Fix build on FreeBSD on arches !(i386 or amd64).
[monky] / src / freebsd.c
1 /*
2  * freebsd.c
3  * Contains FreeBSD specific stuff
4  *
5  * $Id$
6  */
7
8 #include <sys/dkstat.h>
9 #include <sys/param.h>
10 #include <sys/resource.h>
11 #include <sys/socket.h>
12 #include <sys/sysctl.h>
13 #include <sys/time.h>
14 #include <sys/types.h>
15 #include <sys/vmmeter.h>
16 #include <sys/user.h>
17 #include <sys/ioctl.h>
18
19 #include <net/if.h>
20 #include <net/if_mib.h>
21 #include <net/if_media.h>
22 #include <net/if_var.h>
23 #include <netinet/in.h>
24
25 #include <devstat.h>
26 #include <fcntl.h>
27 #include <ifaddrs.h>
28 #include <limits.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <unistd.h>
33
34 #include <dev/wi/if_wavelan_ieee.h>
35
36 #include "conky.h"
37
38 #define GETSYSCTL(name, var)    getsysctl(name, &(var), sizeof (var))
39 #define KELVTOC(x)              ((x - 2732) / 10.0)
40 #define MAXSHOWDEVS             16
41
42 #if 0
43 #define FREEBSD_DEBUG
44 #endif
45
46 inline void proc_find_top(struct process **cpu, struct process **mem);
47
48 u_int64_t diskio_prev = 0;
49 static short cpu_setup = 0;
50 static short diskio_setup = 0;
51
52 static int getsysctl(char *name, void *ptr, size_t len)
53 {
54         size_t nlen = len;
55         if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
56                 return (-1);
57         }
58
59         if (nlen != len) {
60                 return (-1);
61         }
62
63         return (0);
64 }
65
66 struct ifmibdata *data = NULL;
67 size_t len = 0;
68
69 static int swapmode(int *retavail, int *retfree)
70 {
71         int n;
72         int pagesize = getpagesize();
73         struct kvm_swap swapary[1];
74
75         *retavail = 0;
76         *retfree = 0;
77
78 #define CONVERT(v)      ((quad_t)(v) * pagesize / 1024)
79
80         n = kvm_getswapinfo(kd, swapary, 1, 0);
81         if (n < 0 || swapary[0].ksw_total == 0)
82                 return (0);
83
84         *retavail = CONVERT(swapary[0].ksw_total);
85         *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
86
87         n = (int) ((double) swapary[0].ksw_used * 100.0 /
88                 (double) swapary[0].ksw_total);
89
90         return (n);
91 }
92
93 void
94 prepare_update()
95 {
96 }
97
98 void
99 update_uptime()
100 {
101         int mib[2] = { CTL_KERN, KERN_BOOTTIME };
102         struct timeval boottime;
103         time_t now;
104         size_t size = sizeof (boottime);
105
106         if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) &&
107                         (boottime.tv_sec != 0)) {
108                 time(&now);
109                 info.uptime = now - boottime.tv_sec;
110         } else {
111                 fprintf(stderr, "Could not get uptime\n");
112                 info.uptime = 0;
113         }
114 }
115
116 void
117 update_meminfo()
118 {
119         int total_pages, inactive_pages, free_pages;
120         int swap_avail, swap_free;
121
122         int pagesize = getpagesize();
123
124         if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
125                 fprintf(stderr,
126                         "Cannot read sysctl \"vm.stats.vm.v_page_count\"");
127
128         if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
129                 fprintf(stderr,
130                         "Cannot read sysctl \"vm.stats.vm.v_free_count\"");
131
132         if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
133                 fprintf(stderr,
134                         "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
135
136         info.memmax = (total_pages * pagesize) >> 10;
137         info.mem =
138             ((total_pages - free_pages - inactive_pages) * pagesize) >> 10;
139
140
141         if ((swapmode(&swap_avail, &swap_free)) >= 0) {
142                 info.swapmax = swap_avail;
143                 info.swap = (swap_avail - swap_free);
144         } else {
145                 info.swapmax = 0;
146                 info.swap = 0;
147         }
148 }
149
150 void
151 update_net_stats()
152 {
153         struct net_stat *ns;
154         double delta;
155         long long r, t, last_recv, last_trans;
156         struct ifaddrs *ifap, *ifa;
157         struct if_data *ifd;
158
159
160         /* get delta */
161         delta = current_update_time - last_update_time;
162         if (delta <= 0.0001)
163                 return;
164
165         if (getifaddrs(&ifap) < 0)
166                 return;
167
168         for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
169                 ns = get_net_stat((const char *) ifa->ifa_name);
170
171                 if (ifa->ifa_flags & IFF_UP) {
172                         struct ifaddrs *iftmp;
173
174                         ns->up = 1;
175                         ns->linkstatus = 1;
176                         last_recv = ns->recv;
177                         last_trans = ns->trans;
178
