Fix typo
[qemu] / target-ppc / op_helper.c
index d76ec0a..56fab9c 100644 (file)
@@ -15,8 +15,9 @@
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
  */
+#include <string.h>
 #include "exec.h"
 #include "host-utils.h"
 #include "helper.h"
 //#define DEBUG_EXCEPTIONS
 //#define DEBUG_SOFTWARE_TLB
 
+#ifdef DEBUG_SOFTWARE_TLB
+#  define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
+#else
+#  define LOG_SWTLB(...) do { } while (0)
+#endif
+
+
 /*****************************************************************************/
 /* Exceptions processing helpers */
 
@@ -46,45 +54,17 @@ void helper_raise_exception (uint32_t exception)
 }
 
 /*****************************************************************************/
-/* Registers load and stores */
-target_ulong helper_load_cr (void)
-{
-    return (env->crf[0] << 28) |
-           (env->crf[1] << 24) |
-           (env->crf[2] << 20) |
-           (env->crf[3] << 16) |
-           (env->crf[4] << 12) |
-           (env->crf[5] << 8) |
-           (env->crf[6] << 4) |
-           (env->crf[7] << 0);
-}
-
-void helper_store_cr (target_ulong val, uint32_t mask)
-{
-    int i, sh;
-
-    for (i = 0, sh = 7; i < 8; i++, sh--) {
-        if (mask & (1 << sh))
-            env->crf[i] = (val >> (sh * 4)) & 0xFUL;
-    }
-}
-
-/*****************************************************************************/
 /* SPR accesses */
 void helper_load_dump_spr (uint32_t sprn)
 {
-    if (loglevel != 0) {
-        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
+    qemu_log("Read SPR %d %03x => " ADDRX "\n",
                 sprn, sprn, env->spr[sprn]);
-    }
 }
 
 void helper_store_dump_spr (uint32_t sprn)
 {
-    if (loglevel != 0) {
-        fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
+    qemu_log("Write SPR %d %03x <= " ADDRX "\n",
                 sprn, sprn, env->spr[sprn]);
-    }
 }
 
 target_ulong helper_load_tbl (void)
@@ -181,10 +161,8 @@ void helper_store_hid0_601 (target_ulong val)
         env->hflags_nmsr &= ~(1 << MSR_LE);
         env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
         env->hflags |= env->hflags_nmsr;
-        if (loglevel != 0) {
-            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
+        qemu_log("%s: set endianness to %c => " ADDRX "\n",
                     __func__, val & 0x8 ? 'l' : 'b', env->hflags);
-        }
     }
     env->spr[SPR_HID0] = (uint32_t)val;
 }
@@ -338,9 +316,10 @@ void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
        addr = addr_add(addr, 4);
     }
     if (unlikely(nb > 0)) {
-        for (sh = 24; nb > 0; nb--, sh -= 8)
+        for (sh = 24; nb > 0; nb--, sh -= 8) {
             stb(addr, (env->gpr[reg] >> sh) & 0xFF);
-           addr = addr_add(addr, 1);
+            addr = addr_add(addr, 1);
+        }
     }
 }
 
@@ -554,15 +533,6 @@ uint32_t helper_float64_to_float32(uint64_t arg)
     return f.l;
 }
 
-static always_inline int fpisneg (float64 d)
-{
-    CPU_DoubleU u;
-
-    u.d = d;
-
-    return u.ll >> 63 != 0;
-}
-
 static always_inline int isden (float64 d)
 {
     CPU_DoubleU u;
@@ -572,53 +542,13 @@ static always_inline int isden (float64 d)
     return ((u.ll >> 52) & 0x7FF) == 0;
 }
 
-static always_inline int iszero (float64 d)
-{
-    CPU_DoubleU u;
-
-    u.d = d;
-
-    return (u.ll & ~0x8000000000000000ULL) == 0;
-}
-
-static always_inline int isinfinity (float64 d)
-{
-    CPU_DoubleU u;
-
-    u.d = d;
-
-    return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
-        (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
-}
-
-#ifdef CONFIG_SOFTFLOAT
-static always_inline int isfinite (float64 d)
-{
-    CPU_DoubleU u;
-
-    u.d = d;
-
-    return (((u.ll >> 52) & 0x7FF) != 0x7FF);
-}
-
-static always_inline int isnormal (float64 d)
-{
-    CPU_DoubleU u;
-
-    u.d = d;
-
-    uint32_t exp = (u.ll >> 52) & 0x7FF;
-    return ((0 < exp) && (exp < 0x7FF));
-}
-#endif
-
 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
 {
     CPU_DoubleU farg;
     int isneg;
     int ret;
     farg.ll = arg;
-    isneg = fpisneg(farg.d);
+    isneg = float64_is_neg(farg.d);
     if (unlikely(float64_is_nan(farg.d))) {
         if (float64_is_signaling_nan(farg.d)) {
             /* Signaling NaN: flags are undefined */
@@ -627,14 +557,14 @@ uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
             /* Quiet NaN */
             ret = 0x11;
         }
-    } else if (unlikely(isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_infinity(farg.d))) {
         /* +/- infinity */
         if (isneg)
             ret = 0x09;
         else
             ret = 0x05;
     } else {
-        if (iszero(farg.d)) {
+        if (float64_is_zero(farg.d)) {
             /* +/- zero */
             if (isneg)
                 ret = 0x12;
@@ -671,15 +601,13 @@ static always_inline uint64_t fload_invalid_op_excp (int op)
     int ve;
 
     ve = fpscr_ve;
-    if (op & POWERPC_EXCP_FP_VXSNAN) {
-        /* Operation on signaling NaN */
+    switch (op) {
+    case POWERPC_EXCP_FP_VXSNAN:
         env->fpscr |= 1 << FPSCR_VXSNAN;
-    }
-    if (op & POWERPC_EXCP_FP_VXSOFT) {
-        /* Software-defined condition */
+       break;
+    case POWERPC_EXCP_FP_VXSOFT:
         env->fpscr |= 1 << FPSCR_VXSOFT;
-    }
-    switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
+       break;
     case POWERPC_EXCP_FP_VXISI:
         /* Magnitude subtraction of infinities */
         env->fpscr |= 1 << FPSCR_VXISI;
@@ -718,7 +646,7 @@ static always_inline uint64_t fload_invalid_op_excp (int op)
         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
         if (ve == 0) {
             /* Set the result to quiet NaN */
-            ret = UINT64_MAX;
+            ret = 0xFFF8000000000000ULL;
             env->fpscr &= ~(0xF << FPSCR_FPCC);
             env->fpscr |= 0x11 << FPSCR_FPCC;
         }
@@ -729,7 +657,7 @@ static always_inline uint64_t fload_invalid_op_excp (int op)
         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
         if (ve == 0) {
             /* Set the result to quiet NaN */
-            ret = UINT64_MAX;
+            ret = 0xFFF8000000000000ULL;
             env->fpscr &= ~(0xF << FPSCR_FPCC);
             env->fpscr |= 0x11 << FPSCR_FPCC;
         }
@@ -748,7 +676,7 @@ static always_inline uint64_t fload_invalid_op_excp (int op)
     return ret;
 }
 
-static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t arg2)
+static always_inline void float_zero_divide_excp (void)
 {
     env->fpscr |= 1 << FPSCR_ZX;
     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
@@ -761,12 +689,7 @@ static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t ar
             helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
         }
-    } else {
-        /* Set the result to infinity */
-        arg1 = ((arg1 ^ arg2) & 0x8000000000000000ULL);
-        arg1 |= 0x7FFULL << 52;
     }
-    return arg1;
 }
 
 static always_inline void float_overflow_excp (void)
@@ -843,6 +766,24 @@ static always_inline void fpscr_set_rounding_mode (void)
     set_float_rounding_mode(rnd_type, &env->fp_status);
 }
 
+void helper_fpscr_clrbit (uint32_t bit)
+{
+    int prev;
+
+    prev = (env->fpscr >> bit) & 1;
+    env->fpscr &= ~(1 << bit);
+    if (prev == 1) {
+        switch (bit) {
+        case FPSCR_RN1:
+        case FPSCR_RN:
+            fpscr_set_rounding_mode();
+            break;
+        default:
+            break;
+        }
+    }
+}
+
 void helper_fpscr_setbit (uint32_t bit)
 {
     int prev;
@@ -968,9 +909,9 @@ void helper_store_fpscr (uint64_t arg, uint32_t mask)
 
     prev = env->fpscr;
     new = (uint32_t)arg;
-    new &= ~0x90000000;
-    new |= prev & 0x90000000;
-    for (i = 0; i < 7; i++) {
+    new &= ~0x60000000;
+    new |= prev & 0x60000000;
+    for (i = 0; i < 8; i++) {
         if (mask & (1 << i)) {
             env->fpscr &= ~(0xF << (4 * i));
             env->fpscr |= new & (0xF << (4 * i));
@@ -1000,12 +941,17 @@ void helper_float_check_status (void)
         /* Differred floating-point exception after target FPR update */
         if (msr_fe0 != 0 || msr_fe1 != 0)
             helper_raise_exception_err(env->exception_index, env->error_code);
-    } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
-        float_overflow_excp();
-    } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
-        float_underflow_excp();
-    } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
-        float_inexact_excp();
+    } else {
+        int status = get_float_exception_flags(&env->fp_status);
+        if (status & float_flag_divbyzero) {
+            float_zero_divide_excp();
+        } else if (status & float_flag_overflow) {
+            float_overflow_excp();
+        } else if (status & float_flag_underflow) {
+            float_underflow_excp();
+        } else if (status & float_flag_inexact) {
+            float_inexact_excp();
+        }
     }
 #else
     if (env->exception_index == POWERPC_EXCP_PROGRAM &&
@@ -1020,7 +966,7 @@ void helper_float_check_status (void)
 #ifdef CONFIG_SOFTFLOAT
 void helper_reset_fpstatus (void)
 {
-    env->fp_status.float_exception_flags = 0;
+    set_float_exception_flags(0, &env->fp_status);
 }
 #endif
 
