Install keymaps from new location
[qemu] / hw / slavio_timer.c
index 9114858..b5f9ec3 100644 (file)
@@ -2,7 +2,7 @@
  * QEMU Sparc SLAVIO timer controller emulation
  *
  * Copyright (c) 2003-2005 Fabrice Bellard
- * 
+ *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
  * in the Software without restriction, including without limitation the rights
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  * THE SOFTWARE.
  */
-#include "vl.h"
+#include "hw.h"
+#include "sun4m.h"
+#include "qemu-timer.h"
 
 //#define DEBUG_TIMER
 
 #ifdef DEBUG_TIMER
-#define DPRINTF(fmt, args...) \
-do { printf("TIMER: " fmt , ##args); } while (0)
+#define DPRINTF(fmt, ...)                                       \
+    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
 #else
-#define DPRINTF(fmt, args...)
+#define DPRINTF(fmt, ...) do {} while (0)
 #endif
 
 /*
@@ -38,7 +40,7 @@ do { printf("TIMER: " fmt , ##args); } while (0)
  * This is the timer/counter part of chip STP2001 (Slave I/O), also
  * produced as NCR89C105. See
  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
- * 
+ *
  * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
  * are zero. Bit 31 is 1 when count has been reached.
  *
@@ -47,62 +49,69 @@ do { printf("TIMER: " fmt , ##args); } while (0)
  *
  */
 
+#define MAX_CPUS 16
+
 typedef struct SLAVIO_TIMERState {
-    uint32_t limit, count, counthigh;
-    int64_t count_load_time;
-    int64_t expire_time;
-    int64_t stop_time, tick_offset;
-    QEMUTimer *irq_timer;
-    int irq;
-    int reached, stopped;
-    int mode; // 0 = processor, 1 = user, 2 = system
-    unsigned int cpu;
-    void *intctl;
+    qemu_irq irq;
+    ptimer_state *timer;
+    uint32_t count, counthigh, reached;
+    uint64_t limit;
+    // processor only
+    uint32_t running;
+    struct SLAVIO_TIMERState *master;
+    uint32_t slave_index;
+    // system only
+    uint32_t num_slaves;
+    struct SLAVIO_TIMERState *slave[MAX_CPUS];
+    uint32_t slave_mode;
 } SLAVIO_TIMERState;
 
-#define TIMER_MAXADDR 0x1f
-#define CNT_FREQ 2000000
+#define SYS_TIMER_SIZE 0x14
+#define CPU_TIMER_SIZE 0x10
 
-// Update count, set irq, update expire_time
-static void slavio_timer_get_out(SLAVIO_TIMERState *s)
-{
-    int out;
-    int64_t diff, ticks, count;
-    uint32_t limit;
-
-    // There are three clock tick units: CPU ticks, register units
-    // (nanoseconds), and counter ticks (500 ns).
-    if (s->mode == 1 && s->stopped)
-       ticks = s->stop_time;
-    else
-       ticks = qemu_get_clock(vm_clock) - s->tick_offset;
+#define SYS_TIMER_OFFSET      0x10000ULL
+#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
 
-    out = (ticks > s->expire_time);
-    if (out)
-       s->reached = 0x80000000;
-    // Convert register units to counter ticks
-    limit = s->limit >> 9;
+#define TIMER_LIMIT         0
+#define TIMER_COUNTER       1
+#define TIMER_COUNTER_NORST 2
+#define TIMER_STATUS        3
+#define TIMER_MODE          4
 
-    if (!limit)
-       limit = 0x7fffffff >> 9;
+#define TIMER_COUNT_MASK32 0xfffffe00
+#define TIMER_LIMIT_MASK32 0x7fffffff
+#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
+#define TIMER_MAX_COUNT32  0x7ffffe00ULL
+#define TIMER_REACHED      0x80000000
+#define TIMER_PERIOD       500ULL // 500ns
+#define LIMIT_TO_PERIODS(l) ((l) >> 9)
+#define PERIODS_TO_LIMIT(l) ((l) << 9)
 
-    // Convert cpu ticks to counter ticks
-    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
+static int slavio_timer_is_user(SLAVIO_TIMERState *s)
+{
+    return s->master && (s->master->slave_mode & (1 << s->slave_index));
+}
 
