
Intel ®

Image Processing
Library
Reference Manual

Copyright © 1997-2000, Intel Corporation
All Rights Reserved
Issued in U.S.A.
Document Number 663791-005

How to Use This Online Manual

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.
Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.
Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.
Jumping to Topics . Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:

This software is briefly described in theOverview; see page 1-1.

If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.

Click to hide or show subtopics when the
bookmarks are shown.

Click to go to the previous page.

Double-click to jump to a topic when the
bookmarks are shown.

Click to go to the next page.

Click to display bookmarks. Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.
Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail
view.

Click to go forward from the previous view.

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the
view.

Click to fill the width of the window.

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to
jump to the related subjects. Use the
return back icon above to go back.

Intel® Image Processing Library
Reference Manual
Document Number: 663791-005

World Wide Web: http://developer.intel.com

Revision Revision History Date

-001 First release. 07/97

-002 Documents Image Processing Library release 2.0 06/98

-003 Added the functions MpyRCPack2D, Remap, DecimateExt, Scale,
ScaleFP, ColorTwistFP, MinMaxFP, and the compare functions.

01/99

-004 Documents Image Processing Library release 2.2 02/00

-005 Documents Image Processing Library release 2.5 08/00

http://developer.intel.com/Vtune/Perflibst/

This documentation as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this document is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this document.
Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel® products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale or License Agreement for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of
any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions
at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.

*Third-party marks and brands are the property of their respective owners.

Copyright 1997-2000, Intel Corporation. All Rights Reserved.

Contents

iii

Chapter 1 Overview
About This Software... 1-1

Hardware and Software Requirements.......................... 1-1

About This Manual ... 1-2

Manual Organization ... 1-2

Function Descriptions.. 1-4

Audience for This Manual.. 1-4

Online Version... 1-5

Sources of Related Information 1-5

Notational Conventions .. 1-5

Font Conventions .. 1-5

Naming Conventions ... 1-6

Function Name Conventions ... 1-6

X-Y Argument Order Convention................................... 1-7

Chapter 2 Image Architecture
Data Architecture ... 2-1

Color Models ... 2-1

Data Types and Palettes ... 2-2

The Sequence and Order of Color Channels................. 2-3

Coordinate Systems .. 2-4

Image Regions of Interest ... 2-4

Alpha (Opacity) Channel ... 2-7

Scanline Alignment.. 2-7

Image Dimensions... 2-7

Execution Architecture ... 2-8

Intel® Image Processing Library Reference Manual

iv

Handling Overflow and Underflow 2-8

In-Place and Out-of-Place Operations 2-8

Image Tiling ... 2-8

Tile Size .. 2-9

Call-backs.. 2-9

ROI and Tiling ... 2-10

In-Place Operations and Tiling 2-10

Chapter 3 Error Handling
Error-handling Functions.. 3-2

Error .. 3-2

GetErrStatus ... 3-3

GetErrMode... 3-4

ErrorStr.. 3-5

RedirectError ... 3-6

NullDevReport ... 3-7

StdErrReport ... 3-7

GuiBoxReport.. 3-7

Error Macros .. 3-9

Status Codes ... 3-10

Application Notes... 3-12

Error Handling Example ... 3-13

Adding Your Own Error Handler... 3-15

Chapter 4 Image Creation and Access
Image Header and Attributes ... 4-4

Tiling Fields in the IplImage Structure............................ 4-8

IplTileInfo Structure ... 4-8

Creating Images... 4-9

CreateImageHeader .. 4-9

Contents

v

AllocateImage ... 4-13

AllocateImageFP... 4-13

DeallocateImage ... 4-15

CloneImage... 4-15

Deallocate ... 4-16

CheckImageHeader .. 4-17

CreateImageJaehne.. 4-18

Setting Regions of Interest... 4-20

CreateROI... 4-21

DeleteROI ... 4-21

SetROI .. 4-22

Image Borders and Image Tiling .. 4-23

SetBorderMode ... 4-23

CreateTileInfo.. 4-25

SetTileInfo ... 4-26

DeleteTileInfo .. 4-26

Memory Allocation Functions ... 4-27

Malloc.. 4-27

wMalloc ... 4-28

iMalloc... 4-28

sMalloc.. 4-29

dMalloc.. 4-30

Free... 4-30

Image Data Exchange ... 4-31

Set... 4-31

SetFP .. 4-31

Copy.. 4-32

Exchange .. 4-35

Convert ... 4-36

Intel® Image Processing Library Reference Manual

vi

PutPixel ... 4-38

GetPixel... 4-38

Scale ... 4-40

ScaleFP... 4-41

NoiseImage ... 4-42

NoiseUniformInit .. 4-43

NoiseUniformInitFp.. 4-43

NoiseGaussianInit ... 4-44

NoiseGaussianInitFp ... 4-44

Working in the Windows DIB Environment 4-45

TranslateDIB ... 4-47

ConvertFromDIB ... 4-50

ConvertFromDIBSep ... 4-53

ConvertToDIB.. 4-54

ConvertToDIBSep ... 4-55

Chapter 5 Arithmetic and Logical Operations
Monadic Arithmetic Operations .. 5-3

AddS ... 5-3

AddSFP... 5-3

SubtractS .. 5-4

SubtractSFP.. 5-4

MultiplyS.. 5-4

MultiplySFP ... 5-4

MultiplySScale... 5-5

Square... 5-6

Abs.. 5-6

Dyadic Arithmetic Operations... 5-7

Add.. 5-7

Subtract... 5-8

Contents

vii

Multiply.. 5-8

MultiplyScale ... 5-9

Monadic Logical Operations... 5-10

LShiftS .. 5-10

RShiftS.. 5-11

Not .. 5-12

AndS ... 5-12

OrS.. 5-13

XorS .. 5-14

Dyadic Logical Operations ... 5-14

And.. 5-15

Or.. 5-15

Xor .. 5-16

Image Compositing Based on Opacity 5-16

Using Pre-multiplied Alpha Values 5-17

AlphaComposite, AlphaCompositeC.............................. 5-18

PreMultiplyAlpha ... 5-24

Chapter 6 Image Filtering
Linear Filters .. 6-2

Blur.. 6-2

2D Convolution.. 6-3

CreateConvKernel... 6-5

CreateConvKernelChar ... 6-5

CreateConvKernelFP .. 6-5

GetConvKernel.. 6-6

GetConvKernelChar .. 6-6

GetConvKernelFP ... 6-6

DeleteConvKernel ... 6-8

DeleteConvKernelFP... 6-8

Intel® Image Processing Library Reference Manual

viii

Convolve2D... 6-8

Convolve2DFP .. 6-8

ConvolveSep2D... 6-11

ConvolveSep2DFP .. 6-11

FixedFilter.. 6-12

Non-linear Filters.. 6-14

MedianFilter... 6-15

MaxFilter ... 6-18

MinFilter .. 6-19

Chapte r 7 Linea r Image Transforms
Fast Fourier Transform .. 7-1

Real-Complex Packed (RCPack2D) Format.................. 7-1

RealFft2D .. 7-4

CcsFft2D ... 7-7

MpyRCPack2D.. 7-8

Discrete Cosine Transform... 7-8

DCT2D .. 7-9

Chapte r 8 Morphologica l Operations
Erode... 8-2

Dilate ... 8-5

Open ... 8-6

Close ... 8-7

Chapte r 9 Colo r Space Conversion
Reducing the Image Bit Resolution 9-3

ReduceBits .. 9-3

Conversion from Bitonal to Gray Scale Images.................. 9-7

BitonalToGray ... 9-7

Contents

ix

Conversion of Absolute Colors to and from Palette Colors. 9-7

Conversion from Color to Gray Scale................................. 9-8

ColorToGray.. 9-8

Conversion from Gray Scale to Color (Pseudo-color) 9-9

GrayToColor.. 9-9

Conversion of Color Models... 9-10

Data ranges in the HLS and HSV Color Models 9-11

RGB2HSV ... 9-12

HSV2RGB ... 9-12

RGB2HLS ... 9-13

HLS2RGB ... 9-13

RGB2LUV ... 9-14

LUV2RGB ... 9-14

RGB2XYZ ... 9-15

XYZ2RGB ... 9-15

RGB2YCrCb.. 9-16

YCrCb2RGB.. 9-16

RGB2YUV ... 9-17

YUV2RGB ... 9-17

YCC2RGB... 9-18

Using Color-Twist Matrices .. 9-18

CreateColorTwist... 9-19

SetColorTwist .. 9-20

ApplyColorTwist .. 9-21

DeleteColorTwist ... 9-22

ColorTwistFP... 9-23

Chapter 10 Histogram, Threshold, and Compare Functions
Thresholding .. 10-2

Threshold .. 10-2

Intel® Image Processing Library Reference Manual

x

Lookup Table (LUT) and Histogram Operations................. 10-5

The IplLUT Structure ... 10-5

ContrastStretch ... 10-7

ComputeHisto.. 10-9

HistoEqualize .. 10-10

Comparing Images... 10-12

Greater .. 10-13

Less... 10-14

Equal ... 10-15

EqualFPEps .. 10-16

GreaterS.. 10-17

GreaterSFP ... 10-18

LessS .. 10-19

LessSFP.. 10-20

EqualS... 10-21

EqualSFP .. 10-22

EqualSFPEps .. 10-23

Chapter 11 Geometric Transforms
Changing the Image Size... 11-3

Zoom... 11-4

Decimate ... 11-5

DecimateBlur... 11-6

Resize ... 11-7

ZoomFit ... 11-8

DecimateFit ... 11-8

ResizeFit ... 11-8

Changing the Image Orientation .. 11-9

Rotate.. 11-9

GetRotateShift... 11-11

Contents

xi

RotateCenter... 11-13

Mirror... 11-14

Warping ... 11-15

Shear .. 11-16

WarpAffine .. 11-17

GetAffineBound... 11-18

GetAffineQuad .. 11-18

GetAffineTransform... 11-19

WarpBilinear.. 11-20

GetBilinearBound .. 11-22

GetBilinearQuad.. 11-22

GetBilinearTransform .. 11-23

WarpPerspective... 11-24

GetPerspectiveBound ... 11-26

GetPerspectiveQuad ... 11-26

GetPerspectiveTransform ... 11-27

Arbitrary Transforms .. 11-28

Remap .. 11-28

Chapter 12 Image Statistics Functions
Image Norms ... 12-2

Norm ... 12-2

Image Moments ... 12-5

Moments ... 12-6

GetSpatialMoment... 12-6

GetCentralMoment .. 12-7

GetNormalizedSpatialMoment....................................... 12-7

GetNormalizedCentralMoment 12-8

SpatialMoment .. 12-9

CentralMoment.. 12-9

Intel® Image Processing Library Reference Manual

xii

NormalizedSpatialMoment... 12-10

NormalizedCentralMoment .. 12-11

Cross-Correlation... 12-12

NormCrossCorr ... 12-13

Minimum and Maximum ... 12-14

MinMaxFP ... 12-14

Chapter 13 User Defined Functions
UserProcess.. 13-5

UserProcessFP ... 13-7

UserProcessPixel .. 13-8

Chapter 14 Library Version
GetLibVersion.. 14-1

Appendix A Supported Image Attributes and Operation Modes

Appendix B Interpolation Algorithms in Geometric Transforms

Bibliography

Glossary

Index

Contents

xiii

Tables
Table 2-1 Data Ordering .. 2-3

Table 3-1 iplError() Status Codes....................................... 3-10

Table 4-1 Image Creation, Data Exchange and
Windows DIB Functions.. 4-1

Table 4-2 Image Header Attributes 4-4

Table 5-1 Image Arithmetic and Logical Operations........... 5-1

Table 5-2 Types of Image Compositing Operations 5-22

Table 6-1 Image Filtering Functions................................... 6-1

Table 7-1 Linear Image Transform Functions 7-1

Table 7-2 FFT Output in RCPack2D Format for Even K 7-3

Table 7-3 FFT Output in RCPack2D Format for Odd K...... 7-3

Table 7-4 RealFFT2D Output Sample for K = 4, L = 4 7-3

Table 8-1 Morphological Operation Functions.................... 8-1

Table 9-1 Color Space Conversion Functions 9-1

Table 9-2 Source and Resultant Image Data Types
for Reducing the Bit Resolution 9-6

Table 9-3 Source and Resultant Image Data Types
for Conversion from Color to Gray Scale 9-8

Table 9-4 Source and Resultant Image Data Types
for Conversion from Gray Scale to Color 9-9

Table 10-1 Histogram,Threshold, and Compare Functions 10-1

Table 11-1 Image Geometric Transform Functions............ 11-1

Table 12-1 Image Statistics Functions 12-1

Table A-1 Image Attributes and Modes of
Data Exchange Functions A-1

Table A-2 Windows DIB Conversion Functions.................. A-2

Table A-3 Image Attributes and Modes of Arithmetic and
Logical Functions .. A-3

Intel® Image Processing Library Reference Manual

xiv

Table A-4 Image Attributes and Modes of
Alpha-Blending Functions A-4

Table A-5 Image Attributes and Modes of
Filtering Functions... A-4

Table A-6 Image Attributes and Modes of
Fourier and DCT Functions A-4

Table A-7 Image Attributes and Modes of
Morphological Operations A-5

Table A-8 Image Attributes and Modes of
Color Space Conversion Functions A-5

Table A-9 Image Attributes and Modes of
Histogram and Thresholding Functions............... A-6

Table A-10 Image Attributes and Modes of
Geometric Transform Functions.......................... A-6

Table A-11 Image Attributes and Modes of
Image Statisctics Functions................................. A-7

Table A-12 Image Attributes and Modes of
Functions for User-Defined Image Processing A-7

Table B-1 Interpolation Modes Supported by
Geometric Transform Functions.......................... B-2

Figures
Figure 2-1 Setting an ROI for Multi-Image Operations....... 2-6

Figure 4-1 RGB Image with a Rectangular ROI and a COI 4-6

Figure 4-2 Example of a generated test image 4-19

Figure 8-1 Erosion in a Rectangular ROI 8-3

Figure 9-1 Example of the source and resultant images
for the bit reducing function 9-5