@@ -1036,12 +982,12 @@ uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
                  float64_is_signaling_nan(farg2.d))) {
         /* sNaN addition */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) ||
-                      fpisneg(farg1.d) == fpisneg(farg2.d))) {
-        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
-    } else {
+    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
+                      float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
         /* Magnitude subtraction of infinities */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+    } else {
+        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
     }
 #else
     farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
@@ -1062,12 +1008,12 @@ uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
                  float64_is_signaling_nan(farg2.d))) {
         /* sNaN subtraction */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) ||
-                      fpisneg(farg1.d) != fpisneg(farg2.d))) {
-        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
-    } else {
+    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
+                      float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
         /* Magnitude subtraction of infinities */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+    } else {
+        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
     }
 }
 #else
@@ -1088,8 +1034,8 @@ uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
                  float64_is_signaling_nan(farg2.d))) {
         /* sNaN multiplication */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely((isinfinity(farg1.d) && iszero(farg2.d)) ||
-                        (iszero(farg1.d) && isinfinity(farg2.d)))) {
+    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
+                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
     } else {
@@ -1113,17 +1059,12 @@ uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
                  float64_is_signaling_nan(farg2.d))) {
         /* sNaN division */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely(isinfinity(farg1.d) && isinfinity(farg2.d))) {
+    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
         /* Division of infinity by infinity */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
-    } else if (unlikely(iszero(farg2.d))) {
-        if (iszero(farg1.d)) {
-            /* Division of zero by zero */
-            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
-        } else {
-            /* Division by zero */
-            farg1.ll = float_zero_divide_excp(farg1.d, farg2.d);
-        }
+    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
+        /* Division of zero by zero */
+        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
     } else {
         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
     }
@@ -1173,7 +1114,7 @@ uint64_t helper_fctiw (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
-    } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
         /* qNan / infinity conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
     } else {
@@ -1197,7 +1138,7 @@ uint64_t helper_fctiwz (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
-    } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
         /* qNan / infinity conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
     } else {
@@ -1230,7 +1171,7 @@ uint64_t helper_fctid (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
-    } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
         /* qNan / infinity conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
     } else {
@@ -1248,7 +1189,7 @@ uint64_t helper_fctidz (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
-    } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
         /* qNan / infinity conversion */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
     } else {
@@ -1267,7 +1208,7 @@ static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN round */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
-    } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
+    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
         /* qNan / infinity round */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
     } else {
@@ -1313,6 +1254,10 @@ uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
                  float64_is_signaling_nan(farg3.d))) {
         /* sNaN operation */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
+                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
+        /* Multiplication of zero by infinity */
+        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
     } else {
 #ifdef FLOAT128
         /* This is the way the PowerPC specification defines it */
@@ -1321,9 +1266,15 @@ uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
-        ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
-        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
-        farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
+                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
+            /* Magnitude subtraction of infinities */
+            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+        } else {
+            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
+            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
+            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        }
 #else
         /* This is OK on x86 hosts */
         farg1.d = (farg1.d * farg2.d) + farg3.d;
@@ -1350,6 +1301,10 @@ uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
                  float64_is_signaling_nan(farg3.d))) {
         /* sNaN operation */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
+                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
+        /* Multiplication of zero by infinity */
+        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
     } else {
 #ifdef FLOAT128
         /* This is the way the PowerPC specification defines it */
@@ -1358,9 +1313,15 @@ uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
-        ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
-        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
-        farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
+                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
+            /* Magnitude subtraction of infinities */
+            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+        } else {
+            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
+            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
+            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        }
 #else
         /* This is OK on x86 hosts */
         farg1.d = (farg1.d * farg2.d) - farg3.d;
@@ -1387,6 +1348,10 @@ uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
                  float64_is_signaling_nan(farg3.d))) {
         /* sNaN operation */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
+                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
+        /* Multiplication of zero by infinity */
+        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
     } else {
 #if USE_PRECISE_EMULATION
 #ifdef FLOAT128
@@ -1396,9 +1361,15 @@ uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
-        ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
-        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
-        farg1.d= float128_to_float64(ft0_128, &env->fp_status);
+        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
+                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
+            /* Magnitude subtraction of infinities */
+            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+        } else {
+            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
+            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
+            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        }
 #else
         /* This is OK on x86 hosts */
         farg1.d = (farg1.d * farg2.d) + farg3.d;
@@ -1427,6 +1398,10 @@ uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
                  float64_is_signaling_nan(farg3.d))) {
         /* sNaN operation */
         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
+                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
+        /* Multiplication of zero by infinity */
+        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
     } else {
 #if USE_PRECISE_EMULATION
 #ifdef FLOAT128
@@ -1436,9 +1411,15 @@ uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
-        ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
-        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
-        farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
+                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
+            /* Magnitude subtraction of infinities */
+            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
+        } else {
+            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
+            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
+            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
+        }
 #else
         /* This is OK on x86 hosts */
         farg1.d = (farg1.d * farg2.d) - farg3.d;
@@ -1457,6 +1438,7 @@ uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 uint64_t helper_frsp (uint64_t arg)
 {
     CPU_DoubleU farg;
+    float32 f32;
     farg.ll = arg;
 
 #if USE_PRECISE_EMULATION
@@ -1464,10 +1446,12 @@ uint64_t helper_frsp (uint64_t arg)
         /* sNaN square root */
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
     } else {
-       farg.d = float64_to_float32(farg.d, &env->fp_status);
+       f32 = float64_to_float32(farg.d, &env->fp_status);
+       farg.d = float32_to_float64(f32, &env->fp_status);
     }
 #else
-    farg.d = float64_to_float32(farg.d, &env->fp_status);
+    f32 = float64_to_float32(farg.d, &env->fp_status);
+    farg.d = float32_to_float64(f32, &env->fp_status);
 #endif
     return farg.ll;
 }
@@ -1481,7 +1465,7 @@ uint64_t helper_fsqrt (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN square root */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) {
+    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
         /* Square root of a negative nonzero number */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
     } else {
@@ -1499,23 +1483,8 @@ uint64_t helper_fre (uint64_t arg)
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN reciprocal */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely(iszero(farg.d))) {
-        /* Zero reciprocal */
-        farg.ll = float_zero_divide_excp(1.0, farg.d);
-    } else if (likely(isnormal(farg.d))) {
-        farg.d = float64_div(1.0, farg.d, &env->fp_status);
     } else {
-        if (farg.ll == 0x8000000000000000ULL) {
-            farg.ll = 0xFFF0000000000000ULL;
-        } else if (farg.ll == 0x0000000000000000ULL) {
-            farg.ll = 0x7FF0000000000000ULL;
-        } else if (float64_is_nan(farg.d)) {
-            farg.ll = 0x7FF8000000000000ULL;
-        } else if (fpisneg(farg.d)) {
-            farg.ll = 0x8000000000000000ULL;
-        } else {
-            farg.ll = 0x0000000000000000ULL;
-        }
+        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
     }
     return farg.d;
 }
@@ -1524,33 +1493,16 @@ uint64_t helper_fre (uint64_t arg)
 uint64_t helper_fres (uint64_t arg)
 {
     CPU_DoubleU farg;
+    float32 f32;
     farg.ll = arg;
 