179                         if (ifa->ifa_addr->sa_family != AF_LINK)
180                                 continue;
181
182                         for (iftmp = ifa->ifa_next; iftmp != NULL &&
183                                 strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
184                                 iftmp = iftmp->ifa_next)
185                                 if (iftmp->ifa_addr->sa_family == AF_INET)
186                                         memcpy(&(ns->addr), iftmp->ifa_addr,
187                                                 iftmp->ifa_addr->sa_len);
188
189                         ifd = (struct if_data *) ifa->ifa_data;
190                         r = ifd->ifi_ibytes;
191                         t = ifd->ifi_obytes;
192
193                         if (r < ns->last_read_recv)
194                                 ns->recv +=
195                                     ((long long) 4294967295U -
196                                         ns->last_read_recv) + r;
197                         else
198                                 ns->recv += (r - ns->last_read_recv);
199
200                         ns->last_read_recv = r;
201
202                         if (t < ns->last_read_trans)
203                                 ns->trans +=
204                                     ((long long) 4294967295U -
205                                         ns->last_read_trans) + t;
206                         else
207                                 ns->trans += (t - ns->last_read_trans);
208
209                         ns->last_read_trans = t;
210
211                         /* calculate speeds */
212                         ns->recv_speed = (ns->recv - last_recv) / delta;
213                         ns->trans_speed = (ns->trans - last_trans) / delta;
214                 } else {
215                         ns->up = 0;
216                         ns->linkstatus = 0;
217                 }
218         }
219
220         freeifaddrs(ifap);
221 }
222
223 void
224 update_total_processes()
225 {
226         int n_processes;
227
228         kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
229
230         info.procs = n_processes;
231 }
232
233 void
234 update_running_processes()
235 {
236         struct kinfo_proc *p;
237         int n_processes;
238         int i, cnt = 0;
239
240         p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
241         for (i = 0; i < n_processes; i++) {
242 #if __FreeBSD__ < 5
243                 if (p[i].kp_proc.p_stat == SRUN)
244 #else
245                 if (p[i].ki_stat == SRUN)
246 #endif
247                         cnt++;
248         }
249
250         info.run_procs = cnt;
251 }
252
253 struct cpu_load_struct {
254         unsigned long load[5];
255 };
256
257 struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
258 long cpu_used, oldtotal, oldused;
259
260 void
261 get_cpu_count()
262 {
263         /* int cpu_count = 0; */
264
265         /*
266          * XXX
267          * FreeBSD doesn't allow to get per CPU load stats
268          * on SMP machines. It's possible to get a CPU count,
269          * but as we fulfil only info.cpu_usage[0], it's better
270          * to report there's only one CPU. It should fix some bugs
271          * (e.g. cpugraph)
272          */
273 #if 0
274         if (GETSYSCTL("hw.ncpu", cpu_count) == 0)
275                 info.cpu_count = cpu_count;
276 #endif
277         info.cpu_count = 1;
278
279         info.cpu_usage = malloc(info.cpu_count * sizeof (float));
280         if (info.cpu_usage == NULL)
281                 CRIT_ERR("malloc");
282 }
283
284 /* XXX: SMP support */
285 void
286 update_cpu_usage()
287 {
288         long used, total;
289         long cp_time[CPUSTATES];
290         size_t len = sizeof (cp_time);
291
292         /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
293         if ((cpu_setup == 0) || (!info.cpu_usage)) {
294                 get_cpu_count();
295                 cpu_setup = 1;
296         }
297
298         if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) {
299                 (void) fprintf(stderr, "Cannot get kern.cp_time");
300         }
301
302         fresh.load[0] = cp_time[CP_USER];
303         fresh.load[1] = cp_time[CP_NICE];
304         fresh.load[2] = cp_time[CP_SYS];
305         fresh.load[3] = cp_time[CP_IDLE];
306         fresh.load[4] = cp_time[CP_IDLE];
307
308         used = fresh.load[0] + fresh.load[1] + fresh.load[2];
309         total =
310             fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
311
312         if ((total - oldtotal) != 0) {
313                 info.cpu_usage[0] = ((double) (used - oldused)) /
314                         (double) (total - oldtotal);
315         } else {
316                 info.cpu_usage[0] = 0;
317         }
318
319         oldused = used;
320         oldtotal = total;
321 }
322
323 double
324 get_i2c_info(int *fd, int arg, char *devtype, char *type)
325 {
