Break up vl.h.
[qemu] / target-sparc / op_helper.c
index 3a6de7c..699a305 100644 (file)
-#include <math.h>
-#include <fenv.h>
 #include "exec.h"
+#include "host-utils.h"
+
+//#define DEBUG_PCALL
+//#define DEBUG_MMU
+//#define DEBUG_MXCC
+//#define DEBUG_UNALIGNED
+//#define DEBUG_UNASSIGNED
+
+#ifdef DEBUG_MMU
+#define DPRINTF_MMU(fmt, args...) \
+do { printf("MMU: " fmt , ##args); } while (0)
+#else
+#define DPRINTF_MMU(fmt, args...)
+#endif
+
+#ifdef DEBUG_MXCC
+#define DPRINTF_MXCC(fmt, args...) \
+do { printf("MXCC: " fmt , ##args); } while (0)
+#else
+#define DPRINTF_MXCC(fmt, args...)
+#endif
+
+void raise_exception(int tt)
+{
+    env->exception_index = tt;
+    cpu_loop_exit();
+}
+
+void check_ieee_exceptions()
+{
+     T0 = get_float_exception_flags(&env->fp_status);
+     if (T0)
+     {
+        /* Copy IEEE 754 flags into FSR */
+        if (T0 & float_flag_invalid)
+            env->fsr |= FSR_NVC;
+        if (T0 & float_flag_overflow)
+            env->fsr |= FSR_OFC;
+        if (T0 & float_flag_underflow)
+            env->fsr |= FSR_UFC;
+        if (T0 & float_flag_divbyzero)
+            env->fsr |= FSR_DZC;
+        if (T0 & float_flag_inexact)
+            env->fsr |= FSR_NXC;
+
+        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
+        {
+            /* Unmasked exception, generate a trap */
+            env->fsr |= FSR_FTT_IEEE_EXCP;
+            raise_exception(TT_FP_EXCP);
+        }
+        else
+        {
+            /* Accumulate exceptions */
+            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
+        }
+     }
+}
 
 #ifdef USE_INT_TO_FLOAT_HELPERS
 void do_fitos(void)
 {
-    FT0 = (float) *((int32_t *)&FT1);
+    set_float_exception_flags(0, &env->fp_status);
+    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
+    check_ieee_exceptions();
 }
 
 void do_fitod(void)
 {
-    DT0 = (double) *((int32_t *)&FT1);
+    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
 }
+#ifdef TARGET_SPARC64
+void do_fxtos(void)
+{
+    set_float_exception_flags(0, &env->fp_status);
+    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
+    check_ieee_exceptions();
+}
+
+void do_fxtod(void)
+{
+    set_float_exception_flags(0, &env->fp_status);
+    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
+    check_ieee_exceptions();
+}
+#endif
 #endif
 
 void do_fabss(void)
 {
-    FT0 = fabsf(FT1);
+    FT0 = float32_abs(FT1);
+}
+
+#ifdef TARGET_SPARC64
+void do_fabsd(void)
+{
+    DT0 = float64_abs(DT1);
 }
+#endif
 
 void do_fsqrts(void)
 {
-    FT0 = sqrtf(FT1);
+    set_float_exception_flags(0, &env->fp_status);
+    FT0 = float32_sqrt(FT1, &env->fp_status);
+    check_ieee_exceptions();
 }
 
 void do_fsqrtd(void)
 {
-    DT0 = sqrt(DT1);
+    set_float_exception_flags(0, &env->fp_status);
+    DT0 = float64_sqrt(DT1, &env->fp_status);
+    check_ieee_exceptions();
 }
 
-void do_fcmps (void)
-{
-    if (isnan(FT0) || isnan(FT1)) {
-        T0 = FSR_FCC1 | FSR_FCC0;
-    } else if (FT0 < FT1) {
-        T0 = FSR_FCC0;
-    } else if (FT0 > FT1) {
-        T0 = FSR_FCC1;
-    } else {
-        T0 = 0;
+#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
+    void glue(do_, name) (void)                                         \
+    {                                                                   \
+        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
+        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
+        case float_relation_unordered:                                  \
+            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
+            if ((env->fsr & FSR_NVM) || TRAP) {                         \
+                env->fsr |= T0;                                         \
+                env->fsr |= FSR_NVC;                                    \
+                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
+                raise_exception(TT_FP_EXCP);                            \
+            } else {                                                    \
+                env->fsr |= FSR_NVA;                                    \
+            }                                                           \
+            break;                                                      \
+        case float_relation_less:                                       \
+            T0 = FSR_FCC0 << FS;                                        \
+            break;                                                      \
+        case float_relation_greater:                                    \
+            T0 = FSR_FCC1 << FS;                                        \
+            break;                                                      \
+        default:                                                        \
+            T0 = 0;                                                     \
+            break;                                                      \
+        }                                                               \
+        env->fsr |= T0;                                                 \
     }
-    env->fsr = T0;
-}
 
-void do_fcmpd (void)
+GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
+GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
+
+GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
+GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
+
+#ifdef TARGET_SPARC64
+GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
+GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
+
+GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
+GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
+
+GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
+GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
+
+GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
+GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
+
+GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
+GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
+
+GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
+GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
+#endif
+
+#ifndef TARGET_SPARC64
+#ifndef CONFIG_USER_ONLY
+
+#ifdef DEBUG_MXCC
+static void dump_mxcc(CPUState *env)
 {
-    if (isnan(DT0) || isnan(DT1)) {
-        T0 = FSR_FCC1 | FSR_FCC0;
-    } else if (DT0 < DT1) {
-        T0 = FSR_FCC0;
-    } else if (DT0 > DT1) {
-        T0 = FSR_FCC1;
-    } else {
-        T0 = 0;
-    }
-    env->fsr = T0;
+    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
+        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
+    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
+           "          %016llx %016llx %016llx %016llx\n",
+        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
+        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
 }
+#endif
 
 void helper_ld_asi(int asi, int size, int sign)
 {
-    switch(asi) {
+    uint32_t ret = 0;
+    uint64_t tmp;
+#ifdef DEBUG_MXCC
+    uint32_t last_T0 = T0;
+#endif
+
+    switch (asi) {
+    case 2: /* SuperSparc MXCC registers */
+        switch (T0) {
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8) {
+                ret = env->mxccregs[3];
+                T0 = env->mxccregs[3] >> 32;
+            } else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4)
+                ret = env->mxccregs[3];
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00c00: /* Module reset register */
+            if (size == 8) {
+                ret = env->mxccregs[5] >> 32;
+                T0 = env->mxccregs[5];
+                // should we do something here?
