Update to 2.0.0 tree from current Fremantle build
[opencv] / 3rdparty / libjpeg / jdphuff.c
1 /*
2  * jdphuff.c
3  *
4  * Copyright (C) 1995-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy decoding routines for progressive JPEG.
9  *
10  * Much of the complexity here has to do with supporting input suspension.
11  * If the data source module demands suspension, we want to be able to back
12  * up to the start of the current MCU.  To do this, we copy state variables
13  * into local working storage, and update them back to the permanent
14  * storage only upon successful completion of an MCU.
15  */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h"             /* Declarations shared with jdhuff.c */
21
22
23 #ifdef D_PROGRESSIVE_SUPPORTED
24
25 /*
26  * Expanded entropy decoder object for progressive Huffman decoding.
27  *
28  * The savable_state subrecord contains fields that change within an MCU,
29  * but must not be updated permanently until we complete the MCU.
30  */
31
32 typedef struct {
33   unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
34   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
35 } savable_state;
36
37 /* This macro is to work around compilers with missing or broken
38  * structure assignment.  You'll need to fix this code if you have
39  * such a compiler and you change MAX_COMPS_IN_SCAN.
40  */
41
42 #ifndef NO_STRUCT_ASSIGN
43 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
44 #else
45 #if MAX_COMPS_IN_SCAN == 4
46 #define ASSIGN_STATE(dest,src)  \
47         ((dest).EOBRUN = (src).EOBRUN, \
48          (dest).last_dc_val[0] = (src).last_dc_val[0], \
49          (dest).last_dc_val[1] = (src).last_dc_val[1], \
50          (dest).last_dc_val[2] = (src).last_dc_val[2], \
51          (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54
55
56 typedef struct {
57   struct jpeg_entropy_decoder pub; /* public fields */
58
59   /* These fields are loaded into local variables at start of each MCU.
60    * In case of suspension, we exit WITHOUT updating them.
61    */
62   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
63   savable_state saved;          /* Other state at start of MCU */
64
65   /* These fields are NOT loaded into local working state. */
66   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
67
68   /* Pointers to derived tables (these workspaces have image lifespan) */
69   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
70
71   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
72 } phuff_entropy_decoder;
73
74 typedef phuff_entropy_decoder * phuff_entropy_ptr;
75
76 /* Forward declarations */
77 METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
78                                             JBLOCKROW *MCU_data));
79 METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
80                                             JBLOCKROW *MCU_data));
81 METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
82                                              JBLOCKROW *MCU_data));
83 METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
84                                              JBLOCKROW *MCU_data));
85
86
87 /*
88  * Initialize for a Huffman-compressed scan.
89  */
90
91 METHODDEF(void)
92 start_pass_phuff_decoder (j_decompress_ptr cinfo)
93 {
94   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
95   boolean is_DC_band, bad;
96   int ci, coefi, tbl;
97   int *coef_bit_ptr;
98   jpeg_component_info * compptr;
99
100   is_DC_band = (cinfo->Ss == 0);
101
102   /* Validate scan parameters */
103   bad = FALSE;
104   if (is_DC_band) {
105     if (cinfo->Se != 0)
106       bad = TRUE;
107   } else {
108     /* need not check Ss/Se < 0 since they came from unsigned bytes */
109     if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
110       bad = TRUE;
111     /* AC scans may have only one component */
112     if (cinfo->comps_in_scan != 1)
113       bad = TRUE;
114   }
115   if (cinfo->Ah != 0) {
116     /* Successive approximation refinement scan: must have Al = Ah-1. */
117     if (cinfo->Al != cinfo->Ah-1)
118       bad = TRUE;
119   }
120   if (cinfo->Al > 13)           /* need not check for < 0 */
121     bad = TRUE;
122   /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
123    * but the spec doesn't say so, and we try to be liberal about what we
124    * accept.  Note: large Al values could result in out-of-range DC
125    * coefficients during early scans, leading to bizarre displays due to
126    * overflows in the IDCT math.  But we won't crash.