326         return (0);
327 }
328
329 void
330 update_load_average()
331 {
332         double v[3];
333         getloadavg(v, 3);
334
335         info.loadavg[0] = (float) v[0];
336         info.loadavg[1] = (float) v[1];
337         info.loadavg[2] = (float) v[2];
338 }
339
340 double
341 get_acpi_temperature(int fd)
342 {
343         int temp;
344
345         if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
346                 fprintf(stderr,
347                 "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
348                 return (0.0);
349         }
350
351         return (KELVTOC(temp));
352 }
353
354 void
355 get_battery_stuff(char *buf, unsigned int n, const char *bat, int item)
356 {
357         int battime, batcapacity, batstate, ac;
358         char battery_status[64];
359         char battery_time[64];
360
361         if (GETSYSCTL("hw.acpi.battery.time", battime))
362                 (void) fprintf(stderr,
363                         "Cannot read sysctl \"hw.acpi.battery.time\"\n");
364         if (GETSYSCTL("hw.acpi.battery.life", batcapacity))
365                 (void) fprintf(stderr,
366                                            "Cannot read sysctl \"hw.acpi.battery.life\"\n");
367
368         if (GETSYSCTL("hw.acpi.battery.state", batstate))
369                 (void) fprintf(stderr,
370                                            "Cannot read sysctl \"hw.acpi.battery.state\"\n");
371
372         if (GETSYSCTL("hw.acpi.acline", ac))
373                 (void) fprintf(stderr,
374                                            "Cannot read sysctl \"hw.acpi.acline\"\n");
375
376         if (batstate == 1) {
377                 if (battime != -1) {
378                         snprintf (battery_status, sizeof(battery_status)-1,
379                                   "remaining %d%%", batcapacity);
380                         snprintf (battery_time, sizeof(battery_time)-1,
381                                   "%d:%2.2d", battime / 60, battime % 60);
382                         /*
383                         snprintf(buf, n, "remaining %d%% (%d:%2.2d)",
384                                         batcapacity, battime / 60, battime % 60);
385                         */
386                 }
387                 else
388                         /* no time estimate available yet */
389                         snprintf(battery_status, sizeof(battery_status)-1,
390                                  "remaining %d%%", batcapacity);
391                         /*
392                         snprintf(buf, n, "remaining %d%%",
393                                         batcapacity);
394                         */
395                 if (ac == 1)
396                         (void) fprintf(stderr, "Discharging while on AC!\n");
397         } else {
398                 snprintf (battery_status, sizeof(battery_status)-1,
399                           batstate == 2 ? "charging (%d%%)" : "charged (%d%%)", batcapacity);
400                 /*
401                 snprintf(buf, n, batstate == 2 ? "charging (%d%%)" : "charged (%d%%)", batcapacity);
402                 */
403                 if (batstate != 2 && batstate != 0)
404                         (void) fprintf(stderr, "Unknown battery state %d!\n", batstate);
405                 if (ac == 0)
406                         (void) fprintf(stderr, "Charging while not on AC!\n");
407         }
408
409         switch (item) {
410         case BATTERY_STATUS:
411                 {
412                         snprintf(buf, n, "%s", battery_status);
413                         break;
414                 }
415         case BATTERY_TIME:
416                 {
417                         snprintf(buf, n, "%s", battery_time);
418                         break;
419                 }
420         default:
421                         break;
422         }
423         return;
424 }
425
426 int
427 open_i2c_sensor(const char *dev, const char *type, int n, int *div,
428                 char *devtype)
429 {
430         return (0);
431 }
432
433 int
434 open_acpi_temperature(const char *name)
435 {
436         return (0);
437 }
438
439 void
440 get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
441 {
442         int state;
443
444         if (!p_client_buffer || client_buffer_size <= 0)
445                 return;
446
447         if (GETSYSCTL("hw.acpi.acline", state)) {
448                 fprintf(stderr,
449                         "Cannot read sysctl \"hw.acpi.acline\"\n");
450                 return;
451         }
452
453
454         if (state)
455                 strncpy(p_client_buffer, "Running on AC Power",
456                                 client_buffer_size);
457         else
458                 strncpy(p_client_buffer, "Running on battery",
459                                 client_buffer_size);
460
461 }
462
463 void
464 get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
465 {