Figure B-1 Linear Interpolation... B-4

Figure B-2 Cubic Interpolation.. B-6

Figure B-3 Super-sampling Weights................................... B-7

Contents

xv

Examples
Example 3-1 Error Functions ... 3-13

Example 3-2 Output for the Error Function Program
(IPL_ErrModeParent).. 3-15

Example 3-3 Output for the Error Function Program
(IPL_ErrModeParent).. 3-15

Example 3-4 A Simple Error Handler 3-17

Example 4-1 Creating and Deleting an Image Header 4-11

Example 4-2 Allocating and Deallocating the Image Data.. 4-14

Example 4-3 Setting the Border Mode for an Image 4-25

Example 4-4 Allocating an Image and Setting
Its Pixel Values ... 4-32

Example 4-5 Copying Image Pixel Values 4-34

Example 4-6 Converting Images.. 4-37

Example 4-7 Using the Function iplGetPixel() 4-39

Example 4-8 Translating a DIB Image Into an IplImage 4-48

Example 4-9 Converting a DIB Image Into an IplImage 4-51

Example 6-1 Computing the 2-dimensional Convolution 6-9

Example 6-2 Applying the Median Filter............................. 6-16

Example 7-1 Computing the FFT of an Image 7-5

Example 7-2 Computing the DCT of an Image................... 7-10

Example 8-1 Code Used to Produce Erosion
in a Rectangular ROI ... 8-4

Example 10-1 Conversion to a Bitonal Image 10-4

Example 10-2 Using the Function iplContrastStretch()
to Enhance an Image ... 10-7

Example 10-3 Computing and Equalizing the Image
Histogram... 10-11

Example 11-1 Using Macro Definition to Resize
an Image.. 11-9

Intel® Image Processing Library Reference Manual

xvi

Example 11-2 Rotating an Image....................................... 11-11

Example 11-3 Using Macro Definition to Rotate
an Image .. 11-14

Example 11-4 Re-mapping an Image................................. 11-29

Example 12-1 Computing the Norm of Pixel Values........... 12-4

Example 13-1 Image Channel Values Processing
by User-Defined Function 13-6

Example 13-2 Pixel Values Processing
by User-Defined Function................................... 13-9

Overview

1-1

1
This manual describes the structure, operation and functions of the
Intel Image Processing Library. This library supports many functions
whose performance can be significantly enhanced on processors with the
MMX technology, as well as on Intel Pentium III processors.

The manual describes the library’s data and execution architecture and
provides detailed descriptions of the library functions.

This chapter introduces the Image Processing Library and explains the
organization of this manual.

About This Software

The Image Processing Library focuses on taking advantage of the
parallelism of the new SIMD (single-instruction, multiple-data)
instructions of the latest generations of Intel processors. These instructions
greatly improve the performance of computation-intensive image
processing functions. Most functions in the Image Processing Library are
specially optimized for the latest generations of processors. However, all
functions will successfully execute on older processors as well.

The library does not support the reading and writing of a wide variety of
image file formats or the display of images.

Hardware and Software Requirements

The Image Processing Library runs on personal computers that are based
on Intel architecture processors and running Microsoft* Windows*,
Windows 95, 98, or Windows NT* operating system. The library integrates
into the customer’s application or library written in C or C++.

Intel® Image Processing Library Reference Manual

1-2

1
Abou t This Manual

This manual provides a background of the image and execution
architecture of the Image Processing Library aswell as detailed
descriptions of the library functions. The functions are combined in groups
by their functionality. Each group of functions is described in a separate
chapter (chapters 3 through 14).

Manual Organization

This manual contains fourteen chapters:

Chapter 1 “Overview.” Introduces the Image Processing
Library, explains the manual organization and
notational conventions.

Chapter 2 “ Image Architecture.” Describes the supported
image architecture (color models, data types, data
order, and so on) aswell as the execution
architecture and image tiling.

Chapter 3 “Error Handling.” Provides information on the
error-handling functions included with the
library. User-defined error handler is also
described.

Chapter 4 “ Image Creation and Access.” Describes the
functions used to: create, set, and access image
attributes; set image border and tiling; and
allocate the memory for different data types. The
chapter also describes the functions that facilitate
operations in the window environment.

Chapter 5 “ Image Arithmetic and Logical Operations.”
Describes image processing operations that
modify pixel values using simple arithmetic or
logical operations, aswell as alpha-blending.

Overview

1-3

1
Chapter 6 “Image Filtering.” Describes linear and non-

linear filtering operations that can be applied to
images.

Chapter 7 “Linear Image Transforms.” Describes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the library.

Chapter 8 “Morphological Operations.” Describes the
functions that perform erosion, dilation, and their
combinations.

Chapter 9 “Color Space Conversion.” Describes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
palette to absolute color and vice versa;
conversion to different color models.

Chapter 10 “Histogram, Threshold, and Compare Functions.”
Describes functions that treat an image on a
pixel-by-pixel basis: contrast stretching,
histogram computation, histogram equalization
and thresholding; compare functions.

Chapter 11 “Image Geometric Transforms.” Describes the
supported geometric transformations: resizing,
flipping, rotation, and various kinds of warping.

Chapter 12 “Image Statistics Functions.” Describes functions
that allow you to compute image norms,
moments, minimum and maximum values.

Chapter 13 “User-Defined Functions.” Describes library
functions that enable you to create and use your
own image processing functions.

Chapter 14 “Library Version.” Describes the function
iplGetLibVersion() that returns the library
version and other information about the library.

Intel® Image Processing Library Reference Manual

1-4

1
The manual also includes aGlossary, Bibliography, andIndex, as well as
two appendixes that listsupported image attributes and operation modes
and describeinterpolation algorithmsused in the library.

Function Descriptions

In Chapters 3 through 14, each function is introduced by name (without the
ipl prefix) and a brief description of its purpose. This is followed by the
function call sequence, more detailed description of the function’s purpose,
and definitions of its arguments. The following sections are included in
each function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

Return Value If present, describes a value indicating the result
of the function execution.

Application Notes If present, describe any special information which
application programmers or other users of the
function need to know.

See Also If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing applications
and image processing libraries. Both parts of the audience are expected to
be experienced in using C and to have a working knowledge of the
vocabulary and principles of image processing. The developers of image
processing software can use the Image Processing Library capabilities to
improve performance on the latest generations of processors.

Overview

1-5

1
Onlin e Version

This manual is available in an online hypertext format. To obtain a hard
copy of the manual, print the online fil e using the printing capability of
Adobe* Acrobat*, the tool used for the online presentation of the document.

Source s of Related Information

For more information about computer graphics concepts and objects, refer
to the books and materials listed in theBibliography. For the latest
information about the Image Processing Library, such as new releases,
product announcements, updates, and online technical support, check out
our Web site at http://developer.intel.com.

Notationa l Conventions

In this manual, notational conventions include:

• Fonts used for distinction between the text and the code
• Naming conventions
• Function name conventions

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Used in the text for constant identifiers;
for example, IPL_DEPTH_1U.

lowercas e courier Mixed with the uppercase in function names as
in SetExecutionMode ; also used for key
words in code examples; for example, in the
function call statement voi d iplSquare() .

lowercase mixed with
UpperCase Courier italic

Variables in arguments and parameters
discussion; for example,mode, dstImage .

http://developer.intel.com/vtune/perflibst

Intel® Image Processing Library Reference Manual

1-6

1
Naming Conventions

The following data type conventions are used by the library:

• Constant identifiers are in uppercase; for example,IPL_SIDE_LEFT .
• All constant identifiers have theIPL prefix.
• All function names have theipl prefix. In code examples, you can

distinguish the library interface functions from the application
functions by this prefix.

NOTE. In this manual, theipl prefix in function names is always used in
the code examples. In the text, this prefix is sometimes omitted.

• All image header structures have theIpl prefix; for example,
IplImage , IplROI .

• Each new part of a function name starts with an uppercase character,
without underscore; for example,iplAlphaComposite .

Function Name Conventions

The function names in the library typically begin with theipl prefix and
have the following general format:

ipl < actio n > < targe t > < mod >()

where

action indicates the core functionality; for example,
-Set- , -Create- , or -Convert- .

target indicates the area where image processing is
being enacted; for example,-ConvKernel or
-FromDIB .

In a number of cases, the target consists of two or
more words; for example,-ConvKernel in the
functionCreateConvKernel .
Some function names consist of anaction or

Overview

1-7

1
target only; for example, the functions
Multiply or RealFft2D , respectively.

mod Themod field is optional and indicates a
modification to the core functionality of a
function. For example, in the name
iplAlphaCompositeC() , C indicates that this
function is using constant alpha values.

X-Y Argument Order Convention

Where applicable, the Image Processing Library functions use the
following order of arguments:

x, y (x first, theny)
nCols, nRows (columns first, then rows)
width, height (width first, then height).

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Image Architecture

2-1

2
This chapter describes the data and execution architecture of the Image
Processing Library. It introduces the library’s color models, data types,
coordinate systems, regions of interest, data alignment, in-place and not-
in-place execution, and image tiling.

Data Architecture

Any image in the Image Processing Library has a header that describes the
image as a list of attributes and pointers to the data associated with the
image. Library functions use the image header to get the format and
characteristics of the image(s) passed to the functions. Based on the
information obtained from the header, the functions make appropriate calls
to set the data structures. Images can have different organization of data.
The library supports numerous data formats that use different color models,
data types, data order, and coordinate systems.

Color Models

The library image format supports the following color models:

• Monochrome or gray scale image (one color channel)
• Color image (3 or 4 color channels)
• Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY, and
YCC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channels in the
image. The operations are performed without specific identification of the
colors, unless it is a certain color conversion operation where color
identification is required.

Intel® Image Processing Library Reference Manual

2-2

2
The multi-spectral image (MSI) model is used for general purpose images.
It is used for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this modelone channel for each channel
in the input. The result can be viewed as an MSI image. An MSI image can
contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to
identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image data type is the pixel depth in
bits. The data could be signed integer, unsigned integer, or floating-point.
The following data types are supported for various color models
(s = signed, u = unsigned, f = float):

Gray scale 1, 8s, 8u, 16s, 16u, and 32f bits per pixel

Color (three-channel) 8u and 16u bits per channel

Four-channel and MSI 8s, 8u, 16s, 16u, 32s, and 32f bits per channel.

The library supports only absolute color images in which each pixel is
represented by the channel intensities. For example, in an absolute color
24-bit RGB image, three bytes (24 bits) per pixel represent the three
channel intensities. LUT (lookup table) images, that is, palette color images
are not supported. You must convert palette images to absolute color
images for further processing by the library functions. There are special
functions for converting DIB palette images to absolute color images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within a given
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, this is the case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.

Image Architecture

2-3

2
The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channels in
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR.

NOTE. For functions that perform color space conversions or image
format conversions, the channel sequence information is required and
therefore must be provided. All other functions ignore channel sequence.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way
the color data is arranged: by planes or by pixels. Table 2-1 lists the
orderings that are supported for planes and for pixels.

Table 2-1 Data Ordering

Data Ordering Description
RGB Example
(channel ordering = RGB)

Pixel-oriented All channels for each pixel
are clustered.

RGBRGBRGB (line 1)
RGBRGBRGB (line 2)
RGBRGBRGB (line 3)

Plane-oriented All image data for each
channel is contiguous
followed by the next
channel.

RRRRRRRRR (line 1)
RRRRRRRRR (line 2) R plane
RRRRRRRRR (line 3)

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)
...

Intel® Image Processing Library Reference Manual

2-4

2
Coordinate Systems

Two coordinate systems are supported by the library’s image format.

• The origin of the image is in the top left corner, the x values increase
from left to right, and y values increase from top to bottom.

• The origin of the image is in the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to the
top.

Image Regions of Interest

A very important concept in the Image Processing Library architecture is
an image’s region of interest (ROI). All image processing functions can
operate not only on entire images but also on image regions.

Depending on the processing needs, the following image regions can be
specified:

• Channel of interest (COI). A COI can be one or all channels of the
image. By default, unless the COI is changed by theSetROI()

function, processing will be carried out on all channels in the image.
• Rectangular region of interest (rectangular ROI). A rectangular

ROI is a portion of the image or, possibly, the entire image. By default,
unless changed by theSetROI() function, the entire image is the
rectangular region of interest.

• Mask region of interest (mask ROI). It is specified by another
(bitonal) image pointed to by themaskROI pointer of theIplImage

structure.
A mask ROI allows an application to determine on a pixel-by-pixel
basis whether to perform an operation. Pixels corresponding to zeros in
the mask are not read (if in a source image) or written (if in the
destination image). Pixels corresponding to 1’s in the mask are
processed normally.
The origin of the mask ROI is aligned to the origin of the rectangular
ROI if there is one, or the origin of the image.

An image can simultaneously have any combination of a rectangular ROI,
a mask ROI, and a COI. Operations are performed on the intersection of all

Image Architecture

2-5

2
applicable ROIs. For example, if an image has both types of ROI and a
COI, operations are performed only on the values of this COI, and only for
those pixels that belong to the intersection of mask ROI and rectangular
ROI.

Both the source and destination image can have a region of interest. In such
cases, operations will be performed on the intersection of the ROIs. Thus,
an image region of interest specifies some part of an image or the entire
image. Once set, the region information of the image remains the same
until changed by the functionSetROI() .

NOTE. Not all functions support mask ROI. For example, FFT functions
use only rectangular ROI and COI even if you specify a mask ROI.

Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image. (Mask ROIs are
not set for the images in this figure.) Before performing any operations,
each function checks that the ROI sizes and offsets are positive. However,
not all functions check that the ROI is within the actual image borders.

All images (input and output) in Figure 2-1 have rectangular ROIs that
specify either the entire image or specific regions set by theSetROI()

function. The first step is to align the rectangular ROIs of all the images so
that their top left corners coincide. The operation is, then, performed in the
rectangular region where all the images overlap. This scheme gives much
flexibility, effectively enabling translation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation, one of the
following conditions must be met for the channel of interest (COI):

• Each image (input and output) has one COI,
• Each image (input and output) has all channels included in the ROI

(COI = 0) and all images (input and output) have the same number of
channels (one or more).

Intel® Image Processing Library Reference Manual

2-6

2
If one image (input or output) has one channel in its COI and another
image (input or output) has more than one channel included in its COI, an
error will occur.

