correct zero segment values when coming from VM86 mode - cache infos in CPUID - simpl...
[qemu] / target-i386 / exec.h
1 /*
2  *  i386 execution defines 
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 #include "dyngen-exec.h"
21
22 /* at least 4 register variables are defines */
23 register struct CPUX86State *env asm(AREG0);
24 register uint32_t T0 asm(AREG1);
25 register uint32_t T1 asm(AREG2);
26 register uint32_t T2 asm(AREG3);
27
28 #define A0 T2
29
30 /* if more registers are available, we define some registers too */
31 #ifdef AREG4
32 register uint32_t EAX asm(AREG4);
33 #define reg_EAX
34 #endif
35
36 #ifdef AREG5
37 register uint32_t ESP asm(AREG5);
38 #define reg_ESP
39 #endif
40
41 #ifdef AREG6
42 register uint32_t EBP asm(AREG6);
43 #define reg_EBP
44 #endif
45
46 #ifdef AREG7
47 register uint32_t ECX asm(AREG7);
48 #define reg_ECX
49 #endif
50
51 #ifdef AREG8
52 register uint32_t EDX asm(AREG8);
53 #define reg_EDX
54 #endif
55
56 #ifdef AREG9
57 register uint32_t EBX asm(AREG9);
58 #define reg_EBX
59 #endif
60
61 #ifdef AREG10
62 register uint32_t ESI asm(AREG10);
63 #define reg_ESI
64 #endif
65
66 #ifdef AREG11
67 register uint32_t EDI asm(AREG11);
68 #define reg_EDI
69 #endif
70
71 extern FILE *logfile;
72 extern int loglevel;
73
74 #ifndef reg_EAX
75 #define EAX (env->regs[R_EAX])
76 #endif
77 #ifndef reg_ECX
78 #define ECX (env->regs[R_ECX])
79 #endif
80 #ifndef reg_EDX
81 #define EDX (env->regs[R_EDX])
82 #endif
83 #ifndef reg_EBX
84 #define EBX (env->regs[R_EBX])
85 #endif
86 #ifndef reg_ESP
87 #define ESP (env->regs[R_ESP])
88 #endif
89 #ifndef reg_EBP
90 #define EBP (env->regs[R_EBP])
91 #endif
92 #ifndef reg_ESI
93 #define ESI (env->regs[R_ESI])
94 #endif
95 #ifndef reg_EDI
96 #define EDI (env->regs[R_EDI])
97 #endif
98 #define EIP  (env->eip)
99 #define DF  (env->df)
100
101 #define CC_SRC (env->cc_src)
102 #define CC_DST (env->cc_dst)
103 #define CC_OP  (env->cc_op)
104
105 /* float macros */
106 #define FT0    (env->ft0)
107 #define ST0    (env->fpregs[env->fpstt])
108 #define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
109 #define ST1    ST(1)
110
111 #ifdef USE_FP_CONVERT
112 #define FP_CONVERT  (env->fp_convert)
113 #endif
114
115 #include "cpu.h"
116 #include "exec-all.h"
117
118 typedef struct CCTable {
119     int (*compute_all)(void); /* return all the flags */
120     int (*compute_c)(void);  /* return the C flag */
121 } CCTable;
122
123 extern CCTable cc_table[];
124
125 void load_seg(int seg_reg, int selector);
126 void helper_ljmp_protected_T0_T1(void);
127 void helper_lcall_real_T0_T1(int shift, int next_eip);
128 void helper_lcall_protected_T0_T1(int shift, int next_eip);
129 void helper_iret_real(int shift);
130 void helper_iret_protected(int shift);
131 void helper_lret_protected(int shift, int addend);
132 void helper_lldt_T0(void);
133 void helper_ltr_T0(void);
134 void helper_movl_crN_T0(int reg);
135 void helper_movl_drN_T0(int reg);
136 void helper_invlpg(unsigned int addr);
137 void cpu_x86_update_cr0(CPUX86State *env);
138 void cpu_x86_update_cr3(CPUX86State *env);
139 void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
140 int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, 
141                              int is_write, int is_user, int is_softmmu);
142 void tlb_fill(unsigned long addr, int is_write, int is_user, 
143               void *retaddr);
144 void __hidden cpu_lock(void);