466         if (!p_client_buffer || client_buffer_size <= 0)
467                 return;
468
469         /* not implemented */
470         memset(p_client_buffer, 0, client_buffer_size);
471 }
472
473 void
474 get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
475 {
476         if (!p_client_buffer || client_buffer_size <= 0)
477                 return;
478
479         /* not implemented */
480         memset(p_client_buffer, 0, client_buffer_size);
481 }
482
483 void
484 get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
485 {
486         if (!p_client_buffer || client_buffer_size <= 0)
487                 return;
488
489         /* not implemented */
490         memset(p_client_buffer, 0, client_buffer_size);
491 }
492
493 /* rdtsc() and get_freq_dynamic() copied from linux.c */
494
495 #if  defined(__i386) || defined(__x86_64)
496 __inline__ unsigned long long int
497 rdtsc()
498 {
499         unsigned long long int x;
500         __asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
501         return (x);
502 }
503 #endif
504
505 /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
506 void
507 get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
508                 char *p_format, int divisor)
509 {
510 #if  defined(__i386) || defined(__x86_64)
511         struct timezone tz;
512         struct timeval tvstart, tvstop;
513         unsigned long long cycles[2];   /* gotta be 64 bit */
514         unsigned int microseconds;      /* total time taken */
515
516         memset(&tz, 0, sizeof (tz));
517
518         /* get this function in cached memory */
519         gettimeofday(&tvstart, &tz);
520         cycles[0] = rdtsc();
521         gettimeofday(&tvstart, &tz);
522
523         /* we don't trust that this is any specific length of time */
524         usleep(100);
525         cycles[1] = rdtsc();
526         gettimeofday(&tvstop, &tz);
527         microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
528                 (tvstop.tv_usec - tvstart.tv_usec);
529
530         snprintf(p_client_buffer, client_buffer_size, p_format,
531                 (float)((cycles[1] - cycles[0]) / microseconds) / divisor);
532 #else
533         get_freq(p_client_buffer, client_buffer_size, p_format, divisor, 1);
534 #endif
535 }
536
537 /*void*/
538 char
539 get_freq(char *p_client_buffer, size_t client_buffer_size,
540                 char *p_format, int divisor, unsigned int cpu)
541 {
542         int freq;
543         char *freq_sysctl;
544
545         freq_sysctl = (char *)calloc(16, sizeof(char));
546         if (freq_sysctl == NULL)
547                 exit(-1);
548
549         snprintf(freq_sysctl, 16, "dev.cpu.%d.freq", (cpu - 1));
550         
551         if (!p_client_buffer || client_buffer_size <= 0 ||
552                         !p_format || divisor <= 0)
553                 return 0;
554
555         if (GETSYSCTL(freq_sysctl, freq) == 0)
556                 snprintf(p_client_buffer, client_buffer_size,
557                                 p_format, (float)freq/divisor);
558         else
559                 snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
560
561         free(freq_sysctl);
562         return 1;
563 }
564
565 void
566 update_top()
567 {
568         proc_find_top(info.cpu, info.memu);
569 }
570
571 void
572 update_wifi_stats()
573 {
574         struct ifreq ifr;               /* interface stats */
575         struct wi_req wireq;
576         struct net_stat * ns;
577         struct ifaddrs *ifap, *ifa;
578         struct ifmediareq ifmr;
579         int s;
580
581         /*
582          * Get iface table
583          */
584         if (getifaddrs(&ifap) < 0)
585                 return;
586
587         for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
588                 ns = get_net_stat((const char *) ifa->ifa_name);
589
590                 s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
591
592                 /* Get media type */
593                 bzero(&ifmr, sizeof(ifmr));
594                 strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
595                 if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0)
596                         goto cleanup;
597                 
598                 /*
599                  * We can monitor only wireless interfaces
600                  * which not in hostap mode
601                  */
602                 if ((ifmr.ifm_active & IFM_IEEE80211) &&
603                                 !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
604                         /* Get wi status */
605                         bzero(&ifr, sizeof(ifr));
606                         strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ);
607                         wireq.wi_type   = WI_RID_COMMS_QUALITY;
608                         wireq.wi_len    = WI_MAX_DATALEN;
609                         ifr.ifr_data    = (void *) &wireq;
610