Figure 2-1 Setting an ROI for Multi-Image Operations

Input image Output image

ROI

ROI

The processing
is performed in
the shaded area

Image Architecture

2-7

2
Alpha (Opacity) Channel

In addition to the color channels, an image can have one alpha channel,
also known as an opacity channel, which is mainly used for image
compositing operations (see “Image Compositing Based on Opacity” in
Chapter 5). The alpha channel must be the last channel in the image.

The interpretation of operations on the alpha channel is usually different
from that for color channels. For example, adding a constant to the RGB
channels in an RGBA image would brighten the image, while adding a
constant to the A (alpha) channel would make the image more opaque.

For this reason, by default most functions ignore the alpha channel if one is
specified. The exceptions are the compositing functions, which use this
channel as the image’s opacity value, and geometric transform functions,
which treat it as any other channel.

To apply any other function to the alpha channel, in theIplImage structure
temporarily set thealphaChannel field to 0 before calling the function.

Scanline Alignment

Image row data (scanline) can be aligned on doubleword (32-bit) or
quadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMX technology, it is important to have
the image data aligned on quadword boundaries.

Image Dimensions

There is no practical limit of the image size. A long integer is used for the
height and width of the image. This allows you to create images of such
sizes that are much beyond the hardware and OS constraints of today’s PCs
or workstations. For large image support, see also “Image Tiling.”

Intel® Image Processing Library Reference Manual

2-8

2
Execution Architecture

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The Image Processing Library uses saturation to prevent the pixel values
from potential overflow or underflow. Thus, when an overflow of a pixel
value is about to happen, this value is clamped to the maximum permissible
value (for example, 255 for an unsigned byte). Similarly, when underflow
of a value is about to happen, it is clamped to the minimum permissible
value, which is always zero for the case of unsigned bytes.

In-Place and Out-of-Place Operations

Image processing operations in the library can be in-place or out-of-place
operations. With an in-place operation, the output image is one of the input
images modified (that is, the pointer to the output image is the same as the
pointer to the input one). With an out-of-place operation, the output image
is a new image, not the same as any of the input images. Not all functions
can perform in-place operations. SeeAppendix Ato check if a partucular
function supports in-place operation.

Image Tiling

Tiling is a method of image representation in which the image is broken up
into smaller images, or tiles, to allow for complicated memory
management schemes. Conceptually, the whole image would be
reconstructed by arranging the individual tiles in a grid. But the intent of
the tiling mechanism is to allow only a few of these tiles within an image to
reside in memory at one time. The application provides an actual memory
location for a tile only when requested to do so.

Most functions can use tiled images in the same way as non-tiled, and
procuce the same results. However, there are some differences, particularly
in the call-back requirement (see “Call-backs“ for more information).

Image Architecture

2-9

2
This section gives a short overview of image tiling in the Image Processing
Library. In Chapter 4 you will find more information about tiling, namely,
the descriptions of theTileInfo structure, theimageID parameter, and the
functionsCreateTileInfo , SetTileInfo , andDeleteTileInfo .

Tile Size

In the Image Processing Library, all tiles must be of the same size,
including those on the edge of an image. The tiles on the edge of an image
must contain valid data up to the border of the image; beyond that, the
pixels are ignored, and the border mode is used instead.

The size of the image tiles is contained within theIplTileInfo structure.
It is restricted to being an even multiple of 8 in each dimension. Typical
tile sizes are 32x32 and 64x64.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Call-backs

For tiled images, theIplImage structure does not contain a pointer to
image data; therefore, functions operating on tiled images must acquire
data tile-by-tile. To do this, the library uses a system of call-backs, in
which the functions request pointers to individual tiles based on need.

The call-back system is implemented (by the library user) as a single
function, the prototype and behavior of which are specified below. When
calledby the library , this function must provide or release one tile’s worth
of data. The function is specified to the library in thecallBack field of the
IplTileInfo structure. The prototype is as follows:

void (*IplCallBack) (const IplImage* img, int xIndex,

int yIndex, int mode);

whereimg is the header of the parent image;
xIndex andyIndex are the indices of the requested tile; they refer to the

Intel® Image Processing Library Reference Manual

2-10

2
tile number, not pixel number, and count from the origin at (0,0);
mode is one of the following:

IPL_GET_TILE_TO_READ get a tile for reading;
the tile data must be returned in
img->tileInfo->tileData

and must not be changed;

IPL_GET_TILE_TO_WRITE get a tile for writing;
the tile data must be returned in
img->tileInfo->tileData

and may be changed;
changes will be reflected in the image;

IPL_RELEASE_TILE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding release function has been called.

ROI and Tiling

The meaning and behavior of ROI for a tiled image are identical to those
for a non-tiled image. As with all coordinates in tiled images, the origin of
the ROI is offset from the origin of the image, not of any one tile.

In-Place Operations and Tiling

Many functions can perform in-place operations even with tiling; see
Appendix Ato check whether this feature is supported for a particular
function. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of theIplROI structure does not affect this
restriction.

Error Handling

3-1

3
This chapter describes the error handling facility of the Image Processing
Library. The library functions report a variety of errors including bad
arguments and out-of-memory conditions.

Most functions in the library do not return any status code. When a
function detects an error, it sets the error status code by calling
iplSetErrStatus() . This allows the error handling mechanism to work
separately from the normal flow of the image processing code. Thus, the
code is cleaner and more compact as shown in this example:

ColorTwist = iplSetColorTwist(data, scalingValue);
if(iplGetErrStatus()<0) // check for errors

The error handling system is hidden within the function
iplSetColorTwist() . As a result, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Your application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for example,NULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
calling iplRedirectError() with a pointer to your own error handling
function. For more information, see “Adding Your Own Error Handler”
later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

Intel® Image Processing Library Reference Manual

3-2

3
reporting these exceptions. A floating-point library is needed if a processor
that handles floating-point is not present. You can attach an exception
handler using an underlying floating-point library for your application, if
your system supports such a library.

Error-handling Functions

The following sections describe the error functions in the Image Processing
Library.

Error
Performs basic error
handling.

void iplError(IPLStatus status , const char * func ,
const char * context);

status Code that indicates the type of error (see
Table 3-1, “iplError() Status Codes”.)

func Name of the function where the error occurred.

context Additional information about the context in
which the error occurred. If the value ofcontext

is NULL or empty, this string will not appear in the
error message.

Discussion

The iplError() function must be called whenever any of the library
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the
error mode flag to alter the behavior of theiplError() function. For more
information on the defined error modes, see “SetErrMode” section.

Error Handling

3-3

3
To simplify the coding for error checking and reporting, the error handling
system of the Image Processing Library supports a set of error macros. See
“Error Macros” for a detailed description of the error handling macros.

The iplError() function calls the default error reporting function. You
can change the default error reporting function by calling
iplRedirectError() . For more information, see the description of
iplRedirectError .

GetErrStatus
SetErrStatus
Gets and sets the error codes
that describe the type of
error being reported.

typedef int IPLStatus;

IPLStatus iplGetErrStatus();

void iplSetErrStatus(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Discussion

The iplGetErrStatus() andiplSetErrStatus() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codes” for descriptions of each of the error status codes.

Intel® Image Processing Library Reference Manual

3-4

3
GetErrMode
SetErrMode
Gets and sets the error
modes that describe how an
error is processed.

#define IPL_ErrModeLeaf 0
#define IPL_ErrModeParent 1
#define IPL_ErrModeSilent 2
int iplGetErrMode();
void iplSetErrMode(int errMode);

errMode Indicates how errors will be processed. The
possible values forerrMode are
IPL_ErrModeLeaf , IPL_ErrModeParent , or
IPL_ErrModeSilent .

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application has
a custom error handler, errors will be processed differently than described
below

The iplSetErrMode() function sets the error modes that describe how
errors are processed. The defined error modes areIPL_ErrModeLeaf ,
IPL_ErrModeParent , andIPL_ErrModeSilent .

If you specifyIPL_ErrModeLeaf , errors are processed in the “leaves” of
the function call tree. TheiplError() function (in console mode) prints
an error message describingstatus , func , andcontext . It then
terminates the program.

Error Handling

3-5

3
If you specifyIPL_ErrModeParent , errors are processed in the “parents”
of the function call tree. WheniplError() is called as the result of
detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call
iplError() specifyingIPL_StsBackTrace , and then return. The macro
IPL_ERRCHK() may be used to perform both the error check and back-trace
call. This passes the error “up” the function call tree until eventually some
parent function (possiblymain()) detects the error and terminates the
program.

IPL_ErrModeSilent is similar toIPL_ErrModeParent , except that error
messages are not printed.

IPL_ErrModeLeaf is the default, and is the simplest method of processing
errors.IPL_ErrModeParent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they useIPL_ERRCHK() after function calls). If an application uses the
IPL_ErrModeParent option, it is essential that it checks for errors after all
library functions that it calls.

The status code of the last detected error is stored into the variable
IplLastStatus and can be returned by callingiplGetErrStatus() . The
value of this variable may be used by the application during the back-trace
process to determine what type of error initiated the back trace.

ErrorStr
Translates an error or status code
into a textual description.

const char* iplErrorStr(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Intel® Image Processing Library Reference Manual

3-6

3
Discussion

The functioniplErrorStr() returns a short string describingstatus .
Use this function to produce error messages for users. The returned pointer
is a pointer to an internal static buffer that may be overwritten on the next
call to iplErrorStr() .

RedirectError
Assigns a new error handler
to call when an error occurs.

IPLErrorCallBack iplRedirectError(IPLErrorCallBack func);

func Pointer to the function that will be called when an
error occurs.

Discussion

The iplRedirectError() function assigns a new function to be called
when an error occurs in the Image Processing Library. Iffunc is NULL,
iplRedirectError() installs the library’s default error handler.

The return value ofiplRedirectError() is a pointer to the previously
assigned error handling function.

For the definition of the function typedefIPLErrorCallBack , and for
more information on theiplRedirectError() function, see “Adding
Your Own Error Handler” below.

Error Handling

3-7

3
NullDevReport
StdErrReport
GuiBoxReport
Predefined error-handling
functions that send error
messages to different output
destinations.

IPLStatus iplNulDevReport (IPLStatus status ,
const char *funcname , const char *context ,
const char *file , int line);

IPLStatus iplStdErrReport (IPLStatus status ,
const char *funcname , const char *context ,
const char *file , int line);

IPLStatus iplGuiBoxReport (IPLStatus status ,
const char *funcname , const char *context ,
const char *file , int line);

status Code that indicates the type of error (see
Table 3-1, “iplError() Status Codes”.)

funcname Name of the function where the error occurred.

context Additional information about the context in
which the error occurred. If the value ofcontext

is NULL or empty, this string will not appear in the
error message.

file Name of the source file in which the error
occured.

line Line number in the source file where the error
occurred.

Intel® Image Processing Library Reference Manual

3-8

3
Discussion

You can use these predefined functions as error handlers to redirect error
reporting in your application to a different output destination.

The iplNulDevReport() function directs error reporting to the NULL
device, that is, outputs no error messages.
The iplStdErrReport() function is used in programs running in the
console mode, it outputs error messages to the console.
For applications running in Windows mode useiplGuiBoxReport()

function that outputs error messages to the message box.
The default for dynamic libraries isiplGuiBoxReport() .

To change the error output stream calliplRedirectError() using the
pointer to one of the predefined error handling functions as the argument.
If you need to define your own error handler, seeAdding Your Own Error
Handlerbelow.

Error Handling

3-9

3
Error Macros

The error macros associated with the iplError() function are described
below.

#defin e IPL_ERROR(status , func , context) \
iplError((status),(func),(context));

#defin e IPL_ERRCHK(func , context)\
((iplGetErrStatus()>=0) ? IPL_StsO k \

: IPL_ERROR(IPL_StsBackTrace,(func),(context)))

#defin e IPL_ASSERT(expr , func , context)\
((expr) ? IPL_StsOk\

: IPL_ERROR(IPL_StsInternal,(func),(context)))

#defin e IPL_RSTERR() (iplSetErrStatus(IPL_StsOk))

context Provides additional information about the context in
which the error has occurred. If the value of
contex t is NULL or empty, this string does not
appear in the error message.

expr An expression that checks for an error condition
and returns FALSE if an error has occurred.

func Name of the function where the error occurred.

status Code that indicates the type of error (see Table 3-1,
“ iplError() Status Codes.”)

Discussion

The IPL_ASSERT() macro checks for the error conditionexpr and sets the
error status IPL_StsInterna l if the error occurred.

The IPL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error hasoccurred, IPL_ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

Intel® Image Processing Library Reference Manual

3-10

3
The IPL_ERROR() macro simply calls theiplError() function by default.
This macro is used by other error macros. By changingIPL_ERROR() you
can modify the error reporting behavior without changing a single line of
source code.

The IPL_RSTERR() macro resets the error status toIPL_StsOk , thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

Some of the status codes used by the library are listed in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself. Negative
codes indicate errors, while non-negative codes indicate success. To obtain a
short string describing the status code useiplErrorStr() function.

Table 3-1 iplError() Status Codes

Status Code Value Description

IPL_StsOk 0 No error. The iplError() function does
nothing if called with this status code.

IPL_StsBackTrace -1 Implements a back-trace of the function calls
that lead to an error. If IPL_ERRCHK()

detects that a function call resulted in an
error, it calls IPL_ERROR() with this status
code to provide further context information
for the user.

IPL_StsError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

IPL_StsInternal -3 An internal “consistency” error, often the
result of a corrupted state structure. These
errors are typically the result of a failed
assertion.

continued ☞

Error Handling

3-11

3
Table 3-1 iplError() Status Codes (continued)

Status Code Value Description

IPL_StsNoMem -4 A function attempted to allocate memory
using malloc() or a related function and
was unsuccessful. The message context

indicates the intended use of the memory.

IPL_StsBadArg -5 One of the arguments passed to the function
is invalid. The message context indicates
which argument and why.

IPL_StsBadFunc -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

IPL_HeaderIsNull -9 Null pointer to the image header.

IPL_BadImageSize -10 Incorrect image size.

IPL_BadOffset -11 Incorrect offset of the image’s ROI.

