Update to 2.0.0 tree from current Fremantle build
[opencv] / 3rdparty / libjpeg / jidctred.c
1 /*
2  * jidctred.c
3  *
4  * Copyright (C) 1994-1998, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains inverse-DCT routines that produce reduced-size output:
9  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
10  *
11  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
12  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
13  * with an 8-to-4 step that produces the four averages of two adjacent outputs
14  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
15  * These steps were derived by computing the corresponding values at the end
16  * of the normal LL&M code, then simplifying as much as possible.
17  *
18  * 1x1 is trivial: just take the DC coefficient divided by 8.
19  *
20  * See jidctint.c for additional comments.
21  */
22
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "jdct.h"               /* Private declarations for DCT subsystem */
27
28 #ifdef IDCT_SCALING_SUPPORTED
29
30
31 /*
32  * This module is specialized to the case DCTSIZE = 8.
33  */
34
35 #if DCTSIZE != 8
36   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
37 #endif
38
39
40 /* Scaling is the same as in jidctint.c. */
41
42 #if BITS_IN_JSAMPLE == 8
43 #define CONST_BITS  13
44 #define PASS1_BITS  2
45 #else
46 #define CONST_BITS  13
47 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
48 #endif
49
50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
51  * causing a lot of useless floating-point operations at run time.
52  * To get around this we use the following pre-calculated constants.
53  * If you change CONST_BITS you may want to add appropriate values.
54  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
55  */
56
57 #if CONST_BITS == 13
58 #define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
59 #define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
60 #define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
61 #define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
62 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
63 #define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
64 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
65 #define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
66 #define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
67 #define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
68 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
69 #define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
70 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
71 #define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
72 #else
73 #define FIX_0_211164243  FIX(0.211164243)
74 #define FIX_0_509795579  FIX(0.509795579)
75 #define FIX_0_601344887  FIX(0.601344887)
76 #define FIX_0_720959822  FIX(0.720959822)
77 #define FIX_0_765366865  FIX(0.765366865)
78 #define FIX_0_850430095  FIX(0.850430095)
79 #define FIX_0_899976223  FIX(0.899976223)
80 #define FIX_1_061594337  FIX(1.061594337)
81 #define FIX_1_272758580  FIX(1.272758580)
82 #define FIX_1_451774981  FIX(1.451774981)
83 #define FIX_1_847759065  FIX(1.847759065)
84 #define FIX_2_172734803  FIX(2.172734803)
85 #define FIX_2_562915447  FIX(2.562915447)
86 #define FIX_3_624509785  FIX(3.624509785)
87 #endif
88
89
90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
91  * For 8-bit samples with the recommended scaling, all the variable
92  * and constant values involved are no more than 16 bits wide, so a
93  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
94  * For 12-bit samples, a full 32-bit multiplication will be needed.
95  */
96
97 #if BITS_IN_JSAMPLE == 8
98 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
99 #else
100 #define MULTIPLY(var,const)  ((var) * (const))
101 #endif
102
103
104 /* Dequantize a coefficient by multiplying it by the multiplier-table
105  * entry; produce an int result.  In this module, both inputs and result
106  * are 16 bits or less, so either int or short multiply will work.
107  */
108
109 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
110
111
112 /*
113  * Perform dequantization and inverse DCT on one block of coefficients,
114  * producing a reduced-size 4x4 output block.
115  */
116
117 GLOBAL(void)
118 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
119                JCOEFPTR coef_block,
120                JSAMPARRAY output_buf, JDIMENSION output_col)
121 {
122   INT32 tmp0, tmp2, tmp10, tmp12;
123   INT32 z1, z2, z3, z4;
124   JCOEFPTR inptr;
125   ISLOW_MULT_TYPE * quantptr;
126   int * wsptr;
127   JSAMPROW outptr;
128   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
129   int ctr;
130   int workspace[DCTSIZE*4];     /* buffers data between passes */
131   SHIFT_TEMPS
132
133   /* Pass 1: process columns from input, store into work array. */
134
135   inptr = coef_block;
136   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
137   wsptr = workspace;
138   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
139     /* Don't bother to process column 4, because second pass won't use it */
140     if (ctr == DCTSIZE-4)
141       continue;
142     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
143         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
144         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
145       /* AC terms all zero; we need not examine term 4 for 4x4 output */
146       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
147       
148       wsptr[DCTSIZE*0] = dcval;
149       wsptr[DCTSIZE*1] = dcval;
150       wsptr[DCTSIZE*2] = dcval;
151       wsptr[DCTSIZE*3] = dcval;
152       
153       continue;
154     }
155     
156     /* Even part */
157     
158     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
159     tmp0 <<= (CONST_BITS+1);
160     
161     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
162     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
163
164     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
165     
166     tmp10 = tmp0 + tmp2;
167     tmp12 = tmp0 - tmp2;
168     
169     /* Odd part */
170     
171     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
172     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
173     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
174     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
175     
176     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
177          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
178          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
179          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
180     
181     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
182          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
183          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
184          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
185
186     /* Final output stage */
187     
188     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
189     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
190     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
191     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
192   }
193   
194   /* Pass 2: process 4 rows from work array, store into output array. */
195
196   wsptr = workspace;
197   for (ctr = 0; ctr < 4; ctr++) {