-    // Calculate what the counter should be, convert to register
-    // units
-    count = diff % limit;
-    s->count = count << 9;
-    s->counthigh = count >> 22;
+// Update count, set irq, update expire_time
+// Convert from ptimer countdown units
+static void slavio_timer_get_out(SLAVIO_TIMERState *s)
+{
+    uint64_t count, limit;
 
-    // Expire time: CPU ticks left to next interrupt
-    // Convert remaining counter ticks to CPU ticks
-    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
+    if (s->limit == 0) /* free-run processor or system counter */
+        limit = TIMER_MAX_COUNT32;
+    else
+        limit = s->limit;
 
-    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
+    if (s->timer)
+        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
+    else
+        count = 0;
 
-    if (s->mode != 1)
-       pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
+    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
+            s->counthigh, s->count);
+    s->count = count & TIMER_COUNT_MASK32;
+    s->counthigh = count >> 32;
 }
 
 // timer callback
@@ -110,104 +119,199 @@ static void slavio_timer_irq(void *opaque)
 {
     SLAVIO_TIMERState *s = opaque;
 
-    if (!s->irq_timer)
-        return;
     slavio_timer_get_out(s);
-    if (s->mode != 1)
-       qemu_mod_timer(s->irq_timer, s->expire_time);
+    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
+    s->reached = TIMER_REACHED;
+    if (!slavio_timer_is_user(s))
+        qemu_irq_raise(s->irq);
 }
 
 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
 {
     SLAVIO_TIMERState *s = opaque;
-    uint32_t saddr;
+    uint32_t saddr, ret;
 
-    saddr = (addr & TIMER_MAXADDR) >> 2;
+    saddr = addr >> 2;
     switch (saddr) {
-    case 0:
-       // read limit (system counter mode) or read most signifying
-       // part of counter (user mode)
-       if (s->mode != 1) {
-           // clear irq
-           pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
-           s->reached = 0;
-           return s->limit;
-       }
-       else {
-           slavio_timer_get_out(s);
-           return s->counthigh & 0x7fffffff;
-       }
-    case 1:
-       // read counter and reached bit (system mode) or read lsbits
-       // of counter (user mode)
-       slavio_timer_get_out(s);
-       if (s->mode != 1)
-           return (s->count & 0x7fffffff) | s->reached;
-       else
-           return s->count;
-    case 3:
-       // read start/stop status
-       return s->stopped;
-    case 4:
-       // read user/system mode
-       return s->mode & 1;
+    case TIMER_LIMIT:
+        // read limit (system counter mode) or read most signifying
+        // part of counter (user mode)
+        if (slavio_timer_is_user(s)) {
+            // read user timer MSW
+            slavio_timer_get_out(s);
+            ret = s->counthigh | s->reached;
+        } else {
+            // read limit
+            // clear irq
+            qemu_irq_lower(s->irq);
+            s->reached = 0;
+            ret = s->limit & TIMER_LIMIT_MASK32;
+        }
+        break;
+    case TIMER_COUNTER:
+        // read counter and reached bit (system mode) or read lsbits
+        // of counter (user mode)
+        slavio_timer_get_out(s);
+        if (slavio_timer_is_user(s)) // read user timer LSW
+            ret = s->count & TIMER_MAX_COUNT64;
+        else // read limit
+            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
+        break;
+    case TIMER_STATUS:
+        // only available in processor counter/timer
+        // read start/stop status
+        ret = s->running;
+        break;
+    case TIMER_MODE:
+        // only available in system counter
+        // read user/system mode
+        ret = s->slave_mode;
+        break;
     default:
-       return 0;
+        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
+        ret = 0;
+        break;
     }
+    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
+
+    return ret;
 }
 
-static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
+                                    uint32_t val)
 {
     SLAVIO_TIMERState *s = opaque;
     uint32_t saddr;
 