IPL_BadDataPtr -12 Image must be tiled or must have non-zero
data pointer.

IPL_BadStep -13 Incorrect widthStep of the image.

IPL_BadModelOrChSeq -14 Incorrect color model or channel sequence of
the image.

IPL_BadNumChannels -15 Incorrect number of channels in the image.

IPL_BadNumChannel1U -16 Number of channels for 1U depth image
must be one.

IPL_BadDepth -17 Incorrect depth value in the image header.

IPL_BadAlphaChannel -18 Incorrect alpha channel number in the image
header.

IPL_BadOrder -19 Incorrect data order value in the image
header.

continued ☞

Intel® Image Processing Library Reference Manual

3-12

3
Table 3-1 iplError() Status Codes (continued)

Status Code Value Description

IPL_BadOrigin -20 Incorrect data origin value in the image
header.

IPL_BadAlign -21 Incorrect data alignment value in the image
header.

IPL_BadCallBack -22 Null pointer to callback function.

IPL_BadTileSize -23 Incorrect size of the tile.

IPL_BadCOI -24 Incorrect COI of the image.

IPL_BadROISize -25 Incorrect size of ROI in the image header.

Application Notes

The variableIplLastStatus records the status of the last error reported.
Its value is initiallyIPL_StsOk . The value ofIplLastStatus is not
explicitly set by the library function detecting an error. Instead, it is set by
iplSetErrStatus() .

If the application decides to ignore an error, it should reset
IplLastStatus back toIPL_StsOk (seeIPL_RSTERR() under “Error
Macros”). An application-supplied error-handling function must update
IplLastStatus correctly; otherwise the Image Processing Library might
fail. This is because the macroIPL_ERRCHK() , which is used internally to
the library, refers to the value of this variable.

Error Handling

3-13

3
Error Handling Example

The following example describes the default error handling for a console
application. In the example program,test.c , assume that the function
libFuncB() represents a library function such asipl?AddS() , and the
function libFuncD() represents a function that is called internally to the
library. In this scenario,main() andappFuncA() represent application
code.

The value of the error mode is set toIPL_ErrModeParent . The
IPL_ErrModeParent option produces a more detailed account of the error
conditions.

Example 3-1 Error Functions

/* application main function */

main() {

iplSetErrMode(IPL_ErrModeParent);

appFuncA(5, 45, 1.0);

if (IPL_ERRCHK("main","compute something")) exit(1);

return 0;
}

/* application subroutine */

void appFuncA(int order1, int order2, double a) {

libFuncB(a, order1);
if (IPL_ERRCHK("appFuncA","compute using order1")) return;

libFuncB(a, order2);
if (IPL_ERRCHK("appFuncA","compute using order2")) return;

}
/* do some more work */

continued ☞☞☞☞

Intel® Image Processing Library Reference Manual

3-14

3
Example 3-1 Error Functions (continued)

/* library function */

void libFuncB(double a, int order) {

float *vec;

if (order > 31) {

IPL_ERROR(IPL_StsBadArg, "libFuncB",
"order must be less than or equal to 31");

return;

}

if ((vec = libFuncD(a, order)) == NULL) {

IPL_ERRCHK("libFuncB", "compute using a");

return;

}

/* code to do some real work goes here */

free(vec);

} // next: library function called internally

double *libFuncD(double a, int order) {

double *vec;

if ((vec=(double*)malloc(order*sizeof(double))) == NULL) {

IPL_ERROR(IPL_StsNoMem, "libFuncD",
"allocating a vector of doubles");
return NULL;

}

/* do something with vec */

return vec;

}

When the program is run, it produces the output illustrated in Example 3-2.

Error Handling

3-15

3
Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argument in function libFuncB: order must be
less than or equal to 31

called from function appFuncA: compute using order2

called from function main: compute something

If the program runs with theIPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
IPL_ErrModeParent option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Out of memory in function libFuncD: allocating a
vector of doubles

called from function libFuncB: compute using a

called from function appFuncA: compute using order1

called from function main[]: compute something

Again, if the program is run with theIPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the output is produced.

Adding Your Own Error Handler

The Image Processing Library allows you to define your own error handler.
User-defined error handlers are useful if you want your application to send
error messages to a destination other than the standard error output stream.
For example, you can choose to send error messages to a dialog box if your

Intel® Image Processing Library Reference Manual

3-16

3
application is running under a Windows system or you can choose to send
error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace theiplError() function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can use theiplRedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to use theiplRedirectError()

function to redirect error reporting.

1. Define a function with the function prototype as follows:

typedef int (_STDCALL *IPLErrorCallBack)

(IPLStatus status , const char * funcname ,
const char * context , const char * file , int line);

2. Your application should then call theiplRedirectError() function
to redirect error reporting for your own function. All subsequent calls
to iplError() will call your own error handler.

3. To redirect the error handling back to the default handler, simply call
iplRedirectError() with a NULL pointer.

Example 3-4 illustrates a user-defined error handler function,ownError() ,
which simply prints an error message constructed from its arguments and
exits.

Error Handling

3-17

3
Example 3-4 A Simple Error Handler

IPLStatus ownError(IPLStatus status, const char *func,

const char *context, const char *file, int line);

{

fprintf(stderr, "IPL Library error: %s, ", iplErrorStr(status));

fprintf(stderr, "function %s, ", func ? func : "<unknown>");

if (line > 0) fprintf(stderr, "line %d, ", line);

if (file != NULL) fprintf(stderr, "file %s, ", file);

if (context) fprintf(stderr, "context %s\n", context);

IplSetErrStatus(status);

exit(1);

}

main () {

extern IPLErrorCallBack ownError;

/* Redirect errors to your own error handler */

iplRedirectError(ownError);

/* Redirect errors back to the default error handler */

iplRedirectError(NULL);

}

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Image Creation and Access

4-1

4
This chapter describes the functions that provide the following
functionalities:

• Creating and accessing attributes of images (both tiled and non-tiled)
• Allocating memory for data of required type (see also the functions

CreateConvKernel in Chapter 6 and CreateColorTwistin Chapter 9)
• Setting, copying, exchanging, and scaling image data.
• Generating and adding noise to image data.
• Working in the WindowsDIB (device-independent bitmap)

environment.

Table 4-1 Image Creation , Data Exchange and Window s DIB Functions

Group Functio n Name Description

Creating
Images

iplCreateImageHeader Creates an image header according to
the specified attributes.

iplCloneImage Creates a copy of an image.

iplAllocateImage Allocates memory for image data of all
supported types except 32-bit FP data.

iplAllocateImageFP Allocates memory for image data of
32-bit floating-point type.

iplDeallocateImage Frees memory for image data pointed
to in the image header.

iplCreateROI Creates a region of interest (ROI)
header with specified attributes.

iplDeallocate Deallocates header attributes or image
data or ROI or all of the above.

continued ☞

Intel® Image Processing Library Reference Manual

4-2

4
Table 4-1 Image Creation, Data Exchange and Windows DIB Environment

Functions (continued)

Group Function Name Description

Creating
Images

iplSetROI Sets a region of interest for an
image.

(cont-d) iplSetBorderMode Sets the mode for handling the
border pixels.

iplCreateTileInfo Creates the IplTileInfo structure.

iplSetTileInfo Sets the tiling information.

iplDeleteTileInfo Deletes the IplTileInfo structure.

iplCreateImageJaehne Creates a one-channel test image.

iplCheckImageHeader Validates the field values of the
image header.

Memory
Allocation

iplMalloc Allocates memory aligned to 8 bytes
boundary.

iplwMalloc Allocates memory aligned to 8 bytes
boundary for 16-bit words.

ipliMalloc Allocates memory aligned to 8 bytes
boundary 32-bit double words.

iplsMalloc Allocates memory aligned to 8 bytes
boundary for single float elements.

ipldMalloc Allocates memory aligned to 8 bytes
boundary for double float elements.

iplFree Frees memory allocated by the
ipl?Malloc functions.

Data
Exchange

iplSet
iplSetFP

Sets a constant value for all pixels in
the image.

iplPutPixel
iplGetPixel

Sets/retrieves the value of the pixel
with coordinates (x, y).

iplCopy Copies image data from one image
to another.

continued ☞

Image Creation and Access

4-3

4
Table 4-1 Image Creation, Data Exchange and Windows DIB Environment

Functions (continued)

Group Function Name Description

iplExchange Exchanges image data between two
images.

iplConvert Converts images based on the input
and output image requirements.

Data
Scaling

iplScale Scales image data from one data
type to another, mapping the whole
data range of the input data type to
the whole range of output data type.
(Floating-point data is not supported.)

iplScaleFP Converts 32-bit floating-point image
data to and from any other data type
supported by the library.

Noise
Generation

iplNoiseImage Adds noise signal to image pixel
values.

iplNoiseUniformInit,
iplNoiseUniformInitFP

Initializes the structure for generating
a noise signal with uniform
distribution.

iplNoiseGaussianInit,
iplNoiseGaussianInitFP

Initializes the structure for generating
a noise signal with Gaussian
distribution.

Windows
DIB

iplTranslateDIB Translates a DIB image into an
IplImage structure.

iplConvertFromDIB Converts a DIB image to an
IplImage with specified attributes.

iplConvertFromDIBSep Same as above, but uses separate
parameters for DIB header and data.

iplConvertToDIB Converts an IplImage to a DIB
image with specified attributes.

iplConvertToDIBSep Same as above, but uses separate
parameters for DIB header and data.

Intel® Image Processing Library Reference Manual

4-4

4
Image Header and Attributes

The Image Processing Library functions operate on a single format for
images in memory. This format consists of a header of typeIPLImage

containing the information for all image attributes. The header also
contains a pointer to the image data. (See the attributes description in
Chapter 2, section“Data Architecture.”) The values that these attributes
can assume are listed in Table 4-2.

Table 4-2 Image Header Attributes

Description Value
Corresponding
DIB Attribute

Size of the IplImage

header (for internal use)
nSize in bytes

Image Header Revision ID
(internal use)

ID number

Number of Channels 1 to N

(including alpha channel, if any)
1 (Gray)
3 (RGB)
4 (RGBA)

Alpha channel number 0 (if not present)
N

4 (RGBA)

Bits per channel

Gray only
All images: color, gray,
and multi-spectral

(The signed data is used
only as output for some
image output operations.)

IPL_DEPTH_1U (1-bit)
IPL_DEPTH_8U (8-bit unsigned)

IPL_DEPTH_8S (8-bit signed)
IPL_DEPTH_16U (16-bit unsign.)
IPL_DEPTH_16S (16-bit signed)
IPL_DEPTH_32S (32-bit signed)
IPL_DEPTH_32F (32-bit float)

Supported
Supported
(RGB, RGBA)

Not supported
Not supported
Not supported
Not supported
Not supported

Color model 4 character string: “Gray”, “RGB,”
“RGBA”, “CMYK,” etc.

Not supported.
Implicitly, RGB
color model.

continued ☞

Image Creation and Access

4-5

4
Table 4-2 Image Header Attributes (continued)

Description Value
Corresponding
DIB Attribute

Channel sequence 4-character string. Can be “G”,
“GRAY”, “BGR”, “BGRA”, “RGB”,
“RGBA”, “HSV”, “HLS”, “XYZ”,
“YUV”, “YCr”, “YCC”, or “LUV”.

Not supported
(implicitly BGR for
RGB images.)

Data Ordering IPL_DATA_ORDER_PIXEL

IPL_DATA_ORDER_PLANE
Supported
Not supported

Origin IPL_ORIGIN_TL (top left corner)
IPL_ORIGIN_BL (bottom left)

Supported
Supported

Scanline alignment IPL_ALIGN_DWORD

IPL_ALIGN_QWORD
Supported
Not Supported

Image size: height
width

Integer
Integer

m
n

Region of interest (ROI) Pointer to structure Not supported

Mask Pointer to another IplImage Not supported

Image size (bytes) Integer

Image data pointer Pointer to data

Aligned width Width (row length in bytes) of
image padded for alignment

Border mode of the top,
bottom, left, and right
sides of the image.

BorderMode [4]

Border constant on the
top, bottom, left, and
right side of the image.

BorderConst [4]

Original Image Pointer to original image data

Image ID For application use only; ignored by the library.

Tiling information Pointer to IplTileInfo structure

Intel® Image Processing Library Reference Manual

4-6

4
Figure 4-1 presents a graphical depiction of an RGB image with a
rectangular ROI and a COI.

Figure 4-1 RGB Image with a Rectangular ROI and a COI

IplImage

IplROI* IplROI
imageData* Int COI

plane pixel Rectangular ROI: xOffset
yOffset

RGBRGB… height
width

select
plane(s)

R
G

B

R/G/B

OSD05559

Image Creation and Access

4-7

4
The C language definition for theIPLImage structure is given below.

IplImage Structure Definition

typedef struct _IplImage {

IPL.H

int nSize /* size of iplImage struct */

int ID /* image header version */

int nChannels;

int alphaChannel;

int depth; /* pixel depth in bits */

char colorModel[4];

char channelSeq[4];

int dataOrder;

int origin;

int align; /* 4- or 8-byte align */

int width;

int height;

struct _IplROI *roi; /* pointer to ROI if any */

struct _IplImage *maskROI; /*pointer to mask ROI if any */

void *imageId; /* use of the application */

struct _IplTileInfo *tileInfo; /* contains information
on tiling */

int imageSize; /* useful size in bytes */

char *imageData; /* pointer to aligned image */

int widthStep; /* size of aligned line in bytes */

int BorderMode[4]; /* the top, bottom, left,
and right border mode */

int BorderConst[4]; /* constants for the top, bottom,
left, and right border */

char *imageDataOrigin; /* ptr to full, nonaligned image */

} IplImage;

Intel® Image Processing Library Reference Manual

4-8

4
Tiling Fields in the IplImage Structure

Image tilingin the Image Processing Library was described in Chapter 2.
The following fields from theIplImage structure are used in tiled images:

struct IplImage {

...

void* imageId;

IplTileInfo *tileInfo;

...

}

The imageId field can be used by the application, and is ignored by the
library. ThetileInfo field contains information on tiling. It is described
in the next section.

The library expects either thetileInfo pointer or theimageData pointer
to beNULL. If the former isNULL, the image is not tiled; if the latter is
NULL, the image is tiled. It is an error condition if both or neither of the two
areNULL.