+            } else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8) {
+                ret = env->mxccregs[7];
+                T0 = env->mxccregs[7] >> 32;
+            } else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        default:
+            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
+                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
     case 3: /* MMU probe */
-       T1 = 0;
-       return;
+        {
+            int mmulev;
+
+            mmulev = (T0 >> 8) & 15;
+            if (mmulev > 4)
+                ret = 0;
+            else {
+                ret = mmu_probe(env, T0, mmulev);
+                //bswap32s(&ret);
+            }
+            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
+        }
+        break;
     case 4: /* read MMU regs */
-       {
-           int temp, reg = (T0 >> 8) & 0xf;
-           
-           temp = env->mmuregs[reg];
-           if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/
-               env->mmuregs[reg] = 0;
-           T1 = temp;
-       }
-       return;
-    case 0x20 ... 0x2f: /* MMU passthrough */
-       {
-           int temp;
-           
-           cpu_physical_memory_read(T0, (void *) &temp, size);
-           bswap32s(&temp);
-           T1 = temp;
-       }
-       return;
-    default:
-       T1 = 0;
-       return;
-    }
-}
-
-void helper_st_asi(int asi, int size, int sign)
+        {
+            int reg = (T0 >> 8) & 0xf;
+
+            ret = env->mmuregs[reg];
+            if (reg == 3) /* Fault status cleared on read */
+                env->mmuregs[reg] = 0;
+            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
+        }
+        break;
+    case 9: /* Supervisor code access */
+        switch(size) {
+        case 1:
+            ret = ldub_code(T0);
+            break;
+        case 2:
+            ret = lduw_code(T0 & ~1);
+            break;
+        default:
+        case 4:
+            ret = ldl_code(T0 & ~3);
+            break;
+        case 8:
+            tmp = ldq_code(T0 & ~7);
+            ret = tmp >> 32;
+            T0 = tmp;
+            break;
+        }
+        break;
+    case 0xa: /* User data access */
+        switch(size) {
+        case 1:
+            ret = ldub_user(T0);
+            break;
+        case 2:
+            ret = lduw_user(T0 & ~1);
+            break;
+        default:
+        case 4:
+            ret = ldl_user(T0 & ~3);
+            break;
+        case 8:
+            tmp = ldq_user(T0 & ~7);
+            ret = tmp >> 32;
+            T0 = tmp;
+            break;
+        }
+        break;
+    case 0xb: /* Supervisor data access */
+        switch(size) {
+        case 1:
+            ret = ldub_kernel(T0);
+            break;
+        case 2:
+            ret = lduw_kernel(T0 & ~1);
+            break;
+        default:
+        case 4:
+            ret = ldl_kernel(T0 & ~3);
+            break;
+        case 8:
+            tmp = ldq_kernel(T0 & ~7);
+            ret = tmp >> 32;
+            T0 = tmp;
+            break;
+        }
+        break;
+    case 0xc: /* I-cache tag */
+    case 0xd: /* I-cache data */
+    case 0xe: /* D-cache tag */
+    case 0xf: /* D-cache data */
+        break;
+    case 0x20: /* MMU passthrough */
+        switch(size) {
+        case 1:
+            ret = ldub_phys(T0);
+            break;
+        case 2:
+            ret = lduw_phys(T0 & ~1);
+            break;
+        default:
+        case 4:
+            ret = ldl_phys(T0 & ~3);
+            break;
+        case 8:
+            tmp = ldq_phys(T0 & ~7);
+            ret = tmp >> 32;
+            T0 = tmp;
+            break;
+        }
+        break;
+    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
+    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
+        switch(size) {
+        case 1:
+            ret = ldub_phys((target_phys_addr_t)T0
+                            | ((target_phys_addr_t)(asi & 0xf) << 32));
+            break;
+        case 2:
+            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
+                            | ((target_phys_addr_t)(asi & 0xf) << 32));
+            break;
+        default:
+        case 4:
+            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
+                           | ((target_phys_addr_t)(asi & 0xf) << 32));
+            break;
+        case 8:
+            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
+                           | ((target_phys_addr_t)(asi & 0xf) << 32));
+            ret = tmp >> 32;
+            T0 = tmp;
+            break;
+        }
+        break;
+    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
+    default:
+        do_unassigned_access(T0, 0, 0, 1);
+        ret = 0;
+        break;
+    }
+    if (sign) {
+        switch(size) {
+        case 1:
+            T1 = (int8_t) ret;
+            break;
+        case 2:
+            T1 = (int16_t) ret;
+            break;
+        default:
+            T1 = ret;
+            break;
+        }
+    }
+    else
+        T1 = ret;
+}
+
+void helper_st_asi(int asi, int size)
 {
     switch(asi) {
+    case 2: /* SuperSparc MXCC registers */
+        switch (T0) {
+        case 0x01c00000: /* MXCC stream data register 0 */
+            if (size == 8)
+                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00008: /* MXCC stream data register 1 */
+            if (size == 8)
+                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00010: /* MXCC stream data register 2 */
+            if (size == 8)
+                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00018: /* MXCC stream data register 3 */
+            if (size == 8)
+                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00100: /* MXCC stream source */
+            if (size == 8)
+                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
+            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
+            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
+            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
+            break;
+        case 0x01c00200: /* MXCC stream destination */
+            if (size == 8)
+                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
+            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
+            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
+            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
+            break;
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8)
+                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4)
+                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00e00: /* MXCC error register  */
+            // writing a 1 bit clears the error
+            if (size == 8)
+                env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2);
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8)
+                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