127    */
128   if (bad)
129     ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
130              cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
131   /* Update progression status, and verify that scan order is legal.
132    * Note that inter-scan inconsistencies are treated as warnings
133    * not fatal errors ... not clear if this is right way to behave.
134    */
135   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
136     int cindex = cinfo->cur_comp_info[ci]->component_index;
137     coef_bit_ptr = & cinfo->coef_bits[cindex][0];
138     if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
139       WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
140     for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
141       int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
142       if (cinfo->Ah != expected)
143         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
144       coef_bit_ptr[coefi] = cinfo->Al;
145     }
146   }
147
148   /* Select MCU decoding routine */
149   if (cinfo->Ah == 0) {
150     if (is_DC_band)
151       entropy->pub.decode_mcu = decode_mcu_DC_first;
152     else
153       entropy->pub.decode_mcu = decode_mcu_AC_first;
154   } else {
155     if (is_DC_band)
156       entropy->pub.decode_mcu = decode_mcu_DC_refine;
157     else
158       entropy->pub.decode_mcu = decode_mcu_AC_refine;
159   }
160
161   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
162     compptr = cinfo->cur_comp_info[ci];
163     /* Make sure requested tables are present, and compute derived tables.
164      * We may build same derived table more than once, but it's not expensive.
165      */
166     if (is_DC_band) {
167       if (cinfo->Ah == 0) {     /* DC refinement needs no table */
168         tbl = compptr->dc_tbl_no;
169         jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
170                                 & entropy->derived_tbls[tbl]);
171       }
172     } else {
173       tbl = compptr->ac_tbl_no;
174       jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
175                               & entropy->derived_tbls[tbl]);
176       /* remember the single active table */
177       entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
178     }
179     /* Initialize DC predictions to 0 */
180     entropy->saved.last_dc_val[ci] = 0;
181   }
182
183   /* Initialize bitread state variables */
184   entropy->bitstate.bits_left = 0;
185   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
186   entropy->pub.insufficient_data = FALSE;
187
188   /* Initialize private state variables */
189   entropy->saved.EOBRUN = 0;
190
191   /* Initialize restart counter */
192   entropy->restarts_to_go = cinfo->restart_interval;
193 }
194
195
196 /*
197  * Figure F.12: extend sign bit.
198  * On some machines, a shift and add will be faster than a table lookup.
199  */
200
201 #ifdef AVOID_TABLES
202
203 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
204
205 #else
206
207 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
208
209 static const int extend_test[16] =   /* entry n is 2**(n-1) */
210   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
211     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
212
213 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
214   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
215     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
216     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
217     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
218
219 #endif /* AVOID_TABLES */
220
221
222 /*
223  * Check for a restart marker & resynchronize decoder.
224  * Returns FALSE if must suspend.
225  */
226
227 LOCAL(boolean)
228 process_restart (j_decompress_ptr cinfo)
229 {
230   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
231   int ci;
232
233   /* Throw away any unused bits remaining in bit buffer; */
234   /* include any full bytes in next_marker's count of discarded bytes */
235   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
236   entropy->bitstate.bits_left = 0;
237
238   /* Advance past the RSTn marker */
239   if (! (*cinfo->marker->read_restart_marker) (cinfo))
240     return FALSE;
241
242   /* Re-initialize DC predictions to 0 */
243   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
244     entropy->saved.last_dc_val[ci] = 0;
245   /* Re-init EOB run count, too */
246   entropy->saved.EOBRUN = 0;
247
248   /* Reset restart counter */
249   entropy->restarts_to_go = cinfo->restart_interval;
250
251   /* Reset out-of-data flag, unless read_restart_marker left us smack up
252    * against a marker.  In that case we will end up treating the next data
253    * segment as empty, and we can avoid producing bogus output pixels by
254    * leaving the flag set.
255    */
256   if (cinfo->unread_marker == 0)
257     entropy->pub.insufficient_data = FALSE;
258
259   return TRUE;
260 }
261
262
263 /*
264  * Huffman MCU decoding.
265  * Each of these routines decodes and returns one MCU's worth of
266  * Huffman-compressed coefficients. 