IplTileInfo Structure

This structure provides information for image tiling:

typedef struct _IplTileInfo

{

IplCallBack callBack;

void *id;

char* tileData

int width, height;

} IplTileInfo;

HerecallBack is the call-back function (see “Call-backs” in Chapter 2);
id is an additional identification field;width andheight are the tile sizes
for the image; andtileData is the field which the call-back function
should point to the requested tile.

Image Creation and Access

4-9

4
Creating Images

There are several ways of creating a new image:

• Construct anIplImage header by setting the attributes to appropriate
values, then call the functioniplAllocateImage() to allocate
memory for the image or set the image data pointer to image data
(in a compatible format) that already exists.

• Call iplCreateImageHeader() to create anIplImage header, then
call the functioniplAllocateImage() to allocate memory for the
image or set the image data pointer to existing image data.

• Convert a DIB image to anIplImage using the functions
iplTranslateDIB() or iplConvertFromDIB() . See the section
“Working in the Windows DIB Environment.”

• Create a copy of existing image by callingiplCloneImage() .

CreateImageHeader
Creates anIplImage

header according to the
specified attributes.

IplImage* iplCreateImageHeader(int nChannels ,
int alphaChannel , int depth , char* colorModel ,
char* channelSeq , int dataOrder , int origin , int align ,
int width , int height , IplROI* roi , IplImage* maskROI,
void* imageID , IplTileInfo* tileInfo);

nChannels Number of channels in the image.

alphaChannel Alpha channel number (0 if there is no alpha
channel in the image).

depth Bit depth of pixels. Can be one of
IPL_DEPTH_1U, IPL_DEPTH_8U, IPL_DEPTH_8S,
IPL_DEPTH_16U, IPL_DEPTH_16S,
IPL_DEPTH_32S, or IPL_DEPTH_32F. See Table
4-2.

Intel® Image Processing Library Reference Manual

4-10

4
colorModel A four-character string describing the color

model: “RGB”, “GRAY”, “HLS” etc.

channelSeq The sequence of color channels; can be one of the
following: “G”, “GRAY”, “BGR”, “BGRA”,
“RGB”, “RGBA”, “HSV”, “HLS”, “XYZ”,
“YUV”, “YCr”, “YCC”, “LUV”. The library uses
this information only for image type conversions
of known image channel formats.

dataOrder IPL_DATA_ORDER_PIXELor
IPL_DATA_ORDER_PLANE.

origin The origin of the image. Can beIPL_ORIGIN_TL

or IPL_ORIGIN_BL .

align Alignment of image data. Can be
IPL_ALIGN_DWORDor
IPL_ALIGN_QWORD.

width Width of the image in pixels.

height Height of the image in pixels.

roi Pointer to an ROI (region of interest) structure.
This argument can beNULL, which implies that a
region of interest comprises all channels and the
entire image area.

maskROI Pointer to the header of another image that
specifies the mask ROI. This argument can be
NULL, which indicates that no mask ROI is used.
A pixel is processed if the corresponding mask
pixel is 1, and is not processed if the mask pixel
is 0. ThemaskROI field of the mask image’s
header is ignored.

imageID The image ID (field reserved for the use of the
application to identify the image).

tileInfo The pointer to theIplTileInfo structure
containing information used for image tiling.

Image Creation and Access

4-11

4
Discussion

The functioniplCreateImageHeader() creates anIplImage header
according to the specified attributes; see Example 4.1. The image data
pointer is set toNULL; no memory for image data is allocated.

Example 4-1 Creating and Deleting an Image Header

int example41(void) {

IplImage *imgh = iplCreateImageHeader(

3, // number of channels

0, // no alpha channel

IPL_DEPTH_8U, // data of byte type

"RGB", // color model

"BGR", // color order

IPL_DATA_ORDER_PIXEL, // channel arrangement

IPL_ORIGIN_TL, // top left orientation

IPL_ALIGN_QWORD, // 8 bytes align

150, // image width

100, // image height

NULL, // no ROI

NULL, // no mask ROI

NULL, // no image ID

NULL); // not tiled

if(NULL == imgh) return 0;

iplDeallocate(imgh, IPL_IMAGE_HEADER);

return IPL_StsOk == iplGetErrStatus();

}

The functioniplCreateImageHeader() sets the image size attribute in
the header to zero. To allocate memory for image data, call the function
iplAllocateImage() .

Intel® Image Processing Library Reference Manual

4-12

4
The mask region of interest specified by themaskROI pointer is discussed
in the sectionImage Regions of Interest(Chapter 2). Theintersectionof
aligned rectangular ROI(s) and maskROI(s) forall source images and the
destination image forms the actual region to be processed.

For geometric transformation functions, such asZoom() or Mirror() , the
shape and orientation of rectangular ROIs and mask ROIs of the source
image changes according to the function. In these cases, the functions write
the results of image processing to the intersection of the destination ROI
and thetransformedsource ROI.

For more information about geometric transformation, seeChapter 11.

Return Value

The newly constructedIplImage header.

Image Creation and Access

4-13

4
AllocateImage, AllocateImageFP
Allocates memory for image
data according to the
specified header.

void iplAllocateImage(IplImage* image , int doFill,
int fillValue);

void iplAllocateImageFP(IplImage* image , int doFill,
float fillValue);

image An image header with aNULL image data pointer.
The pointer will be set to newly allocated image
data memory after calling this function.

doFill A flag: if zero, indicates that the pixel data should
not be initialized byfillValue .

fillValue The initial value for pixel data.

Discussion

These functions are used to allocate image data on the basis of a specified
image header. The header must be properly constructed before calling this
function. Note thatIPL_DEPTH_32F is the only admissible depth for
IplImage passed intoiplAllocateImageFP() ; this depth must not be
used foriplAllocateImage() .

Memory is allocated for the image data according to the attributes specified
in the image header; see Example 4-2. The image data pointer will then
point to the allocated memory. It is highly preferable, for efficiency
considerations, that the scanline alignment attribute (argumentalign) in
the image header be set toIPL_ALIGN_QWORD. This will force the image
data to be aligned on a quadword (64-bit) memory boundary.

The functions set the image size attribute in the header to the number of
bytes allocated for the image.

Intel® Image Processing Library Reference Manual

4-14

4
Example 4-2 Allocating and Deallocating the Image Data

int example42(void) {

IplImage img;

char colorModel[4] = "RGB";

char channelSeq[4] = "BGR";

img.nSize = sizeof(IplImage);

img.nChannels = 3; // number of channels

img.alphaChannel = 0; // no alpha channel

img.depth = IPL_DEPTH_16U; // data of ushort type

img.dataOrder = IPL_DATA_ORDER_PIXEL;

img.origin = IPL_ORIGIN_TL; // top left

img.align = IPL_ALIGN_QWORD; // align

img.width = 100;

img.height = 100;

img.roi = NULL; // no ROI

img.maskROI = NULL; // no mask ROI

img.tileInfo = NULL; // not tiled

// The following fields will be set by the function

img.widthStep = 0;

img.imageSize = 0;

img.imageData = NULL;

img.imageDataOrigin = NULL;

((int)img.colorModel) =* *((int*)colorModel);

((int)img.channelSeq) =* *((int*)channelSeq);

iplAllocateImage(&img, 0, 0); // allocate image data

if(NULL == img.imageData) return 0; // check result

iplDeallocate(&img, IPL_IMAGE_DATA);

// deallocate image data only

return Ipl_StsOk == iplGetErrStatus();

}

Image Creation and Access

4-15

4
DeallocateImage
Deallocates (frees) memory
for image data pointed to in
the image header.

void iplDeallocateImage(IplImage* image)

image An image header with a pointer to the allocated
image data memory. The image data pointer will
be set toNULL after this function executes.

Discussion

The functioniplDeallocateImage() is used to free image data memory
pointed to by theimageData member of the image header. The respective
pointer to image data or ROI data is set toNULL after the memory is freed
up.

CloneImage
Creates a copy of an image.

IplImage* iplCloneImage (const IplImage* image);

image Header of the image to be cloned.

Discussion

The function creates a copy ofimage , including its data and ROI. The
imageID , maskROI, andtileInfo fields of the copy are set toNULL.

Return Value

A pointer to the created copy ofimage . If the source image is tiled, the
function creates a non-tiled image and does not copy the image data.

Intel® Image Processing Library Reference Manual

4-16

4
Deallocate
Deallocates or frees memory
for image header or data or
mask ROI or rectangular
ROI or all four.

void iplDeallocate (IplImage* image , int flag)

image An image header with a pointer to allocated
image data memory. The image data pointer will
be set toNULL after this function executes.

flag Flag indicating what memory area to free:

IPL_IMAGE_HEADER Free header structure.

IPL_IMAGE_IMAGE Free image data, set pointer toNULL.

IPL_IMAGE_ROI Free image ROI, set pointer toNULL.

IPL_IMAGE_MASK Free mask image data, set pointer toNULL.

IPL_IMAGE_ALL Free header, image data, mask ROI and
rectangular ROI.

IPL_IMAGE_ALL_WITHOUT_MASK

Free header, image data, and rectangular ROI.

Discussion

The functioniplDeallocate() is used to free memory allocated for
header structure, image data, ROI data, mask image data, or all four. The
respective pointer is set toNULL after the memory is freed up.

Image Creation and Access

4-17

4
CheckImageHeader
Validates field values of
an existing image
header structure.

IPLStatus iplCheckImageHeader (const IplImage* hdr)

hdr Pointer to an image header structure

Discussion

The functioniplCheckImageHeader() checks whether theIplImage

header structure of an image has valid field values, and returns the
corresponding status code. This function works on the assumption that the
referenced image contains non-empty data. Many image processing
functions in Image Processing Library calliplCheckImageHeader() to
verify that the image information is correct. You can also use this function
in your application to check that some imported image data, not created by
Image Processing Library functions but referenced in theIplImage

header, has the valid header structure.
The following main status codes can be returned by the
iplCheckImageHeader() function (seeImage Header and Attributesfor
the explanation of image header fields):

IPL_StsOK Indicates no errors in image header structure.

IPL_HeaderIsNull Indicates an error condition if thehdr pointer to
the image header is NULL.

IPL_BadDataPtr Indicates an error condition if a non-tiled image
has NULL imageData pointer.

IPL_BadImageSize Indicates an error condition if a non-tiled image
has negative or zeroimageSize .

IPL_BadStep Indicates an error condition if a non-tiled image
has negative or zerowidthStep .

Intel® Image Processing Library Reference Manual

4-18

4
IPL_BadCallBack Indicates an error condition if the image is tiled

but the call-back function is not set in the
_IplTileInfo structure.

IPL_BadTileSize Indicates an error condition if a tiled image has
tile sizes not multiple of 8.

IPL_BadCOI Indicates an error condition if an image with ROI
has incorrectcoi field value in the_IplROI

structure (that is,coi is negative or greater than
nChannels).

IPL_BadROISize Indicates an error condition if an image with ROI
has negative or zero ROI size value.

IPL_BadOffset Indicates an error condition if an image with ROI
has negative ROI offset value.

CreateImageJaehne
Creates a one-channel
test image.

IplImage* iplCreateImageJaehne (int depth , int widt h,
int height)

depth Bit depth of the image to be created.

width, height Size of the image to be created.

Discussion

The functioniplCreateImageJaehne() creates a specific one-channel
test image that has the user-defined bit depth and size. This function returns
the pointer to the correspondingIplImage structure. Thedepth parameter
can specify any data type that is used in the Image Processing library.
For the 32f floating point data type the pixel values in the created image
can vary in the range between 0 (inclusive) and 1 (exclusive).

Image Creation and Access

4-19

4
Figure 4-2 illustrates an example of the test image generated by the
iplCreateImageJaehne() function. These test images can be effectively
used when you need to visualize and interpret the results of applying
filtering functions, similarly to what is proposed in [Jaehne].

Figur e 4-2 Exampl e of a Generate d Test Image

Intel® Image Processing Library Reference Manual

4-20

4
Setting Regions of Interest

To set a region of interest, the functioniplSetROI() uses a ROI structure
IplROI presented below. TheIplROI member of the image header must
point to thisIplROI structure to be effective. This can be done by a simple
assignment. The application may choose to construct the ROI structure
explicitly without the use of the function.

IplROI Structure Definition

typedef struct _IplROI {

unsigned int coi;

int xOffset;

int yOffset;

int width;

int height;

} IplROI;

The members in theIplROI structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image will
be affected by processing taking place in the
region of interest;coi equal to 0 indicates that all
channels will be affected.

xOffset andyOffset The offset from the origin of the rectangular ROI.
(See section “Image Regions” in Chapter 2 for
the description of image regions.)

width andheight The size of the rectangular ROI.

Image Creation and Access

4-21

4
CreateROI
Allocates and sets the
region of interest (ROI)
structure.

IplROI* iplCreateROI(int coi , int xOffset , int yOffset ,
int width , int height);

coi The channel of interest. It can be set to 0 (for all
channels) or to a specific channel number.

xOffset, yOffset The offsets from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The functioniplCreateROI() allocates a new ROI structure with the
specified attributes and returns a pointer to this structure. You can delete
this structure by callingiplDeleteROI() .

Return Value

A pointer to the newly constructed ROI structure orNULL.

DeleteROI
Allocates and sets the
region of interest (ROI)
structure.

void iplDeleteROI(IplROI* roi);

roi The ROI structure to be deleted.

Intel® Image Processing Library Reference Manual

4-22

4
Discussion

The functioniplDeleteROI() deallocates a ROI structure previously
created byiplCreateROI() .

SetROI
Sets the region of
interest (ROI) structure.

void iplSetROI(IplROI* roi , int coi , int xOffset ,
int yOffset , int width , int height);

roi The pointer to the ROI structure to modify in the
original image.

coi The channel of interest in the original image. It
can be set to 0 (for all channels) or to a specific
channel number.

xOffset, yOffset The offset from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The functioniplSetROI() sets the channel of interest and the rectangular
region of interest in the structureroi .

The argumentcoi defines the number of the channel of interest. The
argumentsxOffset andyOffset define the offset from the origin of the
rectangular ROI. The membersheight andwidth define the size of the
rectangular ROI.

