows with Linux
2741
2742 @itemize
2743 @item
2744 Install the MinGW cross compilation tools available at
2745 @url{http://www.mingw.org/}.
2746
2747 @item
2748 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2749 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2750 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2751 the QEMU configuration script.
2752
2753 @item
2754 Configure QEMU for Windows cross compilation:
2755 @example
2756 ./configure --enable-mingw32
2757 @end example
2758 If necessary, you can change the cross-prefix according to the prefix
2759 chosen for the MinGW tools with --cross-prefix. You can also use
2760 --prefix to set the Win32 install path.
2761
2762 @item You can install QEMU in the installation directory by typing
2763 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2764 installation directory.
2765
2766 @end itemize
2767
2768 Note: Currently, Wine does not seem able to launch
2769 QEMU for Win32.
2770
2771 @node Mac OS X
2772 @section Mac OS X
2773
2774 The Mac OS X patches are not fully merged in QEMU, so you should look
2775 at the QEMU mailing list archive to have all the necessary
2776 information.
2777
2778 @node Index
2779 @chapter Index
2780 @printindex cp
2781
2782 @bye