+            else
+                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
+            break;
+        default:
+            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
     case 3: /* MMU flush */
-       return;
+        {
+            int mmulev;
+
+            mmulev = (T0 >> 8) & 15;
+            DPRINTF_MMU("mmu flush level %d\n", mmulev);
+            switch (mmulev) {
+            case 0: // flush page
+                tlb_flush_page(env, T0 & 0xfffff000);
+                break;
+            case 1: // flush segment (256k)
+            case 2: // flush region (16M)
+            case 3: // flush context (4G)
+            case 4: // flush entire
+                tlb_flush(env, 1);
+                break;
+            default:
+                break;
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(env);
+#endif
+            return;
+        }
     case 4: /* write MMU regs */
-       {
-           int reg = (T0 >> 8) & 0xf;
-           if (reg == 0) {
-               env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
-               env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
-           } else
-               env->mmuregs[reg] = T1;
-           return;
-       }
-    case 0x20 ... 0x2f: /* MMU passthrough */
-       {
-           int temp = T1;
-           
-           bswap32s(&temp);
-           cpu_physical_memory_write(T0, (void *) &temp, size);
-       }
-       return;
-    default:
-       return;
+        {
+            int reg = (T0 >> 8) & 0xf;
+            uint32_t oldreg;
+
+            oldreg = env->mmuregs[reg];
+            switch(reg) {
+            case 0:
+                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | env->mmu_bm);
+                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | env->mmu_bm);
+                // Mappings generated during no-fault mode or MMU
+                // disabled mode are invalid in normal mode
+                if (oldreg != env->mmuregs[reg])
+                    tlb_flush(env, 1);
+                break;
+            case 2:
+                env->mmuregs[reg] = T1;
+                if (oldreg != env->mmuregs[reg]) {
+                    /* we flush when the MMU context changes because
+                       QEMU has no MMU context support */
+                    tlb_flush(env, 1);
+                }
+                break;
+            case 3:
+            case 4:
+                break;
+            default:
+                env->mmuregs[reg] = T1;
+                break;
+            }
+            if (oldreg != env->mmuregs[reg]) {
+                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(env);
+#endif
+            return;
+        }
+    case 0xa: /* User data access */
+        switch(size) {
+        case 1:
+            stb_user(T0, T1);
+            break;
+        case 2:
+            stw_user(T0 & ~1, T1);
+            break;
+        default:
+        case 4:
+            stl_user(T0 & ~3, T1);
+            break;
+        case 8:
+            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
+            break;
+        }
+        break;
+    case 0xb: /* Supervisor data access */
+        switch(size) {
+        case 1:
+            stb_kernel(T0, T1);
+            break;
+        case 2:
+            stw_kernel(T0 & ~1, T1);
+            break;
+        default:
+        case 4:
+            stl_kernel(T0 & ~3, T1);
+            break;
+        case 8:
+            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
+            break;
+        }
+        break;
+    case 0xc: /* I-cache tag */
+    case 0xd: /* I-cache data */
+    case 0xe: /* D-cache tag */
+    case 0xf: /* D-cache data */
+    case 0x10: /* I/D-cache flush page */
+    case 0x11: /* I/D-cache flush segment */
+    case 0x12: /* I/D-cache flush region */
+    case 0x13: /* I/D-cache flush context */
+    case 0x14: /* I/D-cache flush user */
+        break;
+    case 0x17: /* Block copy, sta access */
+        {
+            // value (T1) = src
+            // address (T0) = dst
+            // copy 32 bytes
+            unsigned int i;
+            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
+
+            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
+                temp = ldl_kernel(src);
+                stl_kernel(dst, temp);
+            }
+        }
+        return;
+    case 0x1f: /* Block fill, stda access */
+        {
+            // value (T1, T2)
+            // address (T0) = dst
+            // fill 32 bytes
+            unsigned int i;
+            uint32_t dst = T0 & 7;
+            uint64_t val;
+
+            val = (((uint64_t)T1) << 32) | T2;
+
+            for (i = 0; i < 32; i += 8, dst += 8)
+                stq_kernel(dst, val);
+        }
+        return;
+    case 0x20: /* MMU passthrough */
+        {
+            switch(size) {
+            case 1:
+                stb_phys(T0, T1);
+                break;
+            case 2:
+                stw_phys(T0 & ~1, T1);
+                break;
+            case 4:
+            default:
+                stl_phys(T0 & ~3, T1);
+                break;
+            case 8:
+                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
+                break;
+            }
+        }
+        return;
+    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
+    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
+        {
+            switch(size) {
+            case 1:
+                stb_phys((target_phys_addr_t)T0
+                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
+                break;
+            case 2:
+                stw_phys((target_phys_addr_t)(T0 & ~1)
+                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
+                break;
+            case 4:
+            default:
+                stl_phys((target_phys_addr_t)(T0 & ~3)
+                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
+                break;
+            case 8:
+                stq_phys((target_phys_addr_t)(T0 & ~7)
+                           | ((target_phys_addr_t)(asi & 0xf) << 32),
+                         ((uint64_t)T1 << 32) | T2);
+                break;
+            }
+        }
+        return;
+    case 0x31: /* Ross RT620 I-cache flush */
+    case 0x36: /* I-cache flash clear */
+    case 0x37: /* D-cache flash clear */
+        break;
+    case 9: /* Supervisor code access, XXX */
+    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
+    default:
+        do_unassigned_access(T0, 1, 0, 1);
+        return;
     }
 }
 
-#if 0
-void do_ldd_raw(uint32_t addr)
+#endif /* CONFIG_USER_ONLY */
+#else /* TARGET_SPARC64 */
+
+#ifdef CONFIG_USER_ONLY
+void helper_ld_asi(int asi, int size, int sign)
 {
-    T1 = ldl_raw((void *) addr);
-    T0 = ldl_raw((void *) (addr + 4));
+    uint64_t ret = 0;
+
+    if (asi < 0x80)
+        raise_exception(TT_PRIV_ACT);
+
+    switch (asi) {
+    case 0x80: // Primary