611                         if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) {
612                                 perror("ioctl (getting wi status)");
613                                 exit(1);
614                         }
615
616                         /*
617                          * wi_val[0] = quality
618                          * wi_val[1] = signal
619                          * wi_val[2] = noise
620                          */
621                         ns->linkstatus = (int) wireq.wi_val[1];
622                 }
623 cleanup:
624                 close(s);
625         }
626 }
627 void
628 update_diskio()
629 {
630         int devs_count,
631             num_selected,
632             num_selections;
633         struct device_selection *dev_select = NULL;
634         long select_generation;
635         int dn;
636         static struct statinfo  statinfo_cur;
637         u_int64_t diskio_current = 0;
638
639         bzero(&statinfo_cur, sizeof (statinfo_cur));
640         statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof (struct devinfo));
641         bzero(statinfo_cur.dinfo, sizeof (struct devinfo));
642
643         if (devstat_getdevs(NULL, &statinfo_cur) < 0)
644                 return;
645
646         devs_count = statinfo_cur.dinfo->numdevs;
647         if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
648                         &select_generation, statinfo_cur.dinfo->generation,
649                         statinfo_cur.dinfo->devices, devs_count, NULL, 0,
650                         NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
651                 for (dn = 0; dn < devs_count; ++dn) {
652                         int di;
653                         struct devstat  *dev;
654
655                         di = dev_select[dn].position;
656                         dev = &statinfo_cur.dinfo->devices[di];
657
658                         diskio_current += dev->bytes[DEVSTAT_READ] +
659                                 dev->bytes[DEVSTAT_WRITE];
660                 }
661
662                 free(dev_select);
663         }
664
665         /*
666          * Since we return (diskio_total_current - diskio_total_old), first
667          * frame will be way too high (it will be equal to
668          * diskio_total_current, i.e. all disk I/O since boot). That's why
669          * it is better to return 0 first time;
670          */
671         if (diskio_setup == 0) {
672                 diskio_setup = 1;
673                 diskio_value = 0;
674         } else
675                 diskio_value = (unsigned int)((diskio_current - diskio_prev)/
676                                 1024);
677         diskio_prev = diskio_current;
678
679         free(statinfo_cur.dinfo);
680 }
681
682 /*
683  * While topless is obviously better, top is also not bad.
684  */
685
686 int
687 comparecpu(const void *a, const void *b)
688 {
689         if (((struct process *)a)->amount > ((struct process *)b)->amount)
690                 return (-1);
691
692         if (((struct process *)a)->amount < ((struct process *)b)->amount)
693                 return (1);
694
695         return (0);
696 }
697
698 int
699 comparemem(const void *a, const void *b)
700 {
701         if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem)
702                 return (-1);
703
704         if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem)
705                 return (1);
706
707         return (0);
708 }
709
710 inline void
711 proc_find_top(struct process **cpu, struct process **mem)
712 {
713         struct kinfo_proc *p;
714         int n_processes;
715         int i, j = 0;
716         struct process *processes;
717
718         int total_pages;
719
720         /* we get total pages count again to be sure it is up to date */
721         if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0)
722                 CRIT_ERR("Cannot read sysctl"
723                         "\"vm.stats.vm.v_page_count\"");
724
725         p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
726         processes = malloc(n_processes * sizeof (struct process));
727
728         for (i = 0; i < n_processes; i++) {
729                 if (!((p[i].ki_flag & P_SYSTEM)) &&
730                                 p[i].ki_comm != NULL) {
731                         processes[j].pid = p[i].ki_pid;
732                         processes[j].name =  strdup(p[i].ki_comm);
733                         processes[j].amount = 100.0 *
734                                 p[i].ki_pctcpu / FSCALE;
735                         processes[j].totalmem = (float)(p[i].ki_rssize /
736                                         (float)total_pages) * 100.0;
737                         j++;
738                 }
739         }
740
741         qsort(processes, j - 1, sizeof (struct process), comparemem);
742         for (i = 0; i < 10; i++) {
743                 struct process *tmp, *ttmp;
744
745                 tmp = malloc(sizeof (struct process));