198     outptr = output_buf[ctr] + output_col;
199     /* It's not clear whether a zero row test is worthwhile here ... */
200
201 #ifndef NO_ZERO_ROW_TEST
202     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
203         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
204       /* AC terms all zero */
205       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
206                                   & RANGE_MASK];
207       
208       outptr[0] = dcval;
209       outptr[1] = dcval;
210       outptr[2] = dcval;
211       outptr[3] = dcval;
212       
213       wsptr += DCTSIZE;         /* advance pointer to next row */
214       continue;
215     }
216 #endif
217     
218     /* Even part */
219     
220     tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
221     
222     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
223          + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
224     
225     tmp10 = tmp0 + tmp2;
226     tmp12 = tmp0 - tmp2;
227     
228     /* Odd part */
229     
230     z1 = (INT32) wsptr[7];
231     z2 = (INT32) wsptr[5];
232     z3 = (INT32) wsptr[3];
233     z4 = (INT32) wsptr[1];
234     
235     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
236          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
237          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
238          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
239     
240     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
241          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
242          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
243          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
244
245     /* Final output stage */
246     
247     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
248                                           CONST_BITS+PASS1_BITS+3+1)
249                             & RANGE_MASK];
250     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
251                                           CONST_BITS+PASS1_BITS+3+1)
252                             & RANGE_MASK];
253     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
254                                           CONST_BITS+PASS1_BITS+3+1)
255                             & RANGE_MASK];
256     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
257                                           CONST_BITS+PASS1_BITS+3+1)
258                             & RANGE_MASK];
259     
260     wsptr += DCTSIZE;           /* advance pointer to next row */
261   }
262 }
263
264
265 /*
266  * Perform dequantization and inverse DCT on one block of coefficients,
267  * producing a reduced-size 2x2 output block.
268  */
269
270 GLOBAL(void)
271 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
272                JCOEFPTR coef_block,
273                JSAMPARRAY output_buf, JDIMENSION output_col)
274 {
275   INT32 tmp0, tmp10, z1;
276   JCOEFPTR inptr;
277   ISLOW_MULT_TYPE * quantptr;
278   int * wsptr;
279   JSAMPROW outptr;
280   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
281   int ctr;
282   int workspace[DCTSIZE*2];     /* buffers data between passes */
283   SHIFT_TEMPS
284
285   /* Pass 1: process columns from input, store into work array. */
286
287   inptr = coef_block;
288   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
289   wsptr = workspace;
290   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
291     /* Don't bother to process columns 2,4,6 */
292     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
293       continue;
294     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
295         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
296       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
297       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
298       
299       wsptr[DCTSIZE*0] = dcval;
300       wsptr[DCTSIZE*1] = dcval;
301       
302       continue;
303     }
304     
305     /* Even part */
306     
307     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
308     tmp10 = z1 << (CONST_BITS+2);
309     
310     /* Odd part */
311
312     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
313     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
314     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
315     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
316     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
317     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
318     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
319     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
320
321     /* Final output stage */
322     
323     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
324     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
325   }
326   
327   /* Pass 2: process 2 rows from work array, store into output array. */
328
329   wsptr = workspace;
330   for (ctr = 0; ctr < 2; ctr++) {
331     outptr = output_buf[ctr] + output_col;
332     /* It's not clear whether a zero row test is worthwhile here ... */
333
334 #ifndef NO_ZERO_ROW_TEST
335     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
336       /* AC terms all zero */
337       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
338                                   & RANGE_MASK];
339       
340       outptr[0] = dcval;
341       outptr[1] = dcval;
342       
343       wsptr += DCTSIZE;         /* advance pointer to next row */
344       continue;
345     }
346 #endif
347     
348     /* Even part */
349     
350     tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
351     
352     /* Odd part */
353
354     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
355          + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
356          + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
357          + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
358
359     /* Final output stage */
360     
361     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
362                                           CONST_BITS+PASS1_BITS+3+2)
363                             & RANGE_MASK];
364     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
365                                           CONST_BITS+PASS1_BITS+3+2)
366                             & RANGE_MASK];
367     
368     wsptr += DCTSIZE;           /* advance pointer to next row */
369   }
370 }
371
372
373 /*
374  * Perform dequantization and inverse DCT on one block of coefficients,
375  * producing a reduced-size 1x1 output block.
376  */
377
378 GLOBAL(void)
379 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
380                JCOEFPTR coef_block,
381                JSAMPARRAY output_buf, JDIMENSION output_col)
382 {
383   int dcval;
384   ISLOW_MULT_TYPE * quantptr;
385   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
386   SHIFT_TEMPS
387
388   /* We hardly need an inverse DCT routine for this: just take the
389    * average pixel value, which is one-eighth of the DC coefficient.
390    */
391   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
392   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
393   dcval = (int) DESCALE((INT32) dcval, 3);
394
395   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
396 }
397
398 #endif /* IDCT_SCALING_SUPPORTED */