+    case 0x82: // Primary no-fault
+    case 0x88: // Primary LE
+    case 0x8a: // Primary no-fault LE
+        {
+            switch(size) {
+            case 1:
+                ret = ldub_raw(T0);
+                break;
+            case 2:
+                ret = lduw_raw(T0 & ~1);
+                break;
+            case 4:
+                ret = ldl_raw(T0 & ~3);
+                break;
+            default:
+            case 8:
+                ret = ldq_raw(T0 & ~7);
+                break;
+            }
+        }
+        break;
+    case 0x81: // Secondary
+    case 0x83: // Secondary no-fault
+    case 0x89: // Secondary LE
+    case 0x8b: // Secondary no-fault LE
+        // XXX
+        break;
+    default:
+        break;
+    }
+
+    /* Convert from little endian */
+    switch (asi) {
+    case 0x88: // Primary LE
+    case 0x89: // Secondary LE
+    case 0x8a: // Primary no-fault LE
+    case 0x8b: // Secondary no-fault LE
+        switch(size) {
+        case 2:
+            ret = bswap16(ret);
+            break;
+        case 4:
+            ret = bswap32(ret);
+            break;
+        case 8:
+            ret = bswap64(ret);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch(size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+    T1 = ret;
 }
 
-#if !defined(CONFIG_USER_ONLY)
-void do_ldd_user(uint32_t addr)
+void helper_st_asi(int asi, int size)
 {
-    T1 = ldl_user((void *) addr);
-    T0 = ldl_user((void *) (addr + 4));
+    if (asi < 0x80)
+        raise_exception(TT_PRIV_ACT);
+
+    /* Convert to little endian */
+    switch (asi) {
+    case 0x88: // Primary LE
+    case 0x89: // Secondary LE
+        switch(size) {
+        case 2:
+            T0 = bswap16(T0);
+            break;
+        case 4:
+            T0 = bswap32(T0);
+            break;
+        case 8:
+            T0 = bswap64(T0);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    switch(asi) {
+    case 0x80: // Primary
+    case 0x88: // Primary LE
+        {
+            switch(size) {
+            case 1:
+                stb_raw(T0, T1);
+                break;
+            case 2:
+                stw_raw(T0 & ~1, T1);
+                break;
+            case 4:
+                stl_raw(T0 & ~3, T1);
+                break;
+            case 8:
+            default:
+                stq_raw(T0 & ~7, T1);
+                break;
+            }
+        }
+        break;
+    case 0x81: // Secondary
+    case 0x89: // Secondary LE
+        // XXX
+        return;
+
+    case 0x82: // Primary no-fault, RO
+    case 0x83: // Secondary no-fault, RO
+    case 0x8a: // Primary no-fault LE, RO
+    case 0x8b: // Secondary no-fault LE, RO
+    default:
+        do_unassigned_access(T0, 1, 0, 1);
+        return;
+    }
 }
-void do_ldd_kernel(uint32_t addr)
+
+#else /* CONFIG_USER_ONLY */
+
+void helper_ld_asi(int asi, int size, int sign)
 {
-    T1 = ldl_kernel((void *) addr);
-    T0 = ldl_kernel((void *) (addr + 4));
+    uint64_t ret = 0;
+
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
+        raise_exception(TT_PRIV_ACT);
+
+    switch (asi) {
+    case 0x10: // As if user primary
+    case 0x18: // As if user primary LE
+    case 0x80: // Primary
+    case 0x82: // Primary no-fault
+    case 0x88: // Primary LE
+    case 0x8a: // Primary no-fault LE
+        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+            if (env->hpstate & HS_PRIV) {
+                switch(size) {
+                case 1:
+                    ret = ldub_hypv(T0);
+                    break;
+                case 2:
+                    ret = lduw_hypv(T0 & ~1);
+                    break;
+                case 4:
+                    ret = ldl_hypv(T0 & ~3);
+                    break;
+                default:
+                case 8:
+                    ret = ldq_hypv(T0 & ~7);
+                    break;
+                }
+            } else {
+                switch(size) {
+                case 1:
+                    ret = ldub_kernel(T0);
+                    break;
+                case 2:
+                    ret = lduw_kernel(T0 & ~1);
+                    break;
+                case 4:
+                    ret = ldl_kernel(T0 & ~3);
+                    break;
+                default:
+                case 8:
+                    ret = ldq_kernel(T0 & ~7);
+                    break;
+                }
+            }
+        } else {
+            switch(size) {
+            case 1:
+                ret = ldub_user(T0);
+                break;
+            case 2:
+                ret = lduw_user(T0 & ~1);
+                break;
+            case 4:
+                ret = ldl_user(T0 & ~3);
+                break;
+            default:
+            case 8:
+                ret = ldq_user(T0 & ~7);
+                break;
+            }
+        }
+        break;
+    case 0x14: // Bypass
+    case 0x15: // Bypass, non-cacheable
+    case 0x1c: // Bypass LE
+    case 0x1d: // Bypass, non-cacheable LE
+        {
+            switch(size) {
+            case 1:
+                ret = ldub_phys(T0);
+                break;
+            case 2:
+                ret = lduw_phys(T0 & ~1);
+                break;
+            case 4:
+                ret = ldl_phys(T0 & ~3);
+                break;
+            default:
+            case 8:
+                ret = ldq_phys(T0 & ~7);
+                break;
+            }
+            break;
+        }
+    case 0x04: // Nucleus
+    case 0x0c: // Nucleus Little Endian (LE)
+    case 0x11: // As if user secondary
+    case 0x19: // As if user secondary LE
+    case 0x24: // Nucleus quad LDD 128 bit atomic
+    case 0x2c: // Nucleus quad LDD 128 bit atomic
+    case 0x4a: // UPA config
+    case 0x81: // Secondary
+    case 0x83: // Secondary no-fault
+    case 0x89: // Secondary LE
+    case 0x8b: // Secondary no-fault LE
+        // XXX
+        break;
+    case 0x45: // LSU
+        ret = env->lsu;
+        break;
+    case 0x50: // I-MMU regs
+        {
+            int reg = (T0 >> 3) & 0xf;
+
+            ret = env->immuregs[reg];
+            break;
+        }
+    case 0x51: // I-MMU 8k TSB pointer
+    case 0x52: // I-MMU 64k TSB pointer
+    case 0x55: // I-MMU data access
+        // XXX
+        break;
+    case 0x56: // I-MMU tag read
+        {
+            unsigned int i;
+
+            for (i = 0; i < 64; i++) {
+                // Valid, ctx match, vaddr match
+                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
+                    env->itlb_tag[i] == T0) {
+                    ret = env->itlb_tag[i];
+                    break;
+                }
+            }
+            break;
+        }
+    case 0x58: // D-MMU regs
+        {
+            int reg = (T0 >> 3) & 0xf;
+
+            ret = env->dmmuregs[reg];
+            break;
+        }
+    case 0x5e: // D-MMU tag read
+        {
+            unsigned int i;
+
+            for (i = 0; i < 64; i++) {
+                // Valid, ctx match, vaddr match