145 void __hidden cpu_unlock(void);
146 void do_interrupt(int intno, int is_int, int error_code, 
147                   unsigned int next_eip, int is_hw);
148 void do_interrupt_user(int intno, int is_int, int error_code, 
149                        unsigned int next_eip);
150 void raise_interrupt(int intno, int is_int, int error_code, 
151                      unsigned int next_eip);
152 void raise_exception_err(int exception_index, int error_code);
153 void raise_exception(int exception_index);
154 void __hidden cpu_loop_exit(void);
155 void helper_fsave(uint8_t *ptr, int data32);
156 void helper_frstor(uint8_t *ptr, int data32);
157
158 void OPPROTO op_movl_eflags_T0(void);
159 void OPPROTO op_movl_T0_eflags(void);
160 void raise_interrupt(int intno, int is_int, int error_code, 
161                      unsigned int next_eip);
162 void raise_exception_err(int exception_index, int error_code);
163 void raise_exception(int exception_index);
164 void helper_divl_EAX_T0(uint32_t eip);
165 void helper_idivl_EAX_T0(uint32_t eip);
166 void helper_cmpxchg8b(void);
167 void helper_cpuid(void);
168 void helper_rdtsc(void);
169 void helper_rdmsr(void);
170 void helper_wrmsr(void);
171 void helper_lsl(void);
172 void helper_lar(void);
173 void helper_verr(void);
174 void helper_verw(void);
175
176 void check_iob_T0(void);
177 void check_iow_T0(void);
178 void check_iol_T0(void);
179 void check_iob_DX(void);
180 void check_iow_DX(void);
181 void check_iol_DX(void);
182
183 /* XXX: move that to a generic header */
184 #if !defined(CONFIG_USER_ONLY)
185
186 #define ldul_user ldl_user
187 #define ldul_kernel ldl_kernel
188
189 #define ACCESS_TYPE 0
190 #define MEMSUFFIX _kernel
191 #define DATA_SIZE 1
192 #include "softmmu_header.h"
193
194 #define DATA_SIZE 2
195 #include "softmmu_header.h"
196
197 #define DATA_SIZE 4
198 #include "softmmu_header.h"
199
200 #define DATA_SIZE 8
201 #include "softmmu_header.h"
202 #undef ACCESS_TYPE
203 #undef MEMSUFFIX
204
205 #define ACCESS_TYPE 1
206 #define MEMSUFFIX _user
207 #define DATA_SIZE 1
208 #include "softmmu_header.h"
209
210 #define DATA_SIZE 2
211 #include "softmmu_header.h"
212
213 #define DATA_SIZE 4
214 #include "softmmu_header.h"
215
216 #define DATA_SIZE 8
217 #include "softmmu_header.h"
218 #undef ACCESS_TYPE
219 #undef MEMSUFFIX
220
221 /* these access are slower, they must be as rare as possible */
222 #define ACCESS_TYPE 2
223 #define MEMSUFFIX _data
224 #define DATA_SIZE 1
225 #include "softmmu_header.h"
226
227 #define DATA_SIZE 2
228 #include "softmmu_header.h"
229
230 #define DATA_SIZE 4
231 #include "softmmu_header.h"
232
233 #define DATA_SIZE 8
234 #include "softmmu_header.h"
235 #undef ACCESS_TYPE
236 #undef MEMSUFFIX
237
238 #define ldub(p) ldub_data(p)
239 #define ldsb(p) ldsb_data(p)
240 #define lduw(p) lduw_data(p)
241 #define ldsw(p) ldsw_data(p)
242 #define ldl(p) ldl_data(p)
243 #define ldq(p) ldq_data(p)
244
245 #define stb(p, v) stb_data(p, v)
246 #define stw(p, v) stw_data(p, v)
247 #define stl(p, v) stl_data(p, v)
248 #define stq(p, v) stq_data(p, v)
249
250 static inline double ldfq(void *ptr)
251 {
252     union {
253         double d;
254         uint64_t i;
255     } u;
256     u.i = ldq(ptr);
257     return u.d;
258 }
259
260 static inline void stfq(void *ptr, double v)
261 {
262     union {
263         double d;
264         uint64_t i;
265     } u;
266     u.d = v;
267     stq(ptr, u.i);
268 }
269