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN reciprocal */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely(iszero(farg.d))) {
-        /* Zero reciprocal */
-        farg.ll = float_zero_divide_excp(1.0, farg.d);
-    } else if (likely(isnormal(farg.d))) {
-#if USE_PRECISE_EMULATION
-        farg.d = float64_div(1.0, farg.d, &env->fp_status);
-        farg.d = float64_to_float32(farg.d, &env->fp_status);
-#else
-        farg.d = float32_div(1.0, farg.d, &env->fp_status);
-#endif
     } else {
-        if (farg.ll == 0x8000000000000000ULL) {
-            farg.ll = 0xFFF0000000000000ULL;
-        } else if (farg.ll == 0x0000000000000000ULL) {
-            farg.ll = 0x7FF0000000000000ULL;
-        } else if (float64_is_nan(farg.d)) {
-            farg.ll = 0x7FF8000000000000ULL;
-        } else if (fpisneg(farg.d)) {
-            farg.ll = 0x8000000000000000ULL;
-        } else {
-            farg.ll = 0x0000000000000000ULL;
-        }
+        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
+        f32 = float64_to_float32(farg.d, &env->fp_status);
+        farg.d = float32_to_float64(f32, &env->fp_status);
     }
     return farg.ll;
 }
@@ -1559,29 +1511,20 @@ uint64_t helper_fres (uint64_t arg)
 uint64_t helper_frsqrte (uint64_t arg)
 {
     CPU_DoubleU farg;
+    float32 f32;
     farg.ll = arg;
 
     if (unlikely(float64_is_signaling_nan(farg.d))) {
         /* sNaN reciprocal square root */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
-    } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) {
+    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
         /* Reciprocal square root of a negative nonzero number */
         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
-    } else if (likely(isnormal(farg.d))) {
-        farg.d = float64_sqrt(farg.d, &env->fp_status);
-        farg.d = float32_div(1.0, farg.d, &env->fp_status);
     } else {
-        if (farg.ll == 0x8000000000000000ULL) {
-            farg.ll = 0xFFF0000000000000ULL;
-        } else if (farg.ll == 0x0000000000000000ULL) {
-            farg.ll = 0x7FF0000000000000ULL;
-        } else if (float64_is_nan(farg.d)) {
-            farg.ll |= 0x000FFFFFFFFFFFFFULL;
-        } else if (fpisneg(farg.d)) {
-            farg.ll = 0x7FF8000000000000ULL;
-        } else {
-            farg.ll = 0x0000000000000000ULL;
-        }
+        farg.d = float64_sqrt(farg.d, &env->fp_status);
+        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
+        f32 = float64_to_float32(farg.d, &env->fp_status);
+        farg.d = float32_to_float64(f32, &env->fp_status);
     }
     return farg.ll;
 }
@@ -1589,44 +1532,46 @@ uint64_t helper_frsqrte (uint64_t arg)
 /* fsel - fsel. */
 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 {
-    CPU_DoubleU farg1, farg2, farg3;
+    CPU_DoubleU farg1;
 
     farg1.ll = arg1;
-    farg2.ll = arg2;
-    farg3.ll = arg3;
 
-    if (!fpisneg(farg1.d) || iszero(farg1.d))
-        return farg2.ll;
+    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
+        return arg2;
     else
-        return farg2.ll;
+        return arg3;
 }
 
-uint32_t helper_fcmpu (uint64_t arg1, uint64_t arg2)
+void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
 {
     CPU_DoubleU farg1, farg2;
     uint32_t ret = 0;
     farg1.ll = arg1;
     farg2.ll = arg2;
 
-    if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                 float64_is_signaling_nan(farg2.d))) {
-        /* sNaN comparison */
-        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    if (unlikely(float64_is_nan(farg1.d) ||
+                 float64_is_nan(farg2.d))) {
+        ret = 0x01UL;
+    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
+        ret = 0x08UL;
+    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
+        ret = 0x04UL;
     } else {
-        if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
-            ret = 0x08UL;
-        } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
-            ret = 0x04UL;
-        } else {
-            ret = 0x02UL;
-        }
+        ret = 0x02UL;
     }
+
     env->fpscr &= ~(0x0F << FPSCR_FPRF);
     env->fpscr |= ret << FPSCR_FPRF;
-    return ret;
+    env->crf[crfD] = ret;
+    if (unlikely(ret == 0x01UL
+                 && (float64_is_signaling_nan(farg1.d) ||
+                     float64_is_signaling_nan(farg2.d)))) {
+        /* sNaN comparison */
+        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
+    }
 }
 
-uint32_t helper_fcmpo (uint64_t arg1, uint64_t arg2)
+void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
 {
     CPU_DoubleU farg1, farg2;
     uint32_t ret = 0;
@@ -1635,6 +1580,19 @@ uint32_t helper_fcmpo (uint64_t arg1, uint64_t arg2)
 
     if (unlikely(float64_is_nan(farg1.d) ||
                  float64_is_nan(farg2.d))) {
+        ret = 0x01UL;
+    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
+        ret = 0x08UL;
+    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
+        ret = 0x04UL;
+    } else {
+        ret = 0x02UL;
+    }
+
+    env->fpscr &= ~(0x0F << FPSCR_FPRF);
+    env->fpscr |= ret << FPSCR_FPRF;
+    env->crf[crfD] = ret;
+    if (unlikely (ret == 0x01UL)) {
         if (float64_is_signaling_nan(farg1.d) ||
             float64_is_signaling_nan(farg2.d)) {
             /* sNaN comparison */
@@ -1644,18 +1602,7 @@ uint32_t helper_fcmpo (uint64_t arg1, uint64_t arg2)
             /* qNaN comparison */
             fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
         }
-    } else {
-        if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
-            ret = 0x08UL;
-        } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
-            ret = 0x04UL;
-        } else {
-            ret = 0x02UL;
-        }
     }
-    env->fpscr &= ~(0x0F << FPSCR_FPRF);
-    env->fpscr |= ret << FPSCR_FPRF;
-    return ret;
 }
 
 #if !defined (CONFIG_USER_ONLY)
@@ -1700,20 +1647,20 @@ static always_inline void do_rfi (target_ulong nip, target_ulong msr,
 void helper_rfi (void)
 {
     do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
-           ~((target_ulong)0xFFFF0000), 1);
+           ~((target_ulong)0x0), 1);
 }
 
 #if defined(TARGET_PPC64)
 void helper_rfid (void)
 {
     do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
-           ~((target_ulong)0xFFFF0000), 0);
+           ~((target_ulong)0x0), 0);
 }
 
 void helper_hrfid (void)
 {
     do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
-           ~((target_ulong)0xFFFF0000), 0);
+           ~((target_ulong)0x0), 0);
 }
 #endif
 #endif
@@ -1862,30 +1809,16 @@ void helper_rfsvc (void)
 /* 602 specific instructions */
 /* mfrom is the most crazy instruction ever seen, imho ! */
 /* Real implementation uses a ROM table. Do the same */
+/* Extremly decomposed:
+ *                      -arg / 256
+ * return 256 * log10(10           + 1.0) + 0.5
+ */
 #if !defined (CONFIG_USER_ONLY)
-#define USE_MFROM_ROM_TABLE
 target_ulong helper_602_mfrom (target_ulong arg)
 {
     if (likely(arg < 602)) {
-#if defined(USE_MFROM_ROM_TABLE)
 #include "mfrom_table.c"
         return mfrom_ROM_table[arg];
-#else
-        double d;
-        /* Extremly decomposed:
-         *                      -arg / 256
-         * return 256 * log10(10           + 1.0) + 0.5
-         */
-        d = arg;
-        d = float64_div(d, 256, &env->fp_status);
-        d = float64_chs(d);
-        d = exp10(d); // XXX: use float emulation function
-        d = float64_add(d, 1.0, &env->fp_status);
-        d = log10(d); // XXX: use float emulation function
-        d = float64_mul(d, 256, &env->fp_status);
-        d = float64_add(d, 0.5, &env->fp_status);
-        return float64_round_to_int(d, &env->fp_status);
-#endif
     } else {
         return 0;
     }
@@ -1901,15 +1834,11 @@ target_ulong helper_load_dcr (target_ulong dcrn)
     target_ulong val = 0;
 
     if (unlikely(env->dcr_env == NULL)) {
-        if (loglevel != 0) {
-            fprintf(logfile, "No DCR environment\n");
-        }
+        qemu_log("No DCR environment\n");
         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
     } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
-        if (loglevel != 0) {
-            fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
-        }
+        qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
     }
@@ -1919,15 +1848,11 @@ target_ulong helper_load_dcr (target_ulong dcrn)
 void helper_store_dcr (target_ulong dcrn, target_ulong val)
 {
     if (unlikely(env->dcr_env == NULL)) {
-        if (loglevel != 0) {
-            fprintf(logfile, "No DCR environment\n");
-        }
+        qemu_log("No DCR environment\n");
         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
     } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
-        if (loglevel != 0) {
-            fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
-        }
+        qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
     }
@@ -1996,6 +1921,1128 @@ target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_
 }
 