+                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
+                    env->dtlb_tag[i] == T0) {
+                    ret = env->dtlb_tag[i];
+                    break;
+                }
+            }
+            break;
+        }
+    case 0x59: // D-MMU 8k TSB pointer
+    case 0x5a: // D-MMU 64k TSB pointer
+    case 0x5b: // D-MMU data pointer
+    case 0x5d: // D-MMU data access
+    case 0x48: // Interrupt dispatch, RO
+    case 0x49: // Interrupt data receive
+    case 0x7f: // Incoming interrupt vector, RO
+        // XXX
+        break;
+    case 0x54: // I-MMU data in, WO
+    case 0x57: // I-MMU demap, WO
+    case 0x5c: // D-MMU data in, WO
+    case 0x5f: // D-MMU demap, WO
+    case 0x77: // Interrupt vector, WO
+    default:
+        do_unassigned_access(T0, 0, 0, 1);
+        ret = 0;
+        break;
+    }
+
+    /* Convert from little endian */
+    switch (asi) {
+    case 0x0c: // Nucleus Little Endian (LE)
+    case 0x18: // As if user primary LE
+    case 0x19: // As if user secondary LE
+    case 0x1c: // Bypass LE
+    case 0x1d: // Bypass, non-cacheable LE
+    case 0x88: // Primary LE
+    case 0x89: // Secondary LE
+    case 0x8a: // Primary no-fault LE
+    case 0x8b: // Secondary no-fault LE
+        switch(size) {
+        case 2:
+            ret = bswap16(ret);
+            break;
+        case 4:
+            ret = bswap32(ret);
+            break;
+        case 8:
+            ret = bswap64(ret);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch(size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+    T1 = ret;
 }
+
+void helper_st_asi(int asi, int size)
+{
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
+        raise_exception(TT_PRIV_ACT);
+
+    /* Convert to little endian */
+    switch (asi) {
+    case 0x0c: // Nucleus Little Endian (LE)
+    case 0x18: // As if user primary LE
+    case 0x19: // As if user secondary LE
+    case 0x1c: // Bypass LE
+    case 0x1d: // Bypass, non-cacheable LE
+    case 0x88: // Primary LE
+    case 0x89: // Secondary LE
+        switch(size) {
+        case 2:
+            T0 = bswap16(T0);
+            break;
+        case 4:
+            T0 = bswap32(T0);
+            break;
+        case 8:
+            T0 = bswap64(T0);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    switch(asi) {
+    case 0x10: // As if user primary
+    case 0x18: // As if user primary LE
+    case 0x80: // Primary
+    case 0x88: // Primary LE
+        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+            if (env->hpstate & HS_PRIV) {
+                switch(size) {
+                case 1:
+                    stb_hypv(T0, T1);
+                    break;
+                case 2:
+                    stw_hypv(T0 & ~1, T1);
+                    break;
+                case 4:
+                    stl_hypv(T0 & ~3, T1);
+                    break;
+                case 8:
+                default:
+                    stq_hypv(T0 & ~7, T1);
+                    break;
+                }
+            } else {
+                switch(size) {
+                case 1:
+                    stb_kernel(T0, T1);
+                    break;
+                case 2:
+                    stw_kernel(T0 & ~1, T1);
+                    break;
+                case 4:
+                    stl_kernel(T0 & ~3, T1);
+                    break;
+                case 8:
+                default:
+                    stq_kernel(T0 & ~7, T1);
+                    break;
+                }
+            }
+        } else {
+            switch(size) {
+            case 1:
+                stb_user(T0, T1);
+                break;
+            case 2:
+                stw_user(T0 & ~1, T1);
+                break;
+            case 4:
+                stl_user(T0 & ~3, T1);
+                break;
+            case 8:
+            default:
+                stq_user(T0 & ~7, T1);
+                break;
+            }
+        }
+        break;
+    case 0x14: // Bypass
+    case 0x15: // Bypass, non-cacheable
+    case 0x1c: // Bypass LE
+    case 0x1d: // Bypass, non-cacheable LE
+        {
+            switch(size) {
+            case 1:
+                stb_phys(T0, T1);
+                break;
+            case 2:
+                stw_phys(T0 & ~1, T1);
+                break;
+            case 4:
+                stl_phys(T0 & ~3, T1);
+                break;
+            case 8:
+            default:
+                stq_phys(T0 & ~7, T1);
+                break;
+            }
+        }
+        return;
+    case 0x04: // Nucleus
+    case 0x0c: // Nucleus Little Endian (LE)
+    case 0x11: // As if user secondary
+    case 0x19: // As if user secondary LE
+    case 0x24: // Nucleus quad LDD 128 bit atomic
+    case 0x2c: // Nucleus quad LDD 128 bit atomic
+    case 0x4a: // UPA config
+    case 0x81: // Secondary
+    case 0x89: // Secondary LE
+        // XXX
+        return;
+    case 0x45: // LSU
+        {
+            uint64_t oldreg;
+
+            oldreg = env->lsu;
+            env->lsu = T1 & (DMMU_E | IMMU_E);
+            // Mappings generated during D/I MMU disabled mode are
+            // invalid in normal mode
+            if (oldreg != env->lsu) {
+                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
+#ifdef DEBUG_MMU
+                dump_mmu(env);
 #endif
+                tlb_flush(env, 1);
+            }
+            return;
+        }
+    case 0x50: // I-MMU regs
+        {
+            int reg = (T0 >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->immuregs[reg];
+            switch(reg) {
+            case 0: // RO
+            case 4:
+                return;
+            case 1: // Not in I-MMU
+            case 2:
+            case 7:
+            case 8:
+                return;
+            case 3: // SFSR
+                if ((T1 & 1) == 0)
+                    T1 = 0; // Clear SFSR
+                break;
+            case 5: // TSB access
+            case 6: // Tag access
+            default:
+                break;
+            }
+            env->immuregs[reg] = T1;
+            if (oldreg != env->immuregs[reg]) {
+                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(env);
+#endif
+            return;
+        }
+    case 0x54: // I-MMU data in
+        {
+            unsigned int i;
+
+            // Try finding an invalid entry
+            for (i = 0; i < 64; i++) {
+                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
+                    env->itlb_tag[i] = env->immuregs[6];
+                    env->itlb_tte[i] = T1;
+                    return;
+                }
+            }
+            // Try finding an unlocked entry
+            for (i = 0; i < 64; i++) {
+                if ((env->itlb_tte[i] & 0x40) == 0) {
+                    env->itlb_tag[i] = env->immuregs[6];
+                    env->itlb_tte[i] = T1;
+                    return;
+                }
+            }
+            // error state?