Image Creation and Access

4-23

4
Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixels that lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3 filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will require
more rows from the border. These border issues therefore exist at the top
and bottom, left and right sides, and the four corners of the image. The
library provides a functioniplSetBorderMode that the application can use
to set the border mode within the image. This function specifies the
behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images. (Outer tiles might contain extra data if the image size is not
an integer multiple of the tile size, but these values are ignored and the
border mode is used instead.)

SetBorderMode
Sets the mode for handling
the border pixels.

void iplSetBorderMode(IplImage * src , int mode,
int border , int constVal)

src The image for which the border mode is to be set.

mode The following modes are supported:

IPL_BORDER_CONSTANT The valueconstVal is used for all
pixels.

IPL_BORDER_REPLICATE The last row or column is replicated for
the border.

IPL_BORDER_REFLECT The last rows or columns are reflected in
reverse order, as necessary to create the
border.

Intel® Image Processing Library Reference Manual

4-24

4
IPL_BORDER_WRAP The required border rows or columns are

taken from the opposite side of the
image.

border The side that this function is called for. Can be an
OR of one or more of the following four sides of
an image:

IPL_SIDE_TOP Top side.

IPL_SIDE_BOTTTOM Bottom side.

IPL_SIDE_LEFT Left side.

IPL_SIDE_RIGHT Right side.

IPL_SIDE_ALL All sides.

The top side is also used to define all border
pixels in the top left and right corners. Similarly,
the bottom side is used to define the border pixels
in the bottom left and right corners.

constVal The value to use for the border when the mode is
set toIPL_BORDER_CONSTANT.

Discussion

The functioniplSetBorderMode() is used to set the border handling
mode of one or more of the four sides of an image (see Example 4-3).
Intensity values for the border pixels are assumed or created based on the
mode.

Image Creation and Access

4-25

4
Example 4-3 Setting the Border Mode for an Image

int example43(void) {

IplImage *imgh = iplCreateImageHeader(3,0,IPL_DEPTH_8U,

"RGB", "BGR", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, 100, 150, NULL, NULL, NULL, NULL);

if(NULL == imgh) return 0;

iplSetBorderMode(imgh, IPL_BORDER_REPLICATE, IPL_SIDE_TOP|

IPL_SIDE_BOTTOM | IPL_SIDE_LEFT | IPL_SIDE_RIGHT, 0);

iplDeallocate(imgh, IPL_IMAGE_HEADER);

return Ipl_StsOk == iplGetErrStatus();

}

CreateTileInfo
Creates the IplTileInfo
structure.

IplTileInfo* iplCreateTileInfo(IplCallBack callBack ,
void* id , int width , int height);

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion
The functioniplCreateTileInfo() allocates a newIplTileInfo

structure with the specified attributes and returns a pointer to this structure.
To delete this structure, calliplDeleteTileInfo() .

Return Value
The pointer to the createdIplTileInfo structure orNULL.

Intel® Image Processing Library Reference Manual

4-26

4
SetTileInfo
Sets the IplTileInfo
structure fields.

void iplSetTileInfo(IplTileInfo* tileInfo,
IplCallBack callBack , void* id , int width , int height);

tileInfo The pointer to theIplTileInfo structure.

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion

This function sets attributes for an existingIplTileInfo structure.

DeleteTileInfo
Deletes the IplTileInfo
structure.

void iplDeleteTileInfo(IplTileInfo* tileInfo);

tileInfo The pointer to theIplTileInfo structure.

Discussion

This function deletes theIplTileInfo structure previously created by the
CreateTileInfofunction.

Image Creation and Access

4-27

4
Memory Allocation Functions

Functions of theipl?Malloc() group allocate aligned memory blocks for
the image data. The size of allocated memory is specified by thesize

parameter. The “?” in ipl?Malloc() stands forw, i , s , or d; these letters
indicate the data type in the function names as follows:

iplMalloc() byte
iplwMalloc() 16-bit word
ipliMalloc() 32-bit double word
iplsMalloc() 4-byte single floating-point element
ipldMalloc() 8-byte double floating-point element

NOTE. The only function to free the memory allocated by any of these
functions isiplFree() .

Malloc
Allocates memory aligned to
an 8-byte boundary.

void* iplMalloc(int size);

size Size (in bytes) of memory block to allocate.

Discussion

The iplMalloc() function allocates memory block aligned to an 8-byte
boundary. To free this memory, useiplFree() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then theNULLvalue is returned.

Intel® Image Processing Library Reference Manual

4-28

4
wMalloc
Allocates memory aligned to
an 8-byte boundary for 16-
bit words.

short* iplwMalloc(int size);

size Size in words (16 bits) of memory block to
allocate.

Discussion

The iplwMalloc() function allocates memory block aligned to an 8-byte
boundary for 16-bit words. To free this memory, useiplFree() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then theNULLvalue is returned.

iMalloc
Allocates memory aligned to
an 8-byte boundary for 32-bit
double words.

int* ipliMalloc(int size);

size Size in double words (32 bits) of memory block
to allocate.

Discussion

The ipliMalloc() function allocates memory block aligned to an 8-byte
boundary for 32-bit double words. To free this memory, useiplFree() .

Image Creation and Access

4-29

4
Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then theNULLvalue is returned.

sMalloc
Allocates memory aligned to
an 8-byte boundary for
floating-point elements.

float * iplsMalloc(int size);

size Size in float elements (4 bytes) of memory block
to allocate.

Discussion

The iplsMalloc() function allocates memory block aligned to an 8-byte
boundary for floating-point elements. To free this memory, use
iplFree() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then theNULLvalue is returned.

Intel® Image Processing Library Reference Manual

4-30

4
dMalloc
Allocates memory aligned to
an 8-byte boundary for double
floating-point elements.

double * ipldMalloc(int size);

size Size in double elements (8 bytes) of memory
block to allocate.

Discussion

The ipldMalloc() function allocates memory block aligned to an 8-byte
boundary for double floating-point elements. To free this memory, use
iplFree() .

Retur n Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

iplFree
Freesmemory allocated by
one of the ipl?Malloc

functions.

void iplFree(voi d * ptr);

ptr Pointer to memory block to free.

Image Creation and Access

4-31

4
Discussion

The iplFree() function frees the aligned memory block allocated by one
of the functionsiplMalloc() , iplwMalloc() , ipliMalloc() ,
iplsMalloc() , or ipldMalloc() .

NOTE. The functioniplFree() cannot be used to free memory allocated
by standard functions likemalloc() or calloc() .

Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying data from one
image to another, exchanging the data between the images, and converting
one image to another according to the attributes defined in the source and
resultantIplImage headers.

Set, SetFP
Sets a value for an
image’s pixel data.

void iplSet(IplImage* image , int fillValue);
void iplSetFP(IplImage* image , float fillValue);

image An image header with allocated image data.

fillValue The value to set the pixel data.

Discussion

The functionsiplSet() andiplSetFP() set the image pixel data. Before
calling the functions, you must properly construct the image header and
allocate memory for image data; see Example 4-4. For images with the bit

Intel® Image Processing Library Reference Manual

4-32

4
depth lower than thefillVallue , thefillValue is saturated when
assigned to pixel. If an ROI is specified, only that ROI is filled.

Example 4-4 Allocating an Image and Setting Its Pixel Values

int example44(voi d) { IplImage *img;

__try {

img = iplCreateImageHeader(1,0,IPL_DEPTH_8U,"GRAY",

"GRAY", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, 100,150, NULL, NULL, NULL, NULL);

if(NULL == img) return 0;

iplAllocateImage(img, 0, 0);

if(NULL == img->imageData) return 0;

iplSet(img, 255);

}

__finally {

iplDeallocate(img, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Copy
Copies image data from one
image to another.

void iplCopy(IplImage* srcImage , IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The functioniplCopy() copies image data from a source image to a
resultant image. Before calling this function, the source and resultant

Image Creation and Access

4-33

4
headers must be properly constructed and image data for both images must
be allocated; see Example 4-5. The following constraints apply to the
copying:

• The bit depth per channel of the source image should be equal to that
of the resultant image.

• The number of channels of interest in the source image should be equal
to the number of channels of interest in the resultant image; that is,
either the sourcecoi = the resultantcoi = 0 or both cois are nonzero.

• The data ordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

Thealign , height , andwidth field values (see Table 4-2) may differ in
source and resultant images. Copying applies to the areas that intersect
between the source ROI and the destination ROI.

Intel® Image Processing Library Reference Manual

4-34

4
Example 4-5 Copying Image Pixel Values

int example45(void) {

IplImage *imga, *imgb;

__try {

imga = iplCreateImageHeader(1, 0, IPL_DEPTH_8U,

"GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,

IPL_ORIGIN_TL, IPL_ALIGN_QWORD, 100, 150,

NULL, NULL, NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 1, 255);

if(NULL == imga->imageData) return 0;

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// Copy pixel values of imga to imgb

iplCopy(imga, imgb);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Image Creation and Access

4-35

4
Exchange
Exchanges image data
between two images.

void iplExchange(IplImage* ImageA , IplImage* ImageB);

ImageA The first image.

ImageB The second image.

Discussion

The functioniplExchange() exchanges image data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
allocated. The following constraints apply to the data exchanging:

• The bit depths per channel of both images should be equal.

• The numbers of channels of interest in both images should be equal.

• The data ordering of both images should be the same (either pixel- or
plane-oriented) .

Thealign , width , andheight field values (see Table 4-2) may differ in
the first and the second image. The data are exchanged at the areas of
intersection between the ROI of the first image and the ROI of the second
image.

Intel® Image Processing Library Reference Manual

4-36

4
Convert
Converts source image data to
resultant image according to
the image headers.

void iplConvert(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The functioniplConvert() converts image data from the source image to
the resultant image according to the attributes defined in the source and
resultantIplImage headers; see Example 4-6.

The main conversion rule issaturation. The images that can be converted
may have the following different characteristics:

• Bit depth per channel
• Data ordering
• Origins

(For more information about these characteristics, seeTable 4-2.)

The following constraints apply to the conversion:

• If the source image has a bit depth per channel equal to 1, the resultant
image should also have the bit depth equal to 1.

• The number of channels in the source image should be equal to the
number of channels in the resultant image.

• The height and width of the source image should be equal to those of
the resultant image.

All ROIs are ignored.

Image Creation and Access

4-37

4
Example 4-6 Converting Images

int example46(void) {

IplImage *imga, *imgb;

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 1, 128);

if(NULL == imga->imageData) return 0;

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// Convert unsigned char to short

iplConvert(imga, imgb);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Intel® Image Processing Library Reference Manual

4-38

4
PutPixel,
GetPixel
Sets/retrieves a value of
an image’s pixel.

void iplPutPixel(IplImage* image , int x, int y,
void* pixel);

void iplGetPixel(IplImage* image , int x, int y,
void* pixel);

image An image header with allocated image data.

x, y The pixel coordinates.

pixel The pointer to a buffer storing the consecutive
channel values for the pixel.

Discussion

The functioniplPutPixel() sets the channels inimage ’s pixel (x ,y) to
the values specified in the bufferpixel .

The functioniplGetPixel() retrieves the values of all channels in
image ’s pixel (x ,y) to the bufferpixel .

All channels are processed, including the alpha channel (if applicable).
The channel values in the buffer are stored consecutively.

The functions work for all pixel depths supported in the library. The ROI
and mask are ignored.

Example 4-7 on the next page illustrates the usage of the function
iplGetPixel() .

Image Creation and Access

4-39

4
Example 4-7 Using the Function iplGetPixel()

int example_1001(void) {

char pixel[4]; /// buffer to get pixel data

/// roi to set different data in different channels

IplROI ro i = { 0, 0,0, 4,4 };

IplImage *img = iplCreateImageHeader(

4, 4, IPL_DEPTH_8U, "RGBA", "BGRA",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, &roi, NULL,

NULL, NULL);

/// alpha-channel will be 4

iplAllocateImage(img, 1, 4);

roi.coi = 1;

iplSet(img, 1);

roi.coi = 2;

iplSet(img, 2);

roi.coi = 3;

iplSet(img, 3);

iplGetPixel(img, 0,0, pixel);

iplDeallocate(img, IPL_IMAGE_ALL & ~IPL_IMAGE_ROI);

return IPL_StsOk == iplGetErrStatus();

}

Intel® Image Processing Library Reference Manual

4-40

4
Scale
Scales the image data.

IPLStatus iplScale (const IplImage* src, IplImage* dst);

src The source image.

dst The resultant image with data of a different type.

Discussion
The functioniplScale() converts the data of the input imagesrc to the
data type of the output imagedst .

Unlike iplConvert() , whichsaturatesthe converted data as necessary,
iplScale() scalesthe data, using a linear mapping of the whole range of
the input data type onto the range of the output data type:

output value= A + B * input value.

HereA andB are such that the minimum and maximum presentable values
of the input data type (src_type_min andsrc_type_max) are mapped,
respectively, to the minimum and maximum presentable values of the
output data type (dst_type_min anddst_type_max):

B = (dst_type_max – dst_type_min)/(src_type_max – src_type_min)
A = dst_type_min – B * src_type_min .

The input and output images must have the same data ordering and
coordinate origins. The data types insrc anddst must be different. The
supported data types for input and output images are 8-bit per channel
(signed or unsigned), 16 bit per channel (signed or unsigned), or 32-bit
signed. (For converting image data to and from 32-bit floating-point data
type, use the functioniplScaleFP .)

Return Value

If the execution is successful, the function returnsIPL_StsOK ; otherwise, it
returns an error status code.

Image Creation and Access

4-41

4
ScaleFP
Converts the image data to
and from floating-point type
by scaling.

IPLStatus iplScaleFP (const IplImage* src, IplImage* dst,
float minVal, float maxVal);

srcImage The source image.

dstImage The resultant image.

minVal, maxVal The floating-point data range (minVal <maxVal).

Discussion
The functioniplScaleFP() converts the data of the input imagesrc to
the data type of the output imagedst by scaling. One of the images must
contain data of 32-bit floating-point type; the other image’s bit depth can
be 8-bit per channel (signed or unsigned), 16 bit per channel (signed or
unsigned), or 32-bit signed.