 /*****************************************************************************/
+/* Altivec extension helpers */
+#if defined(WORDS_BIGENDIAN)
+#define HI_IDX 0
+#define LO_IDX 1
+#else
+#define HI_IDX 1
+#define LO_IDX 0
+#endif
+
+#if defined(WORDS_BIGENDIAN)
+#define VECTOR_FOR_INORDER_I(index, element)            \
+    for (index = 0; index < ARRAY_SIZE(r->element); index++)
+#else
+#define VECTOR_FOR_INORDER_I(index, element)            \
+  for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
+#endif
+
+/* If X is a NaN, store the corresponding QNaN into RESULT.  Otherwise,
+ * execute the following block.  */
+#define DO_HANDLE_NAN(result, x)                \
+    if (float32_is_nan(x) || float32_is_signaling_nan(x)) {     \
+        CPU_FloatU __f;                                         \
+        __f.f = x;                                              \
+        __f.l = __f.l | (1 << 22);  /* Set QNaN bit. */         \
+        result = __f.f;                                         \
+    } else
+
+#define HANDLE_NAN1(result, x)                  \
+    DO_HANDLE_NAN(result, x)
+#define HANDLE_NAN2(result, x, y)               \
+    DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
+#define HANDLE_NAN3(result, x, y, z)            \
+    DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
+
+/* Saturating arithmetic helpers.  */
+#define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
+    static always_inline to_type cvt##from##to (from_type x, int *sat)  \
+    {                                                                   \
+        to_type r;                                                      \
+        if (use_min && x < min) {                                       \
+            r = min;                                                    \
+            *sat = 1;                                                   \
+        } else if (use_max && x > max) {                                \
+            r = max;                                                    \
+            *sat = 1;                                                   \
+        } else {                                                        \
+            r = x;                                                      \
+        }                                                               \
+        return r;                                                       \
+    }
+SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
+SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
+SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
+SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
+SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
+SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
+SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
+SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
+SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
+#undef SATCVT
+
+#define LVE(name, access, swap, element)                        \
+    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
+    {                                                           \
+        size_t n_elems = ARRAY_SIZE(r->element);                \
+        int adjust = HI_IDX*(n_elems-1);                        \
+        int sh = sizeof(r->element[0]) >> 1;                    \
+        int index = (addr & 0xf) >> sh;                         \
+        if(msr_le) {                                            \
+            r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
+        } else {                                                        \
+            r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
+        }                                                               \
+    }
+#define I(x) (x)
+LVE(lvebx, ldub, I, u8)
+LVE(lvehx, lduw, bswap16, u16)
+LVE(lvewx, ldl, bswap32, u32)
+#undef I
+#undef LVE
+
+void helper_lvsl (ppc_avr_t *r, target_ulong sh)
+{
+    int i, j = (sh & 0xf);
+
+    VECTOR_FOR_INORDER_I (i, u8) {
+        r->u8[i] = j++;
+    }
+}
+
+void helper_lvsr (ppc_avr_t *r, target_ulong sh)
+{
+    int i, j = 0x10 - (sh & 0xf);
+
+    VECTOR_FOR_INORDER_I (i, u8) {
+        r->u8[i] = j++;
+    }
+}
+
+#define STVE(name, access, swap, element)                       \
+    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
+    {                                                           \
+        size_t n_elems = ARRAY_SIZE(r->element);                \
+        int adjust = HI_IDX*(n_elems-1);                        \
+        int sh = sizeof(r->element[0]) >> 1;                    \
+        int index = (addr & 0xf) >> sh;                         \
+        if(msr_le) {                                            \
+            access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
+        } else {                                                        \
+            access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
+        }                                                               \
+    }
+#define I(x) (x)
+STVE(stvebx, stb, I, u8)
+STVE(stvehx, stw, bswap16, u16)
+STVE(stvewx, stl, bswap32, u32)
+#undef I
+#undef LVE
+
+void helper_mtvscr (ppc_avr_t *r)
+{
+#if defined(WORDS_BIGENDIAN)
+    env->vscr = r->u32[3];
+#else
+    env->vscr = r->u32[0];
+#endif
+    set_flush_to_zero(vscr_nj, &env->vec_status);
+}
+
+void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+        r->u32[i] = ~a->u32[i] < b->u32[i];
+    }
+}
+
+#define VARITH_DO(name, op, element)        \
+void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)          \
+{                                                                       \
+    int i;                                                              \
+    for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
+        r->element[i] = a->element[i] op b->element[i];                 \
+    }                                                                   \
+}
+#define VARITH(suffix, element)                  \
+  VARITH_DO(add##suffix, +, element)             \
+  VARITH_DO(sub##suffix, -, element)
+VARITH(ubm, u8)
+VARITH(uhm, u16)
+VARITH(uwm, u32)
+#undef VARITH_DO
+#undef VARITH
+
+#define VARITHFP(suffix, func)                                          \
+    void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \
+                r->f[i] = func(a->f[i], b->f[i], &env->vec_status);     \
+            }                                                           \
+        }                                                               \
+    }
+VARITHFP(addfp, float32_add)
+VARITHFP(subfp, float32_sub)
+#undef VARITHFP
+
+#define VARITHSAT_CASE(type, op, cvt, element)                          \
+    {                                                                   \
+        type result = (type)a->element[i] op (type)b->element[i];       \
+        r->element[i] = cvt(result, &sat);                              \
+    }
+
+#define VARITHSAT_DO(name, op, optype, cvt, element)                    \
+    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
+    {                                                                   \
+        int sat = 0;                                                    \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            switch (sizeof(r->element[0])) {                            \
+            case 1: VARITHSAT_CASE(optype, op, cvt, element); break;    \
+            case 2: VARITHSAT_CASE(optype, op, cvt, element); break;    \
+            case 4: VARITHSAT_CASE(optype, op, cvt, element); break;    \
+            }                                                           \
+        }                                                               \
+        if (sat) {                                                      \
+            env->vscr |= (1 << VSCR_SAT);                               \
+        }                                                               \
+    }
+#define VARITHSAT_SIGNED(suffix, element, optype, cvt)        \
+    VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element)    \
+    VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
+#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt)       \
+    VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element)     \
+    VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
+VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
+VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
+VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
+VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
+VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
+VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
+#undef VARITHSAT_CASE
+#undef VARITHSAT_DO
+#undef VARITHSAT_SIGNED
+#undef VARITHSAT_UNSIGNED
+
+#define VAVG_DO(name, element, etype)                                   \
+    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
+            r->element[i] = x >> 1;                                     \
+        }                                                               \
+    }
+
+#define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
+    VAVG_DO(avgs##type, signed_element, signed_type)                    \
+    VAVG_DO(avgu##type, unsigned_element, unsigned_type)
+VAVG(b, s8, int16_t, u8, uint16_t)
+VAVG(h, s16, int32_t, u16, uint32_t)
+VAVG(w, s32, int64_t, u32, uint64_t)
+#undef VAVG_DO
+#undef VAVG
+
+#define VCF(suffix, cvt, element)                                       \
+    void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim)  \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            float32 t = cvt(b->element[i], &env->vec_status);           \
+            r->f[i] = float32_scalbn (t, -uim, &env->vec_status);       \
+        }                                                               \
+    }
+VCF(ux, uint32_to_float32, u32)
+VCF(sx, int32_to_float32, s32)
+#undef VCF
+
+#define VCMP_DO(suffix, compare, element, record)                       \
+    void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+    {                                                                   \
+        uint32_t ones = (uint32_t)-1;                                   \
+        uint32_t all = ones;                                            \
+        uint32_t none = 0;                                              \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
+            switch (sizeof (a->element[0])) {                           \
+            case 4: r->u32[i] = result; break;                          \
+            case 2: r->u16[i] = result; break;                          \
+            case 1: r->u8[i] = result; break;                           \
+            }                                                           \
+            all &= result;                                              \
+            none |= result;                                             \
+        }                                                               \
+        if (record) {                                                   \
+            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
+        }                                                               \
+    }
+#define VCMP(suffix, compare, element)          \
+    VCMP_DO(suffix, compare, element, 0)        \
+    VCMP_DO(suffix##_dot, compare, element, 1)
+VCMP(equb, ==, u8)
+VCMP(equh, ==, u16)
+VCMP(equw, ==, u32)
+VCMP(gtub, >, u8)
+VCMP(gtuh, >, u16)
+VCMP(gtuw, >, u32)
+VCMP(gtsb, >, s8)
+VCMP(gtsh, >, s16)
+VCMP(gtsw, >, s32)
+#undef VCMP_DO
+#undef VCMP
+
+#define VCMPFP_DO(suffix, compare, order, record)                       \
+    void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+    {                                                                   \
+        uint32_t ones = (uint32_t)-1;                                   \
+        uint32_t all = ones;                                            \
+        uint32_t none = 0;                                              \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            uint32_t result;                                            \
+            int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
+            if (rel == float_relation_unordered) {                      \
+                result = 0;                                             \
+            } else if (rel compare order) {                             \
+                result = ones;                                          \
+            } else {                                                    \
+                result = 0;                                             \
+            }                                                           \
+            r->u32[i] = result;                                         \
+            all &= result;                                              \
+            none |= result;                                             \
+        }                                                               \
+        if (record) {                                                   \
+            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
+        }                                                               \
+    }