+            return;
+        }
+    case 0x55: // I-MMU data access
+        {
+            unsigned int i = (T0 >> 3) & 0x3f;
+
+            env->itlb_tag[i] = env->immuregs[6];
+            env->itlb_tte[i] = T1;
+            return;
+        }
+    case 0x57: // I-MMU demap
+        // XXX
+        return;
+    case 0x58: // D-MMU regs
+        {
+            int reg = (T0 >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->dmmuregs[reg];
+            switch(reg) {
+            case 0: // RO
+            case 4:
+                return;
+            case 3: // SFSR
+                if ((T1 & 1) == 0) {
+                    T1 = 0; // Clear SFSR, Fault address
+                    env->dmmuregs[4] = 0;
+                }
+                env->dmmuregs[reg] = T1;
+                break;
+            case 1: // Primary context
+            case 2: // Secondary context
+            case 5: // TSB access
+            case 6: // Tag access
+            case 7: // Virtual Watchpoint
+            case 8: // Physical Watchpoint
+            default:
+                break;
+            }
+            env->dmmuregs[reg] = T1;
+            if (oldreg != env->dmmuregs[reg]) {
+                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(env);
 #endif
+            return;
+        }
+    case 0x5c: // D-MMU data in
+        {
+            unsigned int i;
+
+            // Try finding an invalid entry
+            for (i = 0; i < 64; i++) {
+                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
+                    env->dtlb_tag[i] = env->dmmuregs[6];
+                    env->dtlb_tte[i] = T1;
+                    return;
+                }
+            }
+            // Try finding an unlocked entry
+            for (i = 0; i < 64; i++) {
+                if ((env->dtlb_tte[i] & 0x40) == 0) {
+                    env->dtlb_tag[i] = env->dmmuregs[6];
+                    env->dtlb_tte[i] = T1;
+                    return;
+                }
+            }
+            // error state?
+            return;
+        }
+    case 0x5d: // D-MMU data access
+        {
+            unsigned int i = (T0 >> 3) & 0x3f;
+
+            env->dtlb_tag[i] = env->dmmuregs[6];
+            env->dtlb_tte[i] = T1;
+            return;
+        }
+    case 0x5f: // D-MMU demap
+    case 0x49: // Interrupt data receive
+        // XXX
+        return;
+    case 0x51: // I-MMU 8k TSB pointer, RO
+    case 0x52: // I-MMU 64k TSB pointer, RO
+    case 0x56: // I-MMU tag read, RO
+    case 0x59: // D-MMU 8k TSB pointer, RO
+    case 0x5a: // D-MMU 64k TSB pointer, RO
+    case 0x5b: // D-MMU data pointer, RO
+    case 0x5e: // D-MMU tag read, RO
+    case 0x48: // Interrupt dispatch, RO
+    case 0x7f: // Incoming interrupt vector, RO
+    case 0x82: // Primary no-fault, RO
+    case 0x83: // Secondary no-fault, RO
+    case 0x8a: // Primary no-fault LE, RO
+    case 0x8b: // Secondary no-fault LE, RO
+    default:
+        do_unassigned_access(T0, 1, 0, 1);
+        return;
+    }
+}
+#endif /* CONFIG_USER_ONLY */
+
+void helper_ldf_asi(int asi, int size, int rd)
+{
+    target_ulong tmp_T0 = T0, tmp_T1 = T1;
+    unsigned int i;
 
+    switch (asi) {
+    case 0xf0: // Block load primary
+    case 0xf1: // Block load secondary
+    case 0xf8: // Block load primary LE
+    case 0xf9: // Block load secondary LE
+        if (rd & 7) {
+            raise_exception(TT_ILL_INSN);
+            return;
+        }
+        if (T0 & 0x3f) {
+            raise_exception(TT_UNALIGNED);
+            return;
+        }
+        for (i = 0; i < 16; i++) {
+            helper_ld_asi(asi & 0x8f, 4, 0);
+            *(uint32_t *)&env->fpr[rd++] = T1;
+            T0 += 4;
+        }
+        T0 = tmp_T0;
+        T1 = tmp_T1;
+
+        return;
+    default:
+        break;
+    }
+
+    helper_ld_asi(asi, size, 0);
+    switch(size) {
+    default:
+    case 4:
+        *((uint32_t *)&FT0) = T1;
+        break;
+    case 8:
+        *((int64_t *)&DT0) = T1;
+        break;
+    }
+    T1 = tmp_T1;
+}
+
+void helper_stf_asi(int asi, int size, int rd)
+{
+    target_ulong tmp_T0 = T0, tmp_T1 = T1;
+    unsigned int i;
+
+    switch (asi) {
+    case 0xf0: // Block store primary
+    case 0xf1: // Block store secondary
+    case 0xf8: // Block store primary LE
+    case 0xf9: // Block store secondary LE
+        if (rd & 7) {
+            raise_exception(TT_ILL_INSN);
+            return;
+        }
+        if (T0 & 0x3f) {
+            raise_exception(TT_UNALIGNED);
+            return;
+        }
+        for (i = 0; i < 16; i++) {
+            T1 = *(uint32_t *)&env->fpr[rd++];
+            helper_st_asi(asi & 0x8f, 4);
+            T0 += 4;
+        }
+        T0 = tmp_T0;
+        T1 = tmp_T1;
+
+        return;
+    default:
+        break;
+    }
+
+    switch(size) {
+    default:
+    case 4:
+        T1 = *((uint32_t *)&FT0);
+        break;
+    case 8:
+        T1 = *((int64_t *)&DT0);
+        break;
+    }
+    helper_st_asi(asi, size);
+    T1 = tmp_T1;
+}