270 static inline float ldfl(void *ptr)
271 {
272     union {
273         float f;
274         uint32_t i;
275     } u;
276     u.i = ldl(ptr);
277     return u.f;
278 }
279
280 static inline void stfl(void *ptr, float v)
281 {
282     union {
283         float f;
284         uint32_t i;
285     } u;
286     u.f = v;
287     stl(ptr, u.i);
288 }
289
290 #endif /* !defined(CONFIG_USER_ONLY) */
291
292 #ifdef USE_X86LDOUBLE
293 /* use long double functions */
294 #define lrint lrintl
295 #define llrint llrintl
296 #define fabs fabsl
297 #define sin sinl
298 #define cos cosl
299 #define sqrt sqrtl
300 #define pow powl
301 #define log logl
302 #define tan tanl
303 #define atan2 atan2l
304 #define floor floorl
305 #define ceil ceill
306 #define rint rintl
307 #endif
308
309 extern int lrint(CPU86_LDouble x);
310 extern int64_t llrint(CPU86_LDouble x);
311 extern CPU86_LDouble fabs(CPU86_LDouble x);
312 extern CPU86_LDouble sin(CPU86_LDouble x);
313 extern CPU86_LDouble cos(CPU86_LDouble x);
314 extern CPU86_LDouble sqrt(CPU86_LDouble x);
315 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
316 extern CPU86_LDouble log(CPU86_LDouble x);
317 extern CPU86_LDouble tan(CPU86_LDouble x);
318 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
319 extern CPU86_LDouble floor(CPU86_LDouble x);
320 extern CPU86_LDouble ceil(CPU86_LDouble x);
321 extern CPU86_LDouble rint(CPU86_LDouble x);
322
323 #define RC_MASK         0xc00
324 #define RC_NEAR         0x000
325 #define RC_DOWN         0x400
326 #define RC_UP           0x800
327 #define RC_CHOP         0xc00
328
329 #define MAXTAN 9223372036854775808.0
330
331 #ifdef __arm__
332 /* we have no way to do correct rounding - a FPU emulator is needed */
333 #define FE_DOWNWARD   FE_TONEAREST
334 #define FE_UPWARD     FE_TONEAREST
335 #define FE_TOWARDZERO FE_TONEAREST
336 #endif
337
338 #ifdef USE_X86LDOUBLE
339
340 /* only for x86 */
341 typedef union {
342     long double d;
343     struct {
344         unsigned long long lower;
345         unsigned short upper;
346     } l;
347 } CPU86_LDoubleU;
348
349 /* the following deal with x86 long double-precision numbers */
350 #define MAXEXPD 0x7fff
351 #define EXPBIAS 16383
352 #define EXPD(fp)        (fp.l.upper & 0x7fff)
353 #define SIGND(fp)       ((fp.l.upper) & 0x8000)
354 #define MANTD(fp)       (fp.l.lower)
355 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
356
357 #else
358
359 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
360 typedef union {
361     double d;
362 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
363     struct {
364         uint32_t lower;
365         int32_t upper;
366     } l;
367 #else
368     struct {
369         int32_t upper;
370         uint32_t lower;
371     } l;
372 #endif
373 #ifndef __arm__
374     int64_t ll;
375 #endif
376 } CPU86_LDoubleU;
377
378 /* the following deal with IEEE double-precision numbers */
379 #define MAXEXPD 0x7ff
380 #define EXPBIAS 1023
381 #define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
382 #define SIGND(fp)       ((fp.l.upper) & 0x80000000)
383 #ifdef __arm__
384 #define MANTD(fp)       (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
385 #else
386 #define MANTD(fp)       (fp.ll & ((1LL << 52) - 1))
387 #endif
388 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
389 #endif
390
391 static inline void fpush(void)
392 {
393     env->fpstt = (env->fpstt - 1) & 7;