+#define VCMPFP(suffix, compare, order)           \
+    VCMPFP_DO(suffix, compare, order, 0)         \
+    VCMPFP_DO(suffix##_dot, compare, order, 1)
+VCMPFP(eqfp, ==, float_relation_equal)
+VCMPFP(gefp, !=, float_relation_less)
+VCMPFP(gtfp, ==, float_relation_greater)
+#undef VCMPFP_DO
+#undef VCMPFP
+
+static always_inline void vcmpbfp_internal (ppc_avr_t *r, ppc_avr_t *a,
+                                            ppc_avr_t *b, int record)
+{
+    int i;
+    int all_in = 0;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
+        if (le_rel == float_relation_unordered) {
+            r->u32[i] = 0xc0000000;
+            /* ALL_IN does not need to be updated here.  */
+        } else {
+            float32 bneg = float32_chs(b->f[i]);
+            int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
+            int le = le_rel != float_relation_greater;
+            int ge = ge_rel != float_relation_less;
+            r->u32[i] = ((!le) << 31) | ((!ge) << 30);
+            all_in |= (!le | !ge);
+        }
+    }
+    if (record) {
+        env->crf[6] = (all_in == 0) << 1;
+    }
+}
+
+void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    vcmpbfp_internal(r, a, b, 0);
+}
+
+void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    vcmpbfp_internal(r, a, b, 1);
+}
+
+#define VCT(suffix, satcvt, element)                                    \
+    void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim)  \
+    {                                                                   \
+        int i;                                                          \
+        int sat = 0;                                                    \
+        float_status s = env->vec_status;                               \
+        set_float_rounding_mode(float_round_to_zero, &s);               \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            if (float32_is_nan(b->f[i]) ||                              \
+                float32_is_signaling_nan(b->f[i])) {                    \
+                r->element[i] = 0;                                      \
+            } else {                                                    \
+                float64 t = float32_to_float64(b->f[i], &s);            \
+                int64_t j;                                              \
+                t = float64_scalbn(t, uim, &s);                         \
+                j = float64_to_int64(t, &s);                            \
+                r->element[i] = satcvt(j, &sat);                        \
+            }                                                           \
+        }                                                               \
+        if (sat) {                                                      \
+            env->vscr |= (1 << VSCR_SAT);                               \
+        }                                                               \
+    }
+VCT(uxs, cvtsduw, u32)
+VCT(sxs, cvtsdsw, s32)
+#undef VCT
+
+void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+            /* Need to do the computation in higher precision and round
+             * once at the end.  */
+            float64 af, bf, cf, t;
+            af = float32_to_float64(a->f[i], &env->vec_status);
+            bf = float32_to_float64(b->f[i], &env->vec_status);
+            cf = float32_to_float64(c->f[i], &env->vec_status);
+            t = float64_mul(af, cf, &env->vec_status);
+            t = float64_add(t, bf, &env->vec_status);
+            r->f[i] = float64_to_float32(t, &env->vec_status);
+        }
+    }
+}
+
+void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int sat = 0;
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+        int32_t prod = a->s16[i] * b->s16[i];
+        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+        r->s16[i] = cvtswsh (t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int sat = 0;
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+        int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
+        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+        r->s16[i] = cvtswsh (t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+#define VMINMAX_DO(name, compare, element)                              \
+    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            if (a->element[i] compare b->element[i]) {                  \
+                r->element[i] = b->element[i];                          \
+            } else {                                                    \
+                r->element[i] = a->element[i];                          \
+            }                                                           \
+        }                                                               \
+    }
+#define VMINMAX(suffix, element)                \
+  VMINMAX_DO(min##suffix, >, element)           \
+  VMINMAX_DO(max##suffix, <, element)
+VMINMAX(sb, s8)
+VMINMAX(sh, s16)
+VMINMAX(sw, s32)
+VMINMAX(ub, u8)
+VMINMAX(uh, u16)
+VMINMAX(uw, u32)
+#undef VMINMAX_DO
+#undef VMINMAX
+
+#define VMINMAXFP(suffix, rT, rF)                                       \
+    void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \
+                if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
+                    r->f[i] = rT->f[i];                                 \
+                } else {                                                \
+                    r->f[i] = rF->f[i];                                 \
+                }                                                       \
+            }                                                           \
+        }                                                               \
+    }
+VMINMAXFP(minfp, a, b)
+VMINMAXFP(maxfp, b, a)
+#undef VMINMAXFP
+
+void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+        int32_t prod = a->s16[i] * b->s16[i];
+        r->s16[i] = (int16_t) (prod + c->s16[i]);
+    }
+}
+
+#define VMRG_DO(name, element, highp)                                   \
+    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
+    {                                                                   \
+        ppc_avr_t result;                                               \
+        int i;                                                          \
+        size_t n_elems = ARRAY_SIZE(r->element);                        \
+        for (i = 0; i < n_elems/2; i++) {                               \
+            if (highp) {                                                \
+                result.element[i*2+HI_IDX] = a->element[i];             \
+                result.element[i*2+LO_IDX] = b->element[i];             \
+            } else {                                                    \
+                result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
+                result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
+            }                                                           \
+        }                                                               \
+        *r = result;                                                    \
+    }
+#if defined(WORDS_BIGENDIAN)
+#define MRGHI 0
+#define MRGLO 1
+#else
+#define MRGHI 1
+#define MRGLO 0
+#endif
+#define VMRG(suffix, element)                   \
+  VMRG_DO(mrgl##suffix, element, MRGHI)         \
+  VMRG_DO(mrgh##suffix, element, MRGLO)
+VMRG(b, u8)
+VMRG(h, u16)
+VMRG(w, u32)
+#undef VMRG_DO
+#undef VMRG
+#undef MRGHI
+#undef MRGLO
+
+void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int32_t prod[16];
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
+        prod[i] = (int32_t)a->s8[i] * b->u8[i];
+    }
+
+    VECTOR_FOR_INORDER_I(i, s32) {
+        r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
+    }
+}
+
+void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int32_t prod[8];
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+        prod[i] = a->s16[i] * b->s16[i];
+    }
+
+    VECTOR_FOR_INORDER_I(i, s32) {
+        r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
+    }
+}
+
+void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int32_t prod[8];
+    int i;
+    int sat = 0;
+
+    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+        prod[i] = (int32_t)a->s16[i] * b->s16[i];
+    }
+
+    VECTOR_FOR_INORDER_I (i, s32) {
+        int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
+        r->u32[i] = cvtsdsw(t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    uint16_t prod[16];
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+        prod[i] = a->u8[i] * b->u8[i];
+    }
+
+    VECTOR_FOR_INORDER_I(i, u32) {
+        r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
+    }
+}
+
+void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    uint32_t prod[8];
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+        prod[i] = a->u16[i] * b->u16[i];
+    }
+
+    VECTOR_FOR_INORDER_I(i, u32) {
+        r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
+    }
+}
+
+void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    uint32_t prod[8];
+    int i;
+    int sat = 0;
+
+    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+        prod[i] = a->u16[i] * b->u16[i];
+    }
+
+    VECTOR_FOR_INORDER_I (i, s32) {
+        uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
+        r->u32[i] = cvtuduw(t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+#define VMUL_DO(name, mul_element, prod_element, evenp)                 \
+    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
+    {                                                                   \
+        int i;                                                          \
+        VECTOR_FOR_INORDER_I(i, prod_element) {                         \
+            if (evenp) {                                                \
+                r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
+            } else {                                                    \
+                r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
+            }                                                           \
+        }                                                               \
+    }
+#define VMUL(suffix, mul_element, prod_element) \
+  VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
+  VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
+VMUL(sb, s8, s16)
+VMUL(sh, s16, s32)
+VMUL(ub, u8, u16)
+VMUL(uh, u16, u32)
+#undef VMUL_DO
+#undef VMUL
+
+void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+            /* Need to do the computation is higher precision and round
+             * once at the end.  */
+            float64 af, bf, cf, t;
+            af = float32_to_float64(a->f[i], &env->vec_status);
+            bf = float32_to_float64(b->f[i], &env->vec_status);
+            cf = float32_to_float64(c->f[i], &env->vec_status);
+            t = float64_mul(af, cf, &env->vec_status);
+            t = float64_sub(t, bf, &env->vec_status);
+            t = float64_chs(t);
+            r->f[i] = float64_to_float32(t, &env->vec_status);
+        }
+    }
+}
+
+void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    ppc_avr_t result;
+    int i;
+    VECTOR_FOR_INORDER_I (i, u8) {
+        int s = c->u8[i] & 0x1f;
+#if defined(WORDS_BIGENDIAN)
+        int index = s & 0xf;
+#else
+        int index = 15 - (s & 0xf);
+#endif
+        if (s & 0x10) {
+            result.u8[i] = b->u8[index];
+        } else {
+            result.u8[i] = a->u8[index];
+        }
+    }
+    *r = result;
+}
+
+#if defined(WORDS_BIGENDIAN)
+#define PKBIG 1
+#else
+#define PKBIG 0
+#endif
+void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i, j;
+    ppc_avr_t result;
+#if defined(WORDS_BIGENDIAN)
+    const ppc_avr_t *x[2] = { a, b };
+#else
+    const ppc_avr_t *x[2] = { b, a };
+#endif
+
+    VECTOR_FOR_INORDER_I (i, u64) {
+        VECTOR_FOR_INORDER_I (j, u32){
+            uint32_t e = x[i]->u32[j];
+            result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
+                                 ((e >> 6) & 0x3e0) |
+                                 ((e >> 3) & 0x1f));
+        }
+    }
+    *r = result;
+}
+
+#define VPK(suffix, from, to, cvt, dosat)       \
+    void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
+    {                                                                   \
+        int i;                                                          \
+        int sat = 0;                                                    \
+        ppc_avr_t result;                                               \
+        ppc_avr_t *a0 = PKBIG ? a : b;                                  \
+        ppc_avr_t *a1 = PKBIG ? b : a;                                  \
+        VECTOR_FOR_INORDER_I (i, from) {                                \
+            result.to[i] = cvt(a0->from[i], &sat);                      \
+            result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \
+        }                                                               \
+        *r = result;                                                    \
+        if (dosat && sat) {                                             \
+            env->vscr |= (1 << VSCR_SAT);                               \