+
+#endif /* TARGET_SPARC64 */
+
+#ifndef TARGET_SPARC64
 void helper_rett()
 {
-    int cwp;
+    unsigned int cwp;
+
+    if (env->psret == 1)
+        raise_exception(TT_ILL_INSN);
+
     env->psret = 1;
-    cwp = (env->cwp + 1) & (NWINDOWS - 1); 
+    cwp = (env->cwp + 1) & (NWINDOWS - 1);
     if (env->wim & (1 << cwp)) {
         raise_exception(TT_WIN_UNF);
     }
     set_cwp(cwp);
     env->psrs = env->psrps;
 }
+#endif
 
 void helper_ldfsr(void)
 {
+    int rnd_mode;
     switch (env->fsr & FSR_RD_MASK) {
     case FSR_RD_NEAREST:
-       fesetround(FE_TONEAREST);
-       break;
+        rnd_mode = float_round_nearest_even;
+        break;
+    default:
     case FSR_RD_ZERO:
-       fesetround(FE_TOWARDZERO);
-       break;
+        rnd_mode = float_round_to_zero;
+        break;
     case FSR_RD_POS:
-       fesetround(FE_UPWARD);
-       break;
+        rnd_mode = float_round_up;
+        break;
     case FSR_RD_NEG:
-       fesetround(FE_DOWNWARD);
-       break;
+        rnd_mode = float_round_down;
+        break;
     }
+    set_float_rounding_mode(rnd_mode, &env->fp_status);
+}
+
+void helper_debug()
+{
+    env->exception_index = EXCP_DEBUG;
+    cpu_loop_exit();
 }
+
+#ifndef TARGET_SPARC64
+void do_wrpsr()
+{
+    if ((T0 & PSR_CWP) >= NWINDOWS)
+        raise_exception(TT_ILL_INSN);
+    else
+        PUT_PSR(env, T0);
+}
+
+void do_rdpsr()
+{
+    T0 = GET_PSR(env);
+}
+
+#else
+
+void do_popc()
+{
+    T0 = ctpop64(T1);
+}
+
+static inline uint64_t *get_gregset(uint64_t pstate)
+{
+    switch (pstate) {
+    default:
+    case 0:
+        return env->bgregs;
+    case PS_AG:
+        return env->agregs;
+    case PS_MG:
+        return env->mgregs;
+    case PS_IG:
+        return env->igregs;
+    }
+}
+
+static inline void change_pstate(uint64_t new_pstate)
+{
+    uint64_t pstate_regs, new_pstate_regs;
+    uint64_t *src, *dst;
+
+    pstate_regs = env->pstate & 0xc01;
+    new_pstate_regs = new_pstate & 0xc01;
+    if (new_pstate_regs != pstate_regs) {
+        // Switch global register bank
+        src = get_gregset(new_pstate_regs);
+        dst = get_gregset(pstate_regs);
+        memcpy32(dst, env->gregs);
+        memcpy32(env->gregs, src);
+    }
+    env->pstate = new_pstate;
+}
+
+void do_wrpstate(void)
+{
+    change_pstate(T0 & 0xf3f);
+}
+
+void do_done(void)
+{
+    env->tl--;
+    env->pc = env->tnpc[env->tl];
+    env->npc = env->tnpc[env->tl] + 4;
+    PUT_CCR(env, env->tstate[env->tl] >> 32);
+    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
+    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
+    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
+}
+
+void do_retry(void)
+{
+    env->tl--;
+    env->pc = env->tpc[env->tl];
+    env->npc = env->tnpc[env->tl];
+    PUT_CCR(env, env->tstate[env->tl] >> 32);
+    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
+    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
+    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
+}
+#endif
+
+void set_cwp(int new_cwp)
+{
+    /* put the modified wrap registers at their proper location */
+    if (env->cwp == (NWINDOWS - 1))
+        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
+    env->cwp = new_cwp;
+    /* put the wrap registers at their temporary location */
+    if (new_cwp == (NWINDOWS - 1))
+        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
+    env->regwptr = env->regbase + (new_cwp * 16);
+    REGWPTR = env->regwptr;
+}
+
+void cpu_set_cwp(CPUState *env1, int new_cwp)
+{
+    CPUState *saved_env;
+#ifdef reg_REGWPTR
+    target_ulong *saved_regwptr;
+#endif
+
+    saved_env = env;
+#ifdef reg_REGWPTR
+    saved_regwptr = REGWPTR;
+#endif
+    env = env1;
+    set_cwp(new_cwp);
+    env = saved_env;
+#ifdef reg_REGWPTR
+    REGWPTR = saved_regwptr;
+#endif
+}
+
+#ifdef TARGET_SPARC64
+void do_interrupt(int intno)
+{
+#ifdef DEBUG_PCALL
+    if (loglevel & CPU_LOG_INT) {
+        static int count;
+        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
+                count, intno,
+                env->pc,
+                env->npc, env->regwptr[6]);
+        cpu_dump_state(env, logfile, fprintf, 0);
+#if 0
+        {
+            int i;
+            uint8_t *ptr;
+
+            fprintf(logfile, "       code=");
+            ptr = (uint8_t *)env->pc;
+            for(i = 0; i < 16; i++) {
+                fprintf(logfile, " %02x", ldub(ptr + i));
+            }
+            fprintf(logfile, "\n");
+        }
+#endif
+        count++;
+    }
+#endif
+#if !defined(CONFIG_USER_ONLY)
+    if (env->tl == MAXTL) {
+        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
+        return;
+    }
+#endif
+    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
+        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
+    env->tpc[env->tl] = env->pc;
+    env->tnpc[env->tl] = env->npc;
+    env->tt[env->tl] = intno;
+    change_pstate(PS_PEF | PS_PRIV | PS_AG);
+
+    if (intno == TT_CLRWIN)
+        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