267  * The coefficients are reordered from zigzag order into natural array order,
268  * but are not dequantized.
269  *
270  * The i'th block of the MCU is stored into the block pointed to by
271  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
272  *
273  * We return FALSE if data source requested suspension.  In that case no
274  * changes have been made to permanent state.  (Exception: some output
275  * coefficients may already have been assigned.  This is harmless for
276  * spectral selection, since we'll just re-assign them on the next call.
277  * Successive approximation AC refinement has to be more careful, however.)
278  */
279
280 /*
281  * MCU decoding for DC initial scan (either spectral selection,
282  * or first pass of successive approximation).
283  */
284
285 METHODDEF(boolean)
286 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
287 {   
288   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
289   int Al = cinfo->Al;
290   register int s, r;
291   int blkn, ci;
292   JBLOCKROW block;
293   BITREAD_STATE_VARS;
294   savable_state state;
295   d_derived_tbl * tbl;
296   jpeg_component_info * compptr;
297
298   /* Process restart marker if needed; may have to suspend */
299   if (cinfo->restart_interval) {
300     if (entropy->restarts_to_go == 0)
301       if (! process_restart(cinfo))
302         return FALSE;
303   }
304
305   /* If we've run out of data, just leave the MCU set to zeroes.
306    * This way, we return uniform gray for the remainder of the segment.
307    */
308   if (! entropy->pub.insufficient_data) {
309
310     /* Load up working state */
311     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
312     ASSIGN_STATE(state, entropy->saved);
313
314     /* Outer loop handles each block in the MCU */
315
316     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
317       block = MCU_data[blkn];
318       ci = cinfo->MCU_membership[blkn];
319       compptr = cinfo->cur_comp_info[ci];
320       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
321
322       /* Decode a single block's worth of coefficients */
323
324       /* Section F.2.2.1: decode the DC coefficient difference */
325       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
326       if (s) {
327         CHECK_BIT_BUFFER(br_state, s, return FALSE);
328         r = GET_BITS(s);
329         s = HUFF_EXTEND(r, s);
330       }
331
332       /* Convert DC difference to actual value, update last_dc_val */
333       s += state.last_dc_val[ci];
334       state.last_dc_val[ci] = s;
335       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
336       (*block)[0] = (JCOEF) (s << Al);
337     }
338
339     /* Completed MCU, so update state */
340     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
341     ASSIGN_STATE(entropy->saved, state);
342   }
343
344   /* Account for restart interval (no-op if not using restarts) */
345   entropy->restarts_to_go--;
346
347   return TRUE;
348 }
349
350
351 /*
352  * MCU decoding for AC initial scan (either spectral selection,
353  * or first pass of successive approximation).
354  */
355
356 METHODDEF(boolean)
357 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
358 {   
359   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
360   int Se = cinfo->Se;
361   int Al = cinfo->Al;
362   register int s, k, r;
363   unsigned int EOBRUN;
364   JBLOCKROW block;
365   BITREAD_STATE_VARS;
366   d_derived_tbl * tbl;
367
368   /* Process restart marker if needed; may have to suspend */
369   if (cinfo->restart_interval) {
370     if (entropy->restarts_to_go == 0)
371       if (! process_restart(cinfo))
372         return FALSE;
373   }
374
375   /* If we've run out of data, just leave the MCU set to zeroes.
376    * This way, we return uniform gray for the remainder of the segment.
377    */
378   if (! entropy->pub.insufficient_data) {
379
380     /* Load up working state.
381      * We can avoid loading/saving bitread state if in an EOB run.