+        }                                                               \
+    }
+#define I(x, y) (x)
+VPK(shss, s16, s8, cvtshsb, 1)
+VPK(shus, s16, u8, cvtshub, 1)
+VPK(swss, s32, s16, cvtswsh, 1)
+VPK(swus, s32, u16, cvtswuh, 1)
+VPK(uhus, u16, u8, cvtuhub, 1)
+VPK(uwus, u32, u16, cvtuwuh, 1)
+VPK(uhum, u16, u8, I, 0)
+VPK(uwum, u32, u16, I, 0)
+#undef I
+#undef VPK
+#undef PKBIG
+
+void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        HANDLE_NAN1(r->f[i], b->f[i]) {
+            r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
+        }
+    }
+}
+
+#define VRFI(suffix, rounding)                                          \
+    void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
+    {                                                                   \
+        int i;                                                          \
+        float_status s = env->vec_status;                               \
+        set_float_rounding_mode(rounding, &s);                          \
+        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
+            HANDLE_NAN1(r->f[i], b->f[i]) {                             \
+                r->f[i] = float32_round_to_int (b->f[i], &s);           \
+            }                                                           \
+        }                                                               \
+    }
+VRFI(n, float_round_nearest_even)
+VRFI(m, float_round_down)
+VRFI(p, float_round_up)
+VRFI(z, float_round_to_zero)
+#undef VRFI
+
+#define VROTATE(suffix, element)                                        \
+    void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
+            unsigned int shift = b->element[i] & mask;                  \
+            r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
+        }                                                               \
+    }
+VROTATE(b, u8)
+VROTATE(h, u16)
+VROTATE(w, u32)
+#undef VROTATE
+
+void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        HANDLE_NAN1(r->f[i], b->f[i]) {
+            float32 t = float32_sqrt(b->f[i], &env->vec_status);
+            r->f[i] = float32_div(float32_one, t, &env->vec_status);
+        }
+    }
+}
+
+void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+    r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
+    r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
+}
+
+void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+        HANDLE_NAN1(r->f[i], b->f[i]) {
+            r->f[i] = float32_log2(b->f[i], &env->vec_status);
+        }
+    }
+}
+
+#if defined(WORDS_BIGENDIAN)
+#define LEFT 0
+#define RIGHT 1
+#else
+#define LEFT 1
+#define RIGHT 0
+#endif
+/* The specification says that the results are undefined if all of the
+ * shift counts are not identical.  We check to make sure that they are
+ * to conform to what real hardware appears to do.  */
+#define VSHIFT(suffix, leftp)                                           \
+    void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
+    {                                                                   \
+        int shift = b->u8[LO_IDX*15] & 0x7;                             \
+        int doit = 1;                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \
+            doit = doit && ((b->u8[i] & 0x7) == shift);                 \
+        }                                                               \
+        if (doit) {                                                     \
+            if (shift == 0) {                                           \
+                *r = *a;                                                \
+            } else if (leftp) {                                         \
+                uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \
+                r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \
+                r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \
+            } else {                                                    \
+                uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \
+                r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \
+                r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \
+            }                                                           \
+        }                                                               \
+    }
+VSHIFT(l, LEFT)
+VSHIFT(r, RIGHT)
+#undef VSHIFT
+#undef LEFT
+#undef RIGHT
+
+#define VSL(suffix, element)                                            \
+    void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
+            unsigned int shift = b->element[i] & mask;                  \
+            r->element[i] = a->element[i] << shift;                     \
+        }                                                               \
+    }
+VSL(b, u8)
+VSL(h, u16)
+VSL(w, u32)
+#undef VSL
+
+void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
+{
+    int sh = shift & 0xf;
+    int i;
+    ppc_avr_t result;
+
+#if defined(WORDS_BIGENDIAN)
+    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+        int index = sh + i;
+        if (index > 0xf) {
+            result.u8[i] = b->u8[index-0x10];
+        } else {
+            result.u8[i] = a->u8[index];
+        }
+    }
+#else
+    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+        int index = (16 - sh) + i;
+        if (index > 0xf) {
+            result.u8[i] = a->u8[index-0x10];
+        } else {
+            result.u8[i] = b->u8[index];
+        }
+    }
+#endif
+    *r = result;
+}
+
+void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
+
+#if defined (WORDS_BIGENDIAN)
+  memmove (&r->u8[0], &a->u8[sh], 16-sh);
+  memset (&r->u8[16-sh], 0, sh);
+#else
+  memmove (&r->u8[sh], &a->u8[0], 16-sh);
+  memset (&r->u8[0], 0, sh);
+#endif
+}
+
+/* Experimental testing shows that hardware masks the immediate.  */
+#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
+#if defined(WORDS_BIGENDIAN)
+#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
+#else
+#define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
+#endif
+#define VSPLT(suffix, element)                                          \
+    void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
+    {                                                                   \
+        uint32_t s = b->element[SPLAT_ELEMENT(element)];                \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            r->element[i] = s;                                          \
+        }                                                               \
+    }
+VSPLT(b, u8)
+VSPLT(h, u16)
+VSPLT(w, u32)
+#undef VSPLT
+#undef SPLAT_ELEMENT
+#undef _SPLAT_MASKED
+
+#define VSPLTI(suffix, element, splat_type)                     \
+    void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat)  \
+    {                                                           \
+        splat_type x = (int8_t)(splat << 3) >> 3;               \
+        int i;                                                  \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {          \
+            r->element[i] = x;                                  \
+        }                                                       \
+    }
+VSPLTI(b, s8, int8_t)
+VSPLTI(h, s16, int16_t)
+VSPLTI(w, s32, int32_t)
+#undef VSPLTI
+
+#define VSR(suffix, element)                                            \
+    void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
+    {                                                                   \
+        int i;                                                          \
+        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
+            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
+            unsigned int shift = b->element[i] & mask;                  \
+            r->element[i] = a->element[i] >> shift;                     \
+        }                                                               \
+    }
+VSR(ab, s8)
+VSR(ah, s16)
+VSR(aw, s32)
+VSR(b, u8)
+VSR(h, u16)
+VSR(w, u32)
+#undef VSR
+
+void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
+
+#if defined (WORDS_BIGENDIAN)
+  memmove (&r->u8[sh], &a->u8[0], 16-sh);
+  memset (&r->u8[0], 0, sh);
+#else
+  memmove (&r->u8[0], &a->u8[sh], 16-sh);
+  memset (&r->u8[16-sh], 0, sh);
+#endif
+}
+
+void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i;
+    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+        r->u32[i] = a->u32[i] >= b->u32[i];
+    }
+}
+
+void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int64_t t;
+    int i, upper;
+    ppc_avr_t result;
+    int sat = 0;
+
+#if defined(WORDS_BIGENDIAN)
+    upper = ARRAY_SIZE(r->s32)-1;
+#else
+    upper = 0;
+#endif
+    t = (int64_t)b->s32[upper];
+    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+        t += a->s32[i];
+        result.s32[i] = 0;
+    }
+    result.s32[upper] = cvtsdsw(t, &sat);
+    *r = result;
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i, j, upper;
+    ppc_avr_t result;
+    int sat = 0;
+
+#if defined(WORDS_BIGENDIAN)
+    upper = 1;
+#else
+    upper = 0;
+#endif
+    for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
+        int64_t t = (int64_t)b->s32[upper+i*2];
+        result.u64[i] = 0;
+        for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
+            t += a->s32[2*i+j];
+        }
+        result.s32[upper+i*2] = cvtsdsw(t, &sat);
+    }
+
+    *r = result;
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i, j;
+    int sat = 0;
+
+    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+        int64_t t = (int64_t)b->s32[i];
+        for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
+            t += a->s8[4*i+j];
+        }
+        r->s32[i] = cvtsdsw(t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int sat = 0;
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+        int64_t t = (int64_t)b->s32[i];
+        t += a->s16[2*i] + a->s16[2*i+1];
+        r->s32[i] = cvtsdsw(t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+    int i, j;
+    int sat = 0;
+
+    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+        uint64_t t = (uint64_t)b->u32[i];
+        for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
+            t += a->u8[4*i+j];
+        }
+        r->u32[i] = cvtuduw(t, &sat);
+    }
+
+    if (sat) {
+        env->vscr |= (1 << VSCR_SAT);
+    }
+}
+
+#if defined(WORDS_BIGENDIAN)
+#define UPKHI 1
+#define UPKLO 0
+#else
+#define UPKHI 0
+#define UPKLO 1
+#endif
+#define VUPKPX(suffix, hi)                                      \
+    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)       \
+    {                                                           \
+        int i;                                                  \
+        ppc_avr_t result;                                       \
+        for (i = 0; i < ARRAY_SIZE(r->u32); i++) {              \
+            uint16_t e = b->u16[hi ? i : i+4];                  \
+            uint8_t a = (e >> 15) ? 0xff : 0;                   \
+            uint8_t r = (e >> 10) & 0x1f;                       \
+            uint8_t g = (e >> 5) & 0x1f;                        \
+            uint8_t b = e & 0x1f;                               \
+            result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
+        }                                                               \
+        *r = result;                                                    \
+    }
+VUPKPX(lpx, UPKLO)
+VUPKPX(hpx, UPKHI)
+#undef VUPKPX
+
+#define VUPK(suffix, unpacked, packee, hi)                              \
+    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
+    {                                                                   \
+        int i;                                                          \
+        ppc_avr_t result;                                               \
+        if (hi) {                                                       \
+            for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
+                result.unpacked[i] = b->packee[i];                      \
+            }                                                           \
+        } else {                                                        \
+            for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
+                result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
+            }                                                           \
+        }                                                               \
+        *r = result;                                                    \
+    }
+VUPK(hsb, s16, s8, UPKHI)
+VUPK(hsh, s32, s16, UPKHI)
+VUPK(lsb, s16, s8, UPKLO)
+VUPK(lsh, s32, s16, UPKLO)
+#undef VUPK
+#undef UPKHI
+#undef UPKLO
+
+#undef DO_HANDLE_NAN
+#undef HANDLE_NAN1
+#undef HANDLE_NAN2
+#undef HANDLE_NAN3
+#undef VECTOR_FOR_INORDER_I
+#undef HI_IDX
+#undef LO_IDX
+
+/*****************************************************************************/
 /* SPE extension helpers */
 /* Use a table to make this quicker */
 static uint8_t hbrev[16] = {
@@ -2044,7 +3091,7 @@ static always_inline uint32_t efscfsi (uint32_t val)
 {
     CPU_FloatU u;
 