+    else if ((intno & 0x1c0) == TT_SPILL)
+        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
+    else if ((intno & 0x1c0) == TT_FILL)
+        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
+    env->tbr &= ~0x7fffULL;
+    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
+    if (env->tl < MAXTL - 1) {
+        env->tl++;
+    } else {
+        env->pstate |= PS_RED;
+        if (env->tl != MAXTL)
+            env->tl++;
+    }
+    env->pc = env->tbr;
+    env->npc = env->pc + 4;
+    env->exception_index = 0;
+}
+#else
+void do_interrupt(int intno)
+{
+    int cwp;
+
+#ifdef DEBUG_PCALL
+    if (loglevel & CPU_LOG_INT) {
+        static int count;
+        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
+                count, intno,
+                env->pc,
+                env->npc, env->regwptr[6]);
+        cpu_dump_state(env, logfile, fprintf, 0);
+#if 0
+        {
+            int i;
+            uint8_t *ptr;
+
+            fprintf(logfile, "       code=");
+            ptr = (uint8_t *)env->pc;
+            for(i = 0; i < 16; i++) {
+                fprintf(logfile, " %02x", ldub(ptr + i));
+            }
+            fprintf(logfile, "\n");
+        }
+#endif
+        count++;
+    }
+#endif
+#if !defined(CONFIG_USER_ONLY)
+    if (env->psret == 0) {
+        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
+        return;
+    }
+#endif
+    env->psret = 0;
+    cwp = (env->cwp - 1) & (NWINDOWS - 1);
+    set_cwp(cwp);
+    env->regwptr[9] = env->pc;
+    env->regwptr[10] = env->npc;
+    env->psrps = env->psrs;
+    env->psrs = 1;
+    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
+    env->pc = env->tbr;
+    env->npc = env->pc + 4;
+    env->exception_index = 0;
+}
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+
+static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
+                                void *retaddr);
+
+#define MMUSUFFIX _mmu
+#define ALIGNED_ONLY
+#ifdef __s390__
+# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
+#else
+# define GETPC() (__builtin_return_address(0))
+#endif
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
+                                void *retaddr)
+{
+#ifdef DEBUG_UNALIGNED
+    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
+#endif
+    raise_exception(TT_UNALIGNED);
+}
+
+/* try to fill the TLB and return an exception if error. If retaddr is
+   NULL, it means that the function was called in C code (i.e. not
+   from generated code or from helper.c) */
+/* XXX: fix it to restore all registers */
+void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
+{
+    TranslationBlock *tb;
+    int ret;
+    unsigned long pc;
+    CPUState *saved_env;
+
+    /* XXX: hack to restore env in all cases, even if not called from
+       generated code */
+    saved_env = env;
+    env = cpu_single_env;
+
+    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
+    if (ret) {
+        if (retaddr) {
+            /* now we have a real cpu fault */
+            pc = (unsigned long)retaddr;
+            tb = tb_find_pc(pc);
+            if (tb) {
+                /* the PC is inside the translated code. It means that we have
+                   a virtual CPU fault */
+                cpu_restore_state(tb, env, pc, (void *)T2);
+            }
+        }
+        cpu_loop_exit();
+    }
+    env = saved_env;
+}
+
+#endif
+
+#ifndef TARGET_SPARC64
+void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
+                          int is_asi)
+{
+    CPUState *saved_env;
+
+    /* XXX: hack to restore env in all cases, even if not called from
+       generated code */
+    saved_env = env;
+    env = cpu_single_env;
+    if (env->mmuregs[3]) /* Fault status register */
+        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
+    if (is_asi)
+        env->mmuregs[3] |= 1 << 16;
+    if (env->psrs)
+        env->mmuregs[3] |= 1 << 5;
+    if (is_exec)
+        env->mmuregs[3] |= 1 << 6;
+    if (is_write)
+        env->mmuregs[3] |= 1 << 7;
+    env->mmuregs[3] |= (5 << 2) | 2;
+    env->mmuregs[4] = addr; /* Fault address register */
+    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+#ifdef DEBUG_UNASSIGNED
+        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
+               "\n", addr, env->pc);
+#endif
+        if (is_exec)
+            raise_exception(TT_CODE_ACCESS);
+        else
+            raise_exception(TT_DATA_ACCESS);
+    }
+    env = saved_env;
+}
+#else
+void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
+                          int is_asi)
+{
+#ifdef DEBUG_UNASSIGNED
+    CPUState *saved_env;
+
+    /* XXX: hack to restore env in all cases, even if not called from
+       generated code */
+    saved_env = env;
+    env = cpu_single_env;
+    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
+           addr, env->pc);
+    env = saved_env;
+#endif
+    if (is_exec)
+        raise_exception(TT_CODE_ACCESS);
+    else
+        raise_exception(TT_DATA_ACCESS);
+}
+#endif
+