394     env->fptags[env->fpstt] = 0; /* validate stack entry */
395 }
396
397 static inline void fpop(void)
398 {
399     env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
400     env->fpstt = (env->fpstt + 1) & 7;
401 }
402
403 #ifndef USE_X86LDOUBLE
404 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
405 {
406     CPU86_LDoubleU temp;
407     int upper, e;
408     uint64_t ll;
409
410     /* mantissa */
411     upper = lduw(ptr + 8);
412     /* XXX: handle overflow ? */
413     e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
414     e |= (upper >> 4) & 0x800; /* sign */
415     ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
416 #ifdef __arm__
417     temp.l.upper = (e << 20) | (ll >> 32);
418     temp.l.lower = ll;
419 #else
420     temp.ll = ll | ((uint64_t)e << 52);
421 #endif
422     return temp.d;
423 }
424
425 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
426 {
427     CPU86_LDoubleU temp;
428     int e;
429
430     temp.d = f;
431     /* mantissa */
432     stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
433     /* exponent + sign */
434     e = EXPD(temp) - EXPBIAS + 16383;
435     e |= SIGND(temp) >> 16;
436     stw(ptr + 8, e);
437 }
438 #else
439
440 /* XXX: same endianness assumed */
441
442 #ifdef CONFIG_USER_ONLY
443
444 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
445 {
446     return *(CPU86_LDouble *)ptr;
447 }
448
449 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
450 {
451     *(CPU86_LDouble *)ptr = f;
452 }
453
454 #else
455
456 /* we use memory access macros */
457
458 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
459 {
460     CPU86_LDoubleU temp;
461
462     temp.l.lower = ldq(ptr);
463     temp.l.upper = lduw(ptr + 8);
464     return temp.d;
465 }
466
467 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
468 {
469     CPU86_LDoubleU temp;
470     
471     temp.d = f;
472     stq(ptr, temp.l.lower);
473     stw(ptr + 8, temp.l.upper);
474 }
475
476 #endif /* !CONFIG_USER_ONLY */
477
478 #endif /* USE_X86LDOUBLE */
479
480 const CPU86_LDouble f15rk[7];
481
482 void helper_fldt_ST0_A0(void);
483 void helper_fstt_ST0_A0(void);
484 void helper_fbld_ST0_A0(void);
485 void helper_fbst_ST0_A0(void);
486 void helper_f2xm1(void);
487 void helper_fyl2x(void);
488 void helper_fptan(void);
489 void helper_fpatan(void);
490 void helper_fxtract(void);
491 void helper_fprem1(void);
492 void helper_fprem(void);
493 void helper_fyl2xp1(void);
494 void helper_fsqrt(void);
495 void helper_fsincos(void);
496 void helper_frndint(void);
497 void helper_fscale(void);
498 void helper_fsin(void);
499 void helper_fcos(void);
500 void helper_fxam_ST0(void);
501 void helper_fstenv(uint8_t *ptr, int data32);
502 void helper_fldenv(uint8_t *ptr, int data32);
503 void helper_fsave(uint8_t *ptr, int data32);
504 void helper_frstor(uint8_t *ptr, int data32);
505
506 const uint8_t parity_table[256];
507 const uint8_t rclw_table[32];
508 const uint8_t rclb_table[32];
509
510 static inline uint32_t compute_eflags(void)
511 {
512     return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
513 }
514
515 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
516 static inline void load_eflags(int eflags, int update_mask)
517 {
518     CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
519     DF = 1 - (2 * ((eflags >> 10) & 1));
520     env->eflags = (env->eflags & ~update_mask) | 
521         (eflags & update_mask);
522 }
523