-    saddr = (addr & TIMER_MAXADDR) >> 2;
+    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
+    saddr = addr >> 2;
     switch (saddr) {
-    case 0:
-       // set limit, reset counter
-       s->count_load_time = qemu_get_clock(vm_clock);
-       // fall through
-    case 2:
-       // set limit without resetting counter
-       if (!val)
-           s->limit = 0x7fffffff;
-       else
-           s->limit = val & 0x7fffffff;
-       slavio_timer_irq(s);
-       break;
-    case 3:
-       // start/stop user counter
-       if (s->mode == 1) {
-           if (val & 1) {
-               s->stop_time = qemu_get_clock(vm_clock);
-               s->stopped = 1;
-           }
-           else {
-               if (s->stopped)
-                   s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
-               s->stopped = 0;
-           }
-       }
-       break;
-    case 4:
-       // bit 0: user (1) or system (0) counter mode
-       if (s->mode == 0 || s->mode == 1)
-           s->mode = val & 1;
-       break;
+    case TIMER_LIMIT:
+        if (slavio_timer_is_user(s)) {
+            uint64_t count;
+
+            // set user counter MSW, reset counter
+            s->limit = TIMER_MAX_COUNT64;
+            s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
+            s->reached = 0;
+            count = ((uint64_t)s->counthigh << 32) | s->count;
+            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
+                    count);
+            if (s->timer)
+                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
+        } else {
+            // set limit, reset counter
+            qemu_irq_lower(s->irq);
+            s->limit = val & TIMER_MAX_COUNT32;
+            if (s->timer) {
+                if (s->limit == 0) /* free-run */
+                    ptimer_set_limit(s->timer,
+                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
+                else
+                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
+            }
+        }
+        break;
+    case TIMER_COUNTER:
+        if (slavio_timer_is_user(s)) {
+            uint64_t count;
+
+            // set user counter LSW, reset counter
+            s->limit = TIMER_MAX_COUNT64;
+            s->count = val & TIMER_MAX_COUNT64;
+            s->reached = 0;
+            count = ((uint64_t)s->counthigh) << 32 | s->count;
+            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
+                    count);
+            if (s->timer)
+                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
+        } else
+            DPRINTF("not user timer\n");
+        break;
+    case TIMER_COUNTER_NORST:
+        // set limit without resetting counter
+        s->limit = val & TIMER_MAX_COUNT32;
+        if (s->timer) {
+            if (s->limit == 0) /* free-run */
+                ptimer_set_limit(s->timer,
+                                 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
+            else
+                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
+        }
+        break;
+    case TIMER_STATUS:
+        if (slavio_timer_is_user(s)) {
+            // start/stop user counter
+            if ((val & 1) && !s->running) {
+                DPRINTF("processor %d user timer started\n", s->slave_index);
+                if (s->timer)
+                    ptimer_run(s->timer, 0);
+                s->running = 1;
+            } else if (!(val & 1) && s->running) {
+                DPRINTF("processor %d user timer stopped\n", s->slave_index);
+                if (s->timer)
+                    ptimer_stop(s->timer);
+                s->running = 0;
+            }
+        }
+        break;
+    case TIMER_MODE:
+        if (s->master == NULL) {
+            unsigned int i;
+
+            for (i = 0; i < s->num_slaves; i++) {
+                unsigned int processor = 1 << i;
+
+                // check for a change in timer mode for this processor
+                if ((val & processor) != (s->slave_mode & processor)) {
+                    if (val & processor) { // counter -> user timer
+                        qemu_irq_lower(s->slave[i]->irq);
+                        // counters are always running
+                        ptimer_stop(s->slave[i]->timer);
+                        s->slave[i]->running = 0;
+                        // user timer limit is always the same
+                        s->slave[i]->limit = TIMER_MAX_COUNT64;
+                        ptimer_set_limit(s->slave[i]->timer,
+                                         LIMIT_TO_PERIODS(s->slave[i]->limit),
+                                         1);
+                        // set this processors user timer bit in config
+                        // register
+                        s->slave_mode |= processor;
+                        DPRINTF("processor %d changed from counter to user "
+                                "timer\n", s->slave[i]->slave_index);
+                    } else { // user timer -> counter
+                        // stop the user timer if it is running
+                        if (s->slave[i]->running)
+                            ptimer_stop(s->slave[i]->timer);
+                        // start the counter
+                        ptimer_run(s->slave[i]->timer, 0);
+                        s->slave[i]->running = 1;
+                        // clear this processors user timer bit in config
+                        // register
+                        s->slave_mode &= ~processor;
+                        DPRINTF("processor %d changed from user timer to "
+                                "counter\n", s->slave[i]->slave_index);
+                    }
+                }
+            }
+        } else
+            DPRINTF("not system timer\n");
+        break;
     default:
-       break;
+        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
+        break;
     }
 }
 
 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
-    slavio_timer_mem_readl,
-    slavio_timer_mem_readl,
+    NULL,
+    NULL,
     slavio_timer_mem_readl,
 };
 
 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
-    slavio_timer_mem_writel,
-    slavio_timer_mem_writel,
+    NULL,
+    NULL,
     slavio_timer_mem_writel,
 };
 