746                 tmp->pid = processes[i].pid;
747                 tmp->amount = processes[i].amount;
748                 tmp->totalmem = processes[i].totalmem;
749                 tmp->name = strdup(processes[i].name);
750
751                 ttmp = mem[i];
752                 mem[i] = tmp;
753                 if (ttmp != NULL) {
754                         free(ttmp->name);
755                         free(ttmp);
756                 }
757         }
758
759         qsort(processes, j - 1, sizeof (struct process), comparecpu);
760         for (i = 0; i < 10; i++) {
761                 struct process *tmp, *ttmp;
762
763                 tmp = malloc(sizeof (struct process));
764                 tmp->pid = processes[i].pid;
765                 tmp->amount = processes[i].amount;
766                 tmp->totalmem = processes[i].totalmem;
767                 tmp->name = strdup(processes[i].name);
768
769                 ttmp = cpu[i];
770                 cpu[i] = tmp;
771                 if (ttmp != NULL) {
772                         free(ttmp->name);
773                         free(ttmp);
774                 }
775         }
776
777 #if defined(FREEBSD_DEBUG)
778         printf("=====\nmem\n");
779         for (i = 0; i < 10; i++) {
780                 printf("%d: %s(%d) %.2f\n", i, mem[i]->name,
781                                 mem[i]->pid, mem[i]->totalmem);
782         }
783 #endif
784
785         for (i = 0; i < j; free(processes[i++].name));
786         free(processes);
787 }
788
789 #if     defined(i386) || defined(__i386__)
790 #define APMDEV          "/dev/apm"
791 #define APM_UNKNOWN     255
792
793 int
794 apm_getinfo(int fd, apm_info_t aip)
795 {
796         if (ioctl(fd, APMIO_GETINFO, aip) == -1)
797                 return (-1);
798
799         return (0);
800 }
801
802 char
803 *get_apm_adapter()
804 {
805         int fd;
806         struct apm_info info;
807
808         fd = open(APMDEV, O_RDONLY);
809         if (fd < 0)
810                 return ("ERR");
811
812         if (apm_getinfo(fd, &info) != 0) {
813                 close(fd);
814                 return ("ERR");
815         }
816         close(fd);
817
818         switch (info.ai_acline) {
819                 case 0:
820                         return ("off-line");
821                         break;
822                 case 1:
823                         if (info.ai_batt_stat == 3)
824                                 return ("charging");
825                         else
826                                 return ("on-line");
827                         break;
828                 default:
829                         return ("unknown");
830                         break;
831         }
832 }
833
834 char
835 *get_apm_battery_life()
836 {
837         int fd;
838         u_int batt_life;
839         struct apm_info info;
840         char *out;
841
842         out = (char *)calloc(16, sizeof (char));
843
844         fd = open(APMDEV, O_RDONLY);
845         if (fd < 0) {
846                 strncpy(out, "ERR", 16);
847                 return (out);
848         }
849
850         if (apm_getinfo(fd, &info) != 0) {
851                 close(fd);
852                 strncpy(out, "ERR", 16);
853                 return (out);
854         }
855         close(fd);
856
857         batt_life = info.ai_batt_life;
858         if (batt_life == APM_UNKNOWN)
859                 strncpy(out, "unknown", 16);
860         else if (batt_life <= 100) {
861                 snprintf(out, 16, "%d%%", batt_life);
862                 return (out);
863         } else
864                 strncpy(out, "ERR", 16);
865
866         return (out);
867 }
868
869 char
870 *get_apm_battery_time()
871 {
872         int fd;
873         int batt_time;
874         int h, m, s;
875         struct apm_info info;
876         char *out;
877
878         out = (char *)calloc(16, sizeof (char));
879
880         fd = open(APMDEV, O_RDONLY);
881         if (fd < 0) {
882                 strncpy(out, "ERR", 16);
883                 return (out);
884         }
885
886         if (apm_getinfo(fd, &info) != 0) {
887                 close(fd);
888                 strncpy(out, "ERR", 16);
889                 return (out);
890         }
891         close(fd);
892
893         batt_time = info.ai_batt_time;
894
895         if (batt_time == -1)
896                 strncpy(out, "unknown", 16);
897         else {
898                 h = batt_time;
899                 s = h % 60;
900                 h /= 60;
901                 m = h % 60;
902                 h /= 60;
903                 snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
904         }
905
906         return (out);
907 }
908
909 #endif
910
911 void update_entropy (void)
912 {
913      /* mirrorbox: can you do anything equivalent in freebsd? -drphibes. */
914 }
915
916 /* empty stub so conky links */
917 void
918 free_all_processes(void)
919 {
920 }