-    u.f = int32_to_float32(val, &env->spe_status);
+    u.f = int32_to_float32(val, &env->vec_status);
 
     return u.l;
 }
@@ -2053,7 +3100,7 @@ static always_inline uint32_t efscfui (uint32_t val)
 {
     CPU_FloatU u;
 
-    u.f = uint32_to_float32(val, &env->spe_status);
+    u.f = uint32_to_float32(val, &env->vec_status);
 
     return u.l;
 }
@@ -2067,7 +3114,7 @@ static always_inline int32_t efsctsi (uint32_t val)
     if (unlikely(float32_is_nan(u.f)))
         return 0;
 
-    return float32_to_int32(u.f, &env->spe_status);
+    return float32_to_int32(u.f, &env->vec_status);
 }
 
 static always_inline uint32_t efsctui (uint32_t val)
@@ -2079,7 +3126,7 @@ static always_inline uint32_t efsctui (uint32_t val)
     if (unlikely(float32_is_nan(u.f)))
         return 0;
 
-    return float32_to_uint32(u.f, &env->spe_status);
+    return float32_to_uint32(u.f, &env->vec_status);
 }
 
 static always_inline uint32_t efsctsiz (uint32_t val)
@@ -2091,7 +3138,7 @@ static always_inline uint32_t efsctsiz (uint32_t val)
     if (unlikely(float32_is_nan(u.f)))
         return 0;
 
-    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
+    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
 }
 
 static always_inline uint32_t efsctuiz (uint32_t val)
@@ -2103,7 +3150,7 @@ static always_inline uint32_t efsctuiz (uint32_t val)
     if (unlikely(float32_is_nan(u.f)))
         return 0;
 
-    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
+    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
 }
 
 static always_inline uint32_t efscfsf (uint32_t val)
@@ -2111,9 +3158,9 @@ static always_inline uint32_t efscfsf (uint32_t val)
     CPU_FloatU u;
     float32 tmp;
 
-    u.f = int32_to_float32(val, &env->spe_status);
-    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
-    u.f = float32_div(u.f, tmp, &env->spe_status);
+    u.f = int32_to_float32(val, &env->vec_status);
+    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
+    u.f = float32_div(u.f, tmp, &env->vec_status);
 
     return u.l;
 }
@@ -2123,9 +3170,9 @@ static always_inline uint32_t efscfuf (uint32_t val)
     CPU_FloatU u;
     float32 tmp;
 
-    u.f = uint32_to_float32(val, &env->spe_status);
-    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
-    u.f = float32_div(u.f, tmp, &env->spe_status);
+    u.f = uint32_to_float32(val, &env->vec_status);
+    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+    u.f = float32_div(u.f, tmp, &env->vec_status);
 
     return u.l;
 }
@@ -2139,10 +3186,10 @@ static always_inline uint32_t efsctsf (uint32_t val)
     /* NaN are not treated the same way IEEE 754 does */
     if (unlikely(float32_is_nan(u.f)))
         return 0;
-    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
-    u.f = float32_mul(u.f, tmp, &env->spe_status);
+    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+    u.f = float32_mul(u.f, tmp, &env->vec_status);
 
-    return float32_to_int32(u.f, &env->spe_status);
+    return float32_to_int32(u.f, &env->vec_status);
 }
 
 static always_inline uint32_t efsctuf (uint32_t val)
@@ -2154,10 +3201,10 @@ static always_inline uint32_t efsctuf (uint32_t val)
     /* NaN are not treated the same way IEEE 754 does */
     if (unlikely(float32_is_nan(u.f)))
         return 0;
-    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
-    u.f = float32_mul(u.f, tmp, &env->spe_status);
+    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+    u.f = float32_mul(u.f, tmp, &env->vec_status);
 
-    return float32_to_uint32(u.f, &env->spe_status);
+    return float32_to_uint32(u.f, &env->vec_status);
 }
 
 #define HELPER_SPE_SINGLE_CONV(name)                                          \
@@ -2219,7 +3266,7 @@ static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    u1.f = float32_add(u1.f, u2.f, &env->spe_status);
+    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
     return u1.l;
 }
 
@@ -2228,7 +3275,7 @@ static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
+    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
     return u1.l;
 }
 
@@ -2237,7 +3284,7 @@ static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
+    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
     return u1.l;
 }
 
@@ -2246,7 +3293,7 @@ static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    u1.f = float32_div(u1.f, u2.f, &env->spe_status);
+    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
     return u1.l;
 }
 
@@ -2285,7 +3332,7 @@ static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
+    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 }
 
 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
@@ -2293,7 +3340,7 @@ static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
+    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
 }
 
 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
@@ -2301,7 +3348,7 @@ static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
     CPU_FloatU u1, u2;
     u1.l = op1;
     u2.l = op2;
-    return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
+    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 }
 
 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
@@ -2368,7 +3415,7 @@ uint64_t helper_efdcfsi (uint32_t val)
 {
     CPU_DoubleU u;
 
-    u.d = int32_to_float64(val, &env->spe_status);
+    u.d = int32_to_float64(val, &env->vec_status);
 
     return u.ll;
 }
@@ -2377,7 +3424,7 @@ uint64_t helper_efdcfsid (uint64_t val)
 {
     CPU_DoubleU u;
 
-    u.d = int64_to_float64(val, &env->spe_status);
+    u.d = int64_to_float64(val, &env->vec_status);
 
     return u.ll;
 }
@@ -2386,7 +3433,7 @@ uint64_t helper_efdcfui (uint32_t val)
 {
     CPU_DoubleU u;
 
-    u.d = uint32_to_float64(val, &env->spe_status);
+    u.d = uint32_to_float64(val, &env->vec_status);
 
     return u.ll;
 }
@@ -2395,7 +3442,7 @@ uint64_t helper_efdcfuid (uint64_t val)
 {
     CPU_DoubleU u;
 
-    u.d = uint64_to_float64(val, &env->spe_status);
+    u.d = uint64_to_float64(val, &env->vec_status);
 
     return u.ll;
 }
@@ -2409,7 +3456,7 @@ uint32_t helper_efdctsi (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_int32(u.d, &env->spe_status);
+    return float64_to_int32(u.d, &env->vec_status);
 }
 
 uint32_t helper_efdctui (uint64_t val)
@@ -2421,7 +3468,7 @@ uint32_t helper_efdctui (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_uint32(u.d, &env->spe_status);
+    return float64_to_uint32(u.d, &env->vec_status);
 }
 
 uint32_t helper_efdctsiz (uint64_t val)
@@ -2433,7 +3480,7 @@ uint32_t helper_efdctsiz (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
+    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
 }
 
 uint64_t helper_efdctsidz (uint64_t val)
@@ -2445,7 +3492,7 @@ uint64_t helper_efdctsidz (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
+    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
 }
 
 uint32_t helper_efdctuiz (uint64_t val)
@@ -2457,7 +3504,7 @@ uint32_t helper_efdctuiz (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
+    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
 }
 
 uint64_t helper_efdctuidz (uint64_t val)
@@ -2469,7 +3516,7 @@ uint64_t helper_efdctuidz (uint64_t val)
     if (unlikely(float64_is_nan(u.d)))
         return 0;
 