If the input image data is 32-bit floating-point, the function linearly maps
the user-defined floating-point data range [minVal .. maxVal] onto the
whole range of the output data type, [dst_type_min .. dst_type_max]. If
some of the input floating-point values are outside the specified input data
range [minVal .. maxVal], the corresponding output values will saturate.
(To determine the actual floating-point data range in your image, use the
function iplMinMaxFP .)

If the outputimage data is 32-bit floating-point, the function linearly maps
the whole range of the intput data type [src_type_min .. src_type_max]
onto the user-defined floating-point data range [minVal .. maxVal].

Return Value

If the execution is successful, the function returnsIPL_StsOK ; otherwise, it
returns an error status code.

Intel® Image Processing Library Reference Manual

4-42

4
NoiseImage
Generates noise signal
and adds it to an image
data.

IPLStatus iplNoiseImage (IplImage* image ,
const IplNoiseParam* noiseParam);

image Pointer to the image header structure.

noiseParam Pointer to the structure that contains parameters
for the noise generator.

Discussion

The functioniplNoiseImage() generates a random noise signal and adds
it to a source imageimage that is passed to this function as an argument.
The resulting pixel values that exceed the output data range are saturated to
the respective data-range limits. The noise signal can have either uniform
or Gaussian distribution. Before callingiplNoiseImage() you must first
initialize thenoiseParam structure using one of the initialization functions
described below.
To obtain an output image which contains pure noise, call
iplNoiseImage() using a source image with zero data as input.

Return Value

If the execution is successful, the function returnsIPL_StsOK ; otherwise, it
returns an error status code.

Image Creation and Access

4-43

4
NoiseUniformInit,
NoiseUniformInitFp
Initializes parameters
for generating noise
signal with uniform
distribution.

void iplNoiseUniformInit (IplINoiseParam* noiseParam ,
unsigned int seed , int low , int high);

void iplNoiseUniformInitFp (IplINoiseParam* noiseParam ,
unsigned int seed , float low , float high);

noiseParam Pointer to the structure that contains parameters
for the noise generator.

seed The initial seed value for the pseudo-random
number generator.

low, high The lower and upper bounds for the range of
uniformly distributed values.

Discussion

Use functionsiplNoiseUniformInit(), iplNoiseUniformInitFp() to
initialize thenoiseParam structure if you want to generate the noise signal
with uniform distribution over the range [low , high]. After that you can
call theiplNoiseImage() function, which actually generates and adds
the noise signal.

Intel® Image Processing Library Reference Manual

4-44

4
NoiseGaussianInit,
NoiseGaussianInitFp
Initializes parameters
for generating noise
signal with Gaussian
distribution.

void iplNoiseGaussianInit (IplINoiseParam* noiseParam ,
unsigned int seed , int mean, int stDev);

void iplNoiseGaussianInitFp (IplINoiseParam* noiseParam ,
unsigned int seed , float mean, float stDev);

noiseParam Pointer to the structure that contains parameters
for the noise generator.

seed The initial seed value for the pseudo-random
number generator.

mean The mean of the Gaussian distribution.

stDev The standard deviation of the Gaussian
distribution.

Discussion

Use functionsiplNoiseGaussianInit(), iplNoiseGaussianInitFp()

to initialize thenoiseParam structure if you want to generate the noise
signal with Gaussian distribution that has the mean valuemean and
standard deviationstDev . After that you can call theiplNoiseImage()

function, which actually generates and adds the noise signal.

Image Creation and Access

4-45

4
Working in the Windows DIB Environment

The Image Processing Library provides functions to convert images to and
from the Windows* device-independent bitmap (DIB).Table 4-2shows
that theIplImage format can represent more features than the DIB image
format. However, the DIB palette images and 8-bit- and 16-bit-per-pixel
absolute color DIB images have no equivalent in the Image Processing
Library.

The DIB palette images must be first converted to the Image Processing
Library’s absolute color images; 8-bit- and 16-bit-per-pixel DIB images
have to be unpacked into the library’s 8-bit-, 16-bit- or 32-bit-per-channel
images.

Any 24-bit absolute color DIB image can be directly converted to the
Image Processing Library format. You just need to create anIplImage

header corresponding to the DIB attributes. The DIB image data can be
pointed to by the header or it can be duplicated.

There are the following restrictions for the DIB conversion functions:

• You can useIplImage structures with unsigned data only.

• The DIB and IPL images should be the same size. The following
functions can perform conversion to and from the DIB format, with
additional useful capabilities:

iplTranslateDIB() Performs a simple translation of a DIB image to
an IplImage as described above. Also converts a
DIB palette image to the Image Processing
Library’s absolute color image.

While this is the most efficient way of converting
a DIB image, it is not the most efficient format
for the library functions to manipulate because
the DIB image data is doubleword-aligned, not
quadword-aligned.

Intel® Image Processing Library Reference Manual

4-46

4
iplConvertFromDIB(),

iplConvertFromDIBSep()

Provides more control of the conversion and can
convert a DIB image to an image with a prepared
IplImage header. The header must be set to the
desired attributes. The bit depth of the channels in
the IplImage header must be equal to or greater
than that in the DIB header.

iplConvertToDIB(),

iplConvertToDIBSep()

Converts anIplImage to a DIB image. This
function performs dithering if the bit depth of the
DIB is less than that of theIplImage . It can also
be used to create a DIB palette image from an
absolute colorIplImage . The function can
optionally create a new palette.

Image Creation and Access

4-47

4
TranslateDIB
Translates a DIB image
into the corresponding
IplImage .

iplImage* iplTranslateDIB(BITMAPINFOHEADER* dib ,
BOOL* cloneData);

dib The DIB image.

cloneData An output flag (Boolean): if false, indicates that
the image data pointer in theIplImage will point
to the DIB image data; if true, indicates that the
data was copied.

Discussion

The functioniplTranslateDIB() translates a DIB image to the
IplImage format; see Example 4-8. TheIplImage attributes
corresponding to the DIB image are automatically chosen (seeTable 4-2),
so no explicit control of the conversion is provided. A DIB palette image
will be converted to an absolute colorIplImage with a bit depth of 8 bits
per channel, and the image data will be copied, returning
cloneData = true.

A 24-bit-per-pixel RGB DIB image will be converted to an 8-bit-per-
channel RGBIplImage .

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBAIplImage with an alpha channel.

An 8-bit-per-pixel or 16-bit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel RGBIplImage .
The image data will be copied, returningcloneData = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scale image with astandard
gray palettewill be converted to a 1-bit-per-channel or 8-bit-per-channel
gray-scaleIplImage , respectively.

Intel® Image Processing Library Reference Manual

4-48

4
Example 4-8 Translating a DIB Image Into an IplImage

int example47(void) {

#define WIDTH 8

#define HEIGHT 8

BITMAPINFO *dib; // pointer to bitmap

RGBQUAD *rgb; // pointer to bitmap colors

unsigned char *data; // pointer to bitmap data

BITMAPINFOHEADER *dibh; // header beginning

IplImage *img = NULL;

BOOL cloneData; // variable to get result

int i;

__try {

int size = HEIGHT * ((WIDTH+3) & ~3);

// allocate memory for bitmap

dib = malloc(sizeof(BITMAPINFOHEADER)

+ sizeof(RGBQUAD)*256 + size);

if(NULL == dib) return 0;

// define the pointers

dibh = (BITMAPINFOHEADER*)dib;

rgb=(RGBQUAD*)((char*)dib + sizeof(BITMAPINFOHEADER));

data=(unsigned char*)((char*)rgb+sizeof(RGBQUAD)*256);

// define bitmap

dibh->biSize = sizeof(BITMAPINFOHEADER);

dibh->biWidth = WIDTH;

dibh->biHeight = HEIGHT;

dibh->biPlanes = 1;

dibh->biBitCount = 8;

dibh->biCompression = BI_RGB;

dibh->biSizeImage = size;

dibh->biClrUsed = 256;

dibh->biClrImportant = 0;

continued ☞

Image Creation and Access

4-49

4
Example 4-8 Translating a DIB Image Into an IplImage (continued)

// fill in colors of the bitmap

for(i=0; i<256; i++)

rgb[i].rgbBlue = rgb[i].rgbGreen = rgb[i].rgbRed =

(unsigned char)i;

// set the bitmap data

for(i=0; i<WIDTH*HEIGHT; i++)

data[i] = (unsigned char)(100 + i);

// create ipl image using the bitmap

if(NULL==(img = iplTranslateDIB(dibh,&cloneData)))

return 0;

}

__finally {

int flags = IPL_IMAGE_HEADER;

if(cloneData) flags |= IPL_IMAGE_DATA;

if(dib) free(dib);

iplDeallocate(img, flags);

}

return IPL_StsOk == iplGetErrStatus();

}

A 4-bit-per-pixel gray-scale DIB image with a standard gray palette will be
converted into an 8-bit-per-pixel gray-scaleIplImage and the image data
will be copied, returningcloneData = true.

If cloneData is false, the data in the output image will be 4-byte-aligned;
if cloneData is true, the output image will have 32-byte-aligned data.

Note that if image data is not copied, the library functions inefficiently
access the data. This is because DIB image data is aligned on doubleword
(4-byte) boundaries. Alternatively, whencloneData is true, the DIB image
data is replicated into newly allocated image data memory and
automatically aligned to 32-byte boundaries, which results in a better
memory access.

Intel® Image Processing Library Reference Manual

4-50

4
Return Value

The constructedIplImage . If no memory is available in the system to
allocate theIplImage header or image data,NULLvalue is returned.

ConvertFromDIB
Converts a DIB image to
an IplImage with
specified attributes.

void iplConvertFromDIB(BITMAPINFOHEADER* dib ,
IplImage* image)

dib The input DIB image.

image The IplImage header with specified attributes. If
the data pointer isNULL, image data memory will
be allocated and the pointer set to it.

Discussion

The functioniplConvertFromDIB() converts DIB images to Image
Processing Library images according to the attributes set in theIplImage

header; see Example 4-9. If the image data pointer isNULL and there is no
memory to allocate the converted image data, the conversion will be
interrupted and the function will return aNULL pointer.

The following constraints apply to the conversion:

• The bit depth per channel of theIplImage should be greater than or
equal to that of the DIB image.

• The number of channels (not including the alpha channel) in the
IplImage should be greater than or equal to the number of channels in
the DIB image (not including the alpha channel if present).

Image Creation and Access

4-51

4
• The dimensions of the convertedIplImage should be greater than or

equal to that of the DIB image. When the converted image is larger
than the DIB image, the origins ofIplImage and the DIB image are
made coincident for the purposes of copying.

• When converting a DIB RGBA image, the destinationIplImage

should also contain an alpha channel.

Example 4-9 Converting a DIB Image Into an IplImage

int example48(void) {

BITMAPINFO *dib; // pointer to bitmap

RGBQUAD *rgb; // pointer to bitmap colors

unsigned char *data; // pointer to bitmap data

BITMAPINFOHEADER *dibh; // header beginning

IplImage *img = NULL;

int i;

__try {

int size = HEIGHT * ((WIDTH+3) & ~3);

// allocate memory for bitmap

dib = malloc(sizeof(BITMAPINFOHEADER)

+ sizeof(RGBQUAD)*256 + size);

if(NULL == dib) return 0;

// define corresponedt pointers

dibh = (BITMAPINFOHEADER*)dib;

rgb=(RGBQUAD*)((char*)dib + sizeof(BITMAPINFOHEADER));

data = (unsigned char*)((char*)rgb +

sizeof(RGBQUAD)*256);

// define bitmap

dibh->biSize = sizeof(BITMAPINFOHEADER);

dibh->biWidth = WIDTH;

dibh->biHeight = HEIGHT;

dibh->biPlanes = 1;

dibh->biBitCount = 8;

continued ☞

Intel® Image Processing Library Reference Manual

4-52

4
Example 4-9 Converting a DIB Image Into an IplImage (continued)

dibh->biCompression = BI_RGB;

dibh->biSizeImage = size;

dibh->biClrUsed = 256;

dibh->biClrImportant = 0;

// fill in colors of the bitmap

for(i=0; i<256; i++)

rgb[i].rgbBlue = rgb[i].rgbGreen = rgb[i].rgbRed=

(unsigned char)i;

// set the bitmap data

for(i=0; i<WIDTH*HEIGHT; i++)

data[i] = (unsigned char)(100 + i);

// create header of the desired image

img = iplCreateImageHeader(1,0, IPL_DEPTH_16U,

"GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,

IPL_ORIGIN_BL, // bottom left as in DIB

IPL_ALIGN_QWORD, WIDTH, HEIGHT, NULL, NULL, NULL,

NULL);

if(NULL == img) return 0;

// create ipl image converting 8u to 16u

iplConvertFromDIB (dibh, img);

if(!img->imageData) return 0;

}

__finally {

if(dib) free(dib);

iplDeallocate(img,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

As necessary, the conversion result is saturated.

Image Creation and Access

4-53

4
ConvertFromDIBSep
Converts a DIB image to an
IplImage , using two arguments
for the DIB header and data.

IPLStatus iplConvertFromDIBSep (BITMAPINFOHEADER*
dibHeader , const char* dibData , IplImage* image);

dibHeader The input DIB image header.

dibData The input DIB image data.

image The IplImage header with specified attributes. If
the data pointer isNULL, image data memory will
be allocated and the pointer set to it.

Discussion

Similar to iplConvertFromDIB , the functioniplConvertFromDIBSep

converts DIB images to Image Processing Library images according to the
attributes set in theIplImage header. The input and output images must
satisfy the same conditions as foriplConvertFromDIB .

The functioniplConvertFromDIBSep uses an additional argument for the
DIB data. This allows you to supply the DIB header and data stored
separately.

Return Value

The function returns anIPLStatus status code.

Intel® Image Processing Library Reference Manual

4-54

4
ConvertToDIB
Converts anIplImage

to a DIB image with
specified attributes.

void iplConvertToDIB(iplImage* image , BITMAPINFOHEADER*
dib , int dither , int paletteConversion)

image The inputIplImage .

dib The output DIB image.

dither The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of theIplImage . The following
algorithms are supported corresponding to these
dither identifiers:

IPL_DITHER_FS The Floid-Steinberg error diffusion dithering
algorithm is used.