382      */
383     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
384
385     /* There is always only one block per MCU */
386
387     if (EOBRUN > 0)             /* if it's a band of zeroes... */
388       EOBRUN--;                 /* ...process it now (we do nothing) */
389     else {
390       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
391       block = MCU_data[0];
392       tbl = entropy->ac_derived_tbl;
393
394       for (k = cinfo->Ss; k <= Se; k++) {
395         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
396         r = s >> 4;
397         s &= 15;
398         if (s) {
399           k += r;
400           CHECK_BIT_BUFFER(br_state, s, return FALSE);
401           r = GET_BITS(s);
402           s = HUFF_EXTEND(r, s);
403           /* Scale and output coefficient in natural (dezigzagged) order */
404           (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
405         } else {
406           if (r == 15) {        /* ZRL */
407             k += 15;            /* skip 15 zeroes in band */
408           } else {              /* EOBr, run length is 2^r + appended bits */
409             EOBRUN = 1 << r;
410             if (r) {            /* EOBr, r > 0 */
411               CHECK_BIT_BUFFER(br_state, r, return FALSE);
412               r = GET_BITS(r);
413               EOBRUN += r;
414             }
415             EOBRUN--;           /* this band is processed at this moment */
416             break;              /* force end-of-band */
417           }
418         }
419       }
420
421       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
422     }
423
424     /* Completed MCU, so update state */
425     entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
426   }
427
428   /* Account for restart interval (no-op if not using restarts) */
429   entropy->restarts_to_go--;
430
431   return TRUE;
432 }
433
434
435 /*
436  * MCU decoding for DC successive approximation refinement scan.
437  * Note: we assume such scans can be multi-component, although the spec
438  * is not very clear on the point.
439  */
440
441 METHODDEF(boolean)
442 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
443 {   
444   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
445   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
446   int blkn;
447   JBLOCKROW block;
448   BITREAD_STATE_VARS;
449
450   /* Process restart marker if needed; may have to suspend */
451   if (cinfo->restart_interval) {
452     if (entropy->restarts_to_go == 0)
453       if (! process_restart(cinfo))
454         return FALSE;
455   }
456
457   /* Not worth the cycles to check insufficient_data here,
458    * since we will not change the data anyway if we read zeroes.
459    */
460
461   /* Load up working state */
462   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
463
464   /* Outer loop handles each block in the MCU */
465
466   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
467     block = MCU_data[blkn];
468
469     /* Encoded data is simply the next bit of the two's-complement DC value */
470     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
471     if (GET_BITS(1))
472       (*block)[0] |= p1;
473     /* Note: since we use |=, repeating the assignment later is safe */
474   }
475
476   /* Completed MCU, so update state */
477   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
478
479   /* Account for restart interval (no-op if not using restarts) */
480   entropy->restarts_to_go--;
481
482   return TRUE;
483 }
484
485
486 /*
487  * MCU decoding for AC successive approximation refinement scan.
488  */
489
490 METHODDEF(boolean)
491 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
492 {   
493   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
494   int Se = cinfo->Se;
495   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
496   int m1 = (-1) << cinfo->Al;   /* -1 in the bit position being coded */
497   register int s, k, r;
498   unsigned int EOBRUN;
499   JBLOCKROW block;
500   JCOEFPTR thiscoef;
501   BITREAD_STATE_VARS;
502   d_derived_tbl * tbl;
503   int num_newnz;
504   int newnz_pos[DCTSIZE2];
505
506   /* Process restart marker if needed; may have to suspend */
507   if (cinfo->restart_interval) {
508     if (entropy->restarts_to_go == 0)
509       if (! process_restart(cinfo))
510         return FALSE;
511   }
512
513   /* If we've run out of data, don't modify the MCU.
514    */
515   if (! entropy->pub.insufficient_data) {
516
517     /* Load up working state */
518     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
519     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
520
521     /* There is always only one block per MCU */
522     block = MCU_data[0];
523     tbl = entropy->ac_derived_tbl;
524
525     /* If we are forced to suspend, we must undo the assignments to any newly
526      * nonzero coefficients in the block, because otherwise we'd get confused
527      * next time about which coefficients were already nonzero.
528      * But we need not undo addition of bits to already-nonzero coefficients;
529      * instead, we can test the current bit to see if we already did it.