@@ -215,37 +319,30 @@ static void slavio_timer_save(QEMUFile *f, void *opaque)
 {
     SLAVIO_TIMERState *s = opaque;
 
-    qemu_put_be32s(f, &s->limit);
+    qemu_put_be64s(f, &s->limit);
     qemu_put_be32s(f, &s->count);
     qemu_put_be32s(f, &s->counthigh);
-    qemu_put_be64s(f, &s->count_load_time);
-    qemu_put_be64s(f, &s->expire_time);
-    qemu_put_be64s(f, &s->stop_time);
-    qemu_put_be64s(f, &s->tick_offset);
-    qemu_put_be32s(f, &s->irq);
     qemu_put_be32s(f, &s->reached);
-    qemu_put_be32s(f, &s->stopped);
-    qemu_put_be32s(f, &s->mode);
+    qemu_put_be32s(f, &s->running);
+    if (s->timer)
+        qemu_put_ptimer(f, s->timer);
 }
 
 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
 {
     SLAVIO_TIMERState *s = opaque;
-    
-    if (version_id != 1)
+
+    if (version_id != 3)
         return -EINVAL;
 
-    qemu_get_be32s(f, &s->limit);
+    qemu_get_be64s(f, &s->limit);
     qemu_get_be32s(f, &s->count);
     qemu_get_be32s(f, &s->counthigh);
-    qemu_get_be64s(f, &s->count_load_time);
-    qemu_get_be64s(f, &s->expire_time);
-    qemu_get_be64s(f, &s->stop_time);
-    qemu_get_be64s(f, &s->tick_offset);
-    qemu_get_be32s(f, &s->irq);
     qemu_get_be32s(f, &s->reached);
-    qemu_get_be32s(f, &s->stopped);
-    qemu_get_be32s(f, &s->mode);
+    qemu_get_be32s(f, &s->running);
+    if (s->timer)
+        qemu_get_ptimer(f, s->timer);
+
     return 0;
 }
 
@@ -255,34 +352,64 @@ static void slavio_timer_reset(void *opaque)
 
     s->limit = 0;
     s->count = 0;
-    s->count_load_time = qemu_get_clock(vm_clock);;
-    s->stop_time = s->count_load_time;
-    s->tick_offset = 0;
     s->reached = 0;
-    s->mode &= 2;
-    s->stopped = 1;
-    slavio_timer_irq(s);
+    s->slave_mode = 0;
+    if (!s->master || s->slave_index < s->master->num_slaves) {
+        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
+        ptimer_run(s->timer, 0);
+    }
+    s->running = 1;
+    qemu_irq_lower(s->irq);
 }
 
-void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
-                       void *intctl)
+static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
+                                            qemu_irq irq,
+                                            SLAVIO_TIMERState *master,
+                                            uint32_t slave_index)
 {
     int slavio_timer_io_memory;
     SLAVIO_TIMERState *s;
+    QEMUBH *bh;
 
     s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
-    if (!s)
-        return;
     s->irq = irq;
-    s->mode = mode;
-    s->cpu = cpu;
-    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
-    s->intctl = intctl;
+    s->master = master;
+    s->slave_index = slave_index;
+    if (!master || slave_index < master->num_slaves) {
+        bh = qemu_bh_new(slavio_timer_irq, s);
+        s->timer = ptimer_init(bh);
+        ptimer_set_period(s->timer, TIMER_PERIOD);
+    }
 
     slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
-                                                   slavio_timer_mem_write, s);
-    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
-    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
-    qemu_register_reset(slavio_timer_reset, s);
+                                                    slavio_timer_mem_write, s);
+    if (master)
+        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
+                                     slavio_timer_io_memory);
+    else
+        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
+                                     slavio_timer_io_memory);
+    register_savevm("slavio_timer", addr, 3, slavio_timer_save,
+                    slavio_timer_load, s);
+    qemu_register_reset(slavio_timer_reset, 0, s);
     slavio_timer_reset(s);
+
+    return s;
+}
+
+void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
+                           qemu_irq *cpu_irqs, unsigned int num_cpus)
+{
+    SLAVIO_TIMERState *master;
+    unsigned int i;
+
+    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
+
+    master->num_slaves = num_cpus;
+
+    for (i = 0; i < MAX_CPUS; i++) {
+        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
+                                             CPU_TIMER_OFFSET(i),
+                                             cpu_irqs[i], master, i);
+    }
 }