-    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
+    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
 }
 
 uint64_t helper_efdcfsf (uint32_t val)
@@ -2477,9 +3524,9 @@ uint64_t helper_efdcfsf (uint32_t val)
     CPU_DoubleU u;
     float64 tmp;
 
-    u.d = int32_to_float64(val, &env->spe_status);
-    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
-    u.d = float64_div(u.d, tmp, &env->spe_status);
+    u.d = int32_to_float64(val, &env->vec_status);
+    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
+    u.d = float64_div(u.d, tmp, &env->vec_status);
 
     return u.ll;
 }
@@ -2489,9 +3536,9 @@ uint64_t helper_efdcfuf (uint32_t val)
     CPU_DoubleU u;
     float64 tmp;
 
-    u.d = uint32_to_float64(val, &env->spe_status);
-    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
-    u.d = float64_div(u.d, tmp, &env->spe_status);
+    u.d = uint32_to_float64(val, &env->vec_status);
+    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
+    u.d = float64_div(u.d, tmp, &env->vec_status);
 
     return u.ll;
 }
@@ -2505,10 +3552,10 @@ uint32_t helper_efdctsf (uint64_t val)
     /* NaN are not treated the same way IEEE 754 does */
     if (unlikely(float64_is_nan(u.d)))
         return 0;
-    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
-    u.d = float64_mul(u.d, tmp, &env->spe_status);
+    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
+    u.d = float64_mul(u.d, tmp, &env->vec_status);
 
-    return float64_to_int32(u.d, &env->spe_status);
+    return float64_to_int32(u.d, &env->vec_status);
 }
 
 uint32_t helper_efdctuf (uint64_t val)
@@ -2520,10 +3567,10 @@ uint32_t helper_efdctuf (uint64_t val)
     /* NaN are not treated the same way IEEE 754 does */
     if (unlikely(float64_is_nan(u.d)))
         return 0;
-    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
-    u.d = float64_mul(u.d, tmp, &env->spe_status);
+    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
+    u.d = float64_mul(u.d, tmp, &env->vec_status);
 
-    return float64_to_uint32(u.d, &env->spe_status);
+    return float64_to_uint32(u.d, &env->vec_status);
 }
 
 uint32_t helper_efscfd (uint64_t val)
@@ -2532,7 +3579,7 @@ uint32_t helper_efscfd (uint64_t val)
     CPU_FloatU u2;
 
     u1.ll = val;
-    u2.f = float64_to_float32(u1.d, &env->spe_status);
+    u2.f = float64_to_float32(u1.d, &env->vec_status);
 
     return u2.l;
 }
@@ -2543,7 +3590,7 @@ uint64_t helper_efdcfs (uint32_t val)
     CPU_FloatU u1;
 
     u1.l = val;
-    u2.d = float32_to_float64(u1.f, &env->spe_status);
+    u2.d = float32_to_float64(u1.f, &env->vec_status);
 
     return u2.ll;
 }
@@ -2554,7 +3601,7 @@ uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    u1.d = float64_add(u1.d, u2.d, &env->spe_status);
+    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
     return u1.ll;
 }
 
@@ -2563,7 +3610,7 @@ uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
+    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
     return u1.ll;
 }
 
@@ -2572,7 +3619,7 @@ uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
+    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
     return u1.ll;
 }
 
@@ -2581,7 +3628,7 @@ uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    u1.d = float64_div(u1.d, u2.d, &env->spe_status);
+    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
     return u1.ll;
 }
 
@@ -2591,7 +3638,7 @@ uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
+    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 }
 
 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
@@ -2599,7 +3646,7 @@ uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
+    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
 }
 
 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
@@ -2607,7 +3654,7 @@ uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
     CPU_DoubleU u1, u2;
     u1.ll = op1;
     u2.ll = op2;
-    return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
+    return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 }
 
 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
@@ -2681,6 +3728,10 @@ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 /* Segment registers load and store */
 target_ulong helper_load_sr (target_ulong sr_num)
 {
+#if defined(TARGET_PPC64)
+    if (env->mmu_model & POWERPC_MMU_64)
+        return ppc_load_sr(env, sr_num);
+#endif
     return env->sr[sr_num];
 }
 
@@ -2696,9 +3747,9 @@ target_ulong helper_load_slb (target_ulong slb_nr)
     return ppc_load_slb(env, slb_nr);
 }
 
-void helper_store_slb (target_ulong slb_nr, target_ulong rs)
+void helper_store_slb (target_ulong rb, target_ulong rs)
 {
-    ppc_store_slb(env, slb_nr, rs);
+    ppc_store_slb(env, rb, rs);
 }
 
 void helper_slbia (void)
@@ -2740,13 +3791,9 @@ static void do_6xx_tlb (target_ulong new_EPN, int is_code)
         EPN = env->spr[SPR_DMISS];
     }
     way = (env->spr[SPR_SRR1] >> 17) & 1;
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
+    LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
                 " PTE1 " ADDRX " way %d\n",
                 __func__, new_EPN, EPN, CMP, RPN, way);
-    }
-#endif
     /* Store this TLB */
     ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
                      way, is_code, CMP, RPN);
@@ -2772,13 +3819,9 @@ static void do_74xx_tlb (target_ulong new_EPN, int is_code)
     CMP = env->spr[SPR_PTEHI];
     EPN = env->spr[SPR_TLBMISS] & ~0x3;
     way = env->spr[SPR_TLBMISS] & 0x3;
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
+    LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
                 " PTE1 " ADDRX " way %d\n",
                 __func__, new_EPN, EPN, CMP, RPN, way);
-    }
-#endif
     /* Store this TLB */
     ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
                      way, is_code, CMP, RPN);
@@ -2902,22 +3945,14 @@ void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
     ppcemb_tlb_t *tlb;
     target_ulong page, end;
 
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
-    }
-#endif
+    LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
     entry &= 0x3F;
     tlb = &env->tlb[entry].tlbe;
     /* Invalidate previous TLB (if it's valid) */
     if (tlb->prot & PAGE_VALID) {
         end = tlb->EPN + tlb->size;
-#if defined (DEBUG_SOFTWARE_TLB)
-        if (loglevel != 0) {
-            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
+        LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
                     " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
-        }
-#endif
         for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
             tlb_flush_page(env, page);
     }
@@ -2942,26 +3977,18 @@ void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
     }
     tlb->PID = env->spr[SPR_40x_PID]; /* PID */
     tlb->attr = val & 0xFF;
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
+    LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
                 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
                 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
                 tlb->prot & PAGE_READ ? 'r' : '-',
                 tlb->prot & PAGE_WRITE ? 'w' : '-',
                 tlb->prot & PAGE_EXEC ? 'x' : '-',
                 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
-    }
-#endif
     /* Invalidate new TLB (if valid) */
     if (tlb->prot & PAGE_VALID) {
         end = tlb->EPN + tlb->size;
-#if defined (DEBUG_SOFTWARE_TLB)
-        if (loglevel != 0) {
-            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
+        LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
                     " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
-        }
-#endif
         for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
             tlb_flush_page(env, page);
     }
@@ -2971,11 +3998,7 @@ void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
 {
     ppcemb_tlb_t *tlb;
 
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
-    }
-#endif
+    LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
     entry &= 0x3F;
     tlb = &env->tlb[entry].tlbe;
     tlb->RPN = val & 0xFFFFFC00;
@@ -2984,17 +4007,13 @@ void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
         tlb->prot |= PAGE_EXEC;
     if (val & 0x100)
         tlb->prot |= PAGE_WRITE;
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
+    LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
                 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
                 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
                 tlb->prot & PAGE_READ ? 'r' : '-',
                 tlb->prot & PAGE_WRITE ? 'w' : '-',
                 tlb->prot & PAGE_EXEC ? 'x' : '-',
                 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
-    }
-#endif
 }
 
 target_ulong helper_4xx_tlbsx (target_ulong address)
@@ -3009,12 +4028,8 @@ void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
     target_ulong EPN, RPN, size;
     int do_flush_tlbs;
 
-#if defined (DEBUG_SOFTWARE_TLB)
-    if (loglevel != 0) {
-        fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
+    LOG_SWTLB("%s word %d entry %d value " ADDRX "\n",
                 __func__, word, (int)entry, value);
-    }
-#endif
     do_flush_tlbs = 0;
     entry &= 0x3F;
     tlb = &env->tlb[entry].tlbe;