530      */
531     num_newnz = 0;
532
533     /* initialize coefficient loop counter to start of band */
534     k = cinfo->Ss;
535
536     if (EOBRUN == 0) {
537       for (; k <= Se; k++) {
538         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
539         r = s >> 4;
540         s &= 15;
541         if (s) {
542           if (s != 1)           /* size of new coef should always be 1 */
543             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
544           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
545           if (GET_BITS(1))
546             s = p1;             /* newly nonzero coef is positive */
547           else
548             s = m1;             /* newly nonzero coef is negative */
549         } else {
550           if (r != 15) {
551             EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
552             if (r) {
553               CHECK_BIT_BUFFER(br_state, r, goto undoit);
554               r = GET_BITS(r);
555               EOBRUN += r;
556             }
557             break;              /* rest of block is handled by EOB logic */
558           }
559           /* note s = 0 for processing ZRL */
560         }
561         /* Advance over already-nonzero coefs and r still-zero coefs,
562          * appending correction bits to the nonzeroes.  A correction bit is 1
563          * if the absolute value of the coefficient must be increased.
564          */
565         do {
566           thiscoef = *block + jpeg_natural_order[k];
567           if (*thiscoef != 0) {
568             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
569             if (GET_BITS(1)) {
570               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
571                 if (*thiscoef >= 0)
572                   *thiscoef += p1;
573                 else
574                   *thiscoef += m1;
575               }
576             }
577           } else {
578             if (--r < 0)
579               break;            /* reached target zero coefficient */
580           }
581           k++;
582         } while (k <= Se);
583         if (s) {
584           int pos = jpeg_natural_order[k];
585           /* Output newly nonzero coefficient */
586           (*block)[pos] = (JCOEF) s;
587           /* Remember its position in case we have to suspend */
588           newnz_pos[num_newnz++] = pos;
589         }
590       }
591     }
592
593     if (EOBRUN > 0) {
594       /* Scan any remaining coefficient positions after the end-of-band
595        * (the last newly nonzero coefficient, if any).  Append a correction
596        * bit to each already-nonzero coefficient.  A correction bit is 1
597        * if the absolute value of the coefficient must be increased.
598        */
599       for (; k <= Se; k++) {
600         thiscoef = *block + jpeg_natural_order[k];
601         if (*thiscoef != 0) {
602           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
603           if (GET_BITS(1)) {
604             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
605               if (*thiscoef >= 0)
606                 *thiscoef += p1;
607               else
608                 *thiscoef += m1;
609             }
610           }
611         }
612       }
613       /* Count one block completed in EOB run */
614       EOBRUN--;
615     }
616
617     /* Completed MCU, so update state */
618     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
619     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
620   }
621
622   /* Account for restart interval (no-op if not using restarts) */
623   entropy->restarts_to_go--;
624
625   return TRUE;
626
627 undoit:
628   /* Re-zero any output coefficients that we made newly nonzero */
629   while (num_newnz > 0)
630     (*block)[newnz_pos[--num_newnz]] = 0;
631
632   return FALSE;
633 }
634
635
636 /*
637  * Module initialization routine for progressive Huffman entropy decoding.
638  */
639
640 GLOBAL(void)
641 jinit_phuff_decoder (j_decompress_ptr cinfo)
642 {
643   phuff_entropy_ptr entropy;
644   int *coef_bit_ptr;
645   int ci, i;
646
647   entropy = (phuff_entropy_ptr)
648     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
649                                 SIZEOF(phuff_entropy_decoder));
650   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
651   entropy->pub.start_pass = start_pass_phuff_decoder;
652
653   /* Mark derived tables unallocated */
654   for (i = 0; i < NUM_HUFF_TBLS; i++) {
655     entropy->derived_tbls[i] = NULL;
656   }
657
658   /* Create progression status table */
659   cinfo->coef_bits = (int (*)[DCTSIZE2])
660     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
661                                 cinfo->num_components*DCTSIZE2*SIZEOF(int));
662   coef_bit_ptr = & cinfo->coef_bits[0][0];
663   for (ci = 0; ci < cinfo->num_components; ci++) 
664     for (i = 0; i < DCTSIZE2; i++)
665       *coef_bit_ptr++ = -1;
666 }
667
668 #endif /* D_PROGRESSIVE_SUPPORTED */