IPL_DITHER_JJH The Jarvice-Judice-Ninke error diffusion
dithering algorithm is used.

IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

IPL_DITHER_BAYER The Bayer threshold dithering algorithm is
used.

IPL_DITHER_NONE No dithering is done. The most significant
bits in the input image pixel data are
retained.

paletteConversion Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute colorIplImage . The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB
is used.

Image Creation and Access

4-55

4
IPL_PALCONV_POPULATEThe popularity palette

conversion algorithm is used.

IPL_PALCONV_MEDCUT The median cut algorithm for
palette conversion is used.

Discussion

The functioniplConvertToDIB() converts anIplImage to a DIB image.
The conversion takes place according to the source and destination image
attributes. WhileIplImage format always uses absolute color, DIB images
can be in absolute or palette color. When the DIB is a palette image, the
absolute colorIplImage is converted to a palette image according to the
palette conversion option specified. When the bit depth of an absolute
color DIB image is less than that of theIplImage , then dithering according
to the specified option is performed.

The following constraints apply when using this function:

• The number of channels in theIplImage should be equal to the
number of channels in the DIB image.

• The alpha channel in anIplImage will be passed on only when the
DIB is an RGBA image.

ConvertToDIBSep
Converts anIplImage to a
DIB image, with DIB header
and data stored separately.

IPLStatus iplConvertToDIBSep(iplImage* image ,
BITMAPINFOHEADER* dib , char* dibData , int dither ,
int paletteConversion)

image The inputIplImage .

dib The output DIB image header.

Intel® Image Processing Library Reference Manual

4-56

4
dibData The output DIB image data.

dither The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of theIplImage . The following
algorithms are supported corresponding to these
dither identifiers:

IPL_DITHER_FS The Floid-Steinberg error diffusion dithering
algorithm is used.

IPL_DITHER_JJH The Jarvice-Judice-Ninke error diffusion
dithering algorithm is used.

IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

IPL_DITHER_BAYER The Bayer threshold dithering algorithm is
used.

IPL_DITHER_NONE No dithering is done. The most significant
bits in the input image pixel data are
retained.

paletteConversion Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute colorIplImage . The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB is used.

IPL_PALCONV_POPULATE The popularity palette conversion algorithm
is used.

IPL_PALCONV_MEDCUT The median cut algorithm for palette
conversion is used.

Discussion

The functioniplConvertToDIBSep() converts anIplImage to a DIB
image with header and data stored separately, indib anddibData .
SeeiplConvertToDIB for more information about the conversion.

Image Arithmetic and Logical
Operations

5-1

5
This chapter describes image processing functions that modify pixel values
using simple arithmetic or logical operations. It also includes the library
functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories: monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Table 5-1 Image Arithmetic and Logical Operations

Group Function Name Description

Arithmetic
operations

iplAddS
iplAddSFP

Adds a constant to the image pixel values.

iplSubtractS
iplSubtractSFP

Subtracts a constant from the pixel values
or the values from a constant.

iplMultiplyS
iplMultiplySFP

Multiplies pixel values by a constant.

iplMultiplySScale Multiplies pixel values by a constant and
scales the product.

iplAbs Computes absolute pixel values.

iplAdd Adds pixel values of two images.

iplSubtract Subtracts pixel values of one image from
those of another image.

iplSquare Squares the pixel values of an image.

Continued ☞

Intel® Image Processing Library Reference Manual

5-2

5
Table 5-1 Image Arithmetic and Logical Operations (continued)

Group Function Name Description

Arithmetic iplMultiply Multiplies pixel values of two images.

operations
(continued)

iplMultiplyScale Multiplies pixel values of two images
and scales the product.

Logical
operations

iplAndS Performs a bitwise AND operation on
each pixel with a constant.

iplOrS Performs a bitwise OR operation on
each pixel with a constant.

iplXorS Performs a bitwise XOR operation on
each pixel with a constant.

iplNot Performs a bitwise NOT operation on
each pixel

iplLShiftS Shifts bits in pixel values to the left.

iplRShiftS Divides pixel values by a constant
power of 2 by shifting bits to the right.

iplAnd Combines corresponding pixels of two
images by a bitwise AND operation.

iplOr Combines corresponding pixels of two
images by a bitwise OR operation.

iplXor Combines corresponding pixels of two
images by a bitwise XOR operation.

Alpha-
blending

iplPreMultiplyAlpha Pre-multiplies pixel values of an image
by alpha values.

iplAlphaComposite Composites two images using alpha
(opacity) values.

iplAlphaCompositeC Composites two images using constant
alpha (opacity) values.

The functionsiplSquare() , iplNot() , iplPreMultiplyAlpha() , and
iplAbs() as well as all functions with names containing an additionalS

use single input images (perform monadic operations). All other functions
in the above table use two input images (perform dyadic operations).

Image Arithmetic and Logical Operations

5-3

5
Monadic Arithmetic Operations

The sections that follow describe the library functions that perform
monadic arithmetic operations (note that theiplPreMultiplyAlpha

function is described in the “Image Compositing Based on Opacity”
section of this chapter). All these functions use a single input image to
create an output image.

AddS, AddSFP
Adds a constant to pixel
values of the source
image.

void iplAddS(IplImage* srcImage , IplImage* dstImage , int

value);

void iplAddSFP(IplImage* srcImage , IplImage* dstImage ,

float value); /* images with IPL_DEPTH_32F only */

srcImage The source image.

dstImage The resultant image.

value The value to be added to the pixel values.

Discussion

The functions change the image intensity by adding thevalue to pixel
values. A positivevalue brightens the image (increases the intensity); a
negativevalue darkens the image (decreases the intensity).

Intel® Image Processing Library Reference Manual

5-4

5
SubtractS, SubtractSFP
Subtracts a constant from
pixel values, or pixel
values from a constant.

void iplSubtractS(IplImage* srcImage , IplImage* dstImage ,

int value , BOOL flip);

void iplSubtractSFP(IplImage* srcImage ,IplImage* dstImage ,

float value , BOOL flip); /* IPL_DEPTH_32F only */

srcImage The source image.

dstImage The resultant image.

value The value to be subtracted from the pixel values.

flip A Boolean used to change the order of subtraction.

Discussion

The functions change the image intensity as follows:

If flip is false, thevalue is subtracted from the image pixel values.
If flip is true, the image pixel values are subtracted from thevalue .

MultiplyS, MultiplySFP
Multiplies pixel values
by a constant.

void iplMultiplyS (IplImage* srcImage , IplImage* dstImage ,

int value);

void iplMultiplySFP(IplImage* srcImage ,IplImage* dstImage ,

float value); /* images with IPL_DEPTH_32F only */

srcImage The source image.

Image Arithmetic and Logical Operations

5-5

5
dstImage The resultant image.

value An integer value by which to multiply the pixel values.

Discussion

The functions change the image intensity by multiplying each pixel by a
constantvalue .

MultiplySScale
Multiplies pixel values
by a constant and scales
the products.

void iplMultiplySScale(IplImage* srcImage , IplImage*

dstImage , int value);

srcImage The source image.

dstImage The resultant image.

value A positive value by which to multiply the pixel values.

Discussion

The functioniplMultiplySScale() multiplies the input image pixel
values byvalue and scales the products using the following formula:

dst_pixel = src_pixel * value / max_val

wheresrc_pixel is a pixel value of the source images,dst_pixel is the
resultant pixel value, andmax_val is the maximum presentable pixel
value. This function can be used to multiply the image by a number
between 0 and 1.

The source and resultant images must have the same pixel depth. The
function is implemented only for 8-bit and 16-bit unsigned data types.

Intel® Image Processing Library Reference Manual

5-6

5
Square
Squares the pixel values
of the image.

void iplSquare(IplImage* srcImage , IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The functioniplSquare() increases the intensity of an image by squaring
each pixel value.

Abs
Computes absolute pixel
values of the image.

void iplAbs(IplImage* srcImage , IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The functioniplAbs() takes the absolute value of each channel in each
pixel of the image.

Image Arithmetic and Logical Operations

5-7

5
Dyadic Arithmetic Operations

The sections that follow describe the functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add
Combines corresponding
pixels of two images by
addition.

void iplAdd(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image obtained as
dst_pixel = srcA_pixel + srcB_pixel .

Discussion

The functioniplAdd() adds corresponding pixels of two input images to
produce the output image.

Intel® Image Processing Library Reference Manual

5-8

5
Subtract
Combines corresponding
pixels of two images by
subtraction.

void iplSubtract(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image obtained as:
dst_pixel = srcA_pixel - srcB_pixel .

Discussion

The functioniplSubtract() subtracts corresponding pixels of two input
images to produce the output image.

Multiply
Combines corresponding
pixels of two images by
multiplication.

void iplMultiply(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

Image Arithmetic and Logical Operations

5-9

5
Discussion

The functioniplMultiply() multiplies corresponding pixels of two input
images to produce the output image.

MultiplyScale
Multiplies pixel values of two
images and scales the products.

void iplMultiplyScale(IplImage* srcImageA , IplImage*

srcImageB , IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

Discussion

The functioniplMultiplyScale() multiplies corresponding pixels of
two input images and scales the products using the following formula:

dst_pixel = srcA_pixel * srcB_pixel / max_val

wheresrcA_pixel and srcB_pixel are pixel values of the source
images,dst_pixel is the resultant pixel value, andmax_val is the
maximum presentable pixel value. Both source images and the resultant
image must have the same pixel depth. The function is implemented only
for 8-bit and 16-bit unsigned data types.

Intel® Image Processing Library Reference Manual

5-10

5
Monadic Logical Operations

The sections that follow describe the functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS
Shifts pixel values’ bits
to the left.

void iplLShiftS(IplImage* srcImage , IplImage* dstImage ,

unsigned int nShift);

srcImage The source image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the left.

Discussion

The functioniplLShiftS() changes the intensity of the source image by
shifting the bits in each pixel value bynShift bits to the left. The positions
vacated after shifting the bits are filled with zeros.

Image Arithmetic and Logical Operations

5-11

5
RShiftS
Divides pixel values by a
constant power of 2 by
shifting bits to the right.

void iplRShiftS(IplImage* srcImage , IplImage* dstImage ,

unsigned int nShift);

srcImage The source image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the right.

Discussion

The functioniplRShiftS() decreases the intensity of the source image by
shifting the bits in each pixel value bynShift bits. The positions vacated
after shifting the bits are filled with zeros.

Intel® Image Processing Library Reference Manual

5-12

5
Not
Performs a bitwise NOT
operation on each pixel.

void iplNot(IplImage* srcImage , IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The functioniplNot() performs a bitwise NOT operation on each pixel
value.

AndS
Performs a bitwise AND
operation of each pixel
with a constant.

void iplAndS(IplImage* srcImage , IplImage* dstImage ,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise AND
operation on each pixel.

Discussion

The functioniplAndS() performs a bitwise AND operation between each
pixel value andvalue . The least significant bit(s) of thevalue are used.

Image Arithmetic and Logical Operations

5-13

5
OrS
Performs a bitwise OR
operation of each pixel
with a constant.

void iplOrS(IplImage* srcImage , IplImage* dstImage ,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise OR
operation on each pixel.

Discussion

The functioniplOrS() performs a bitwise OR between each pixel value
andvalue . The least significant bit(s) of thevalue are used.

Intel® Image Processing Library Reference Manual

5-14

5
XorS
Performs a bitwise XOR
operation of each pixel
with a constant.

void iplXorS(IplImage* srcImage , IplImage* dstImage ,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise XOR
operation on each pixel.

Discussion

The functioniplXorS() performs a bitwise XOR between each pixel
value andvalue . The least significant bit(s) of thevalue are used.

Dyadic Logical Operations

This section describes the library functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

Image Arithmetic and Logical Operations

5-15

5
And
Combines corresponding pixels
of two images by a bitwise AND
operation.

void iplAnd(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input imagessrcImageA andsrcImageB .

Discussion

The functioniplAnd() performs a bitwise AND operation between the
values of corresponding pixels of two input images.

Or
Combines corresponding
pixels of two images by a
bitwise OR operation.

void iplOr(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input imagessrcImageA andsrcImageB .

Intel® Image Processing Library Reference Manual

5-16

5
Discussion

The functioniplOR() performs a bitwise OR operation between the values
of corresponding pixels of two input images.

Xor
Combines corresponding
pixels of two images by a
bitwise XOR operation.

void iplXor(IplImage* srcImageA , IplImage* srcImageB ,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input imagessrcImageA andsrcImageB .

Discussion

The functioniplXor() performs a bitwise XOR operation between the
values of corresponding pixels of two input images.

Image Compositing Based on Opacity

The Image Processing Library provides functions to composite two images
using either the opacity (alpha) channel in the images or a provided alpha
value. Alpha values range from 0 (100% translucent, 0% coverage) to full
range (0% translucent, 100% coverage). Coverage is the percentage of the
pixel’s own intensity that is visible.

Image Arithmetic and Logical Operations

5-17

5
Using the opacity channel for image compositing provides the capability of
overlaying the arbitrarily shaped and transparent images in arbitrary
positions. It also reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
quadruple (r, g, b,α) where r, g, b, andα are the red, green, blue and alpha
channels, respectively. In the formulas that follow, the Greek letterα with
subscripts always denotes the normalized (scaled) alpha value in the range
0 to 1. It is related to the integer alpha valueaphaValue as follows:

[[[[[[[[[[α = aphaValue / max_val

wheremax_val is 255 for 8-bit or 65535 for 16-bit unsigned pixel data.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixel (rC, gC, bC, [αC) in image C is
created by overlaying a pixel (rA, gA, bA, αA) from the foreground image A
over a pixel (rB, gB, bB, αB) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

rC = αA * r A + (1 - αA) * αB * r B

gC = αA * gA + (1 - αA) * αB * gB

bC = αA * bA + (1 - αA) * αB * bB

The above three expressions can be condensed into one as follows:

C = αA * A + (1 - αA) * αB * B

In this example, the color of the background image B influences the color
of the resultant image through the second term (1- αA) * αB * B. The
resulting alpha value is computed as

αC = αA + (1 - αA) * αB

Intel® Image Processing Library Reference Manual

5-18

5
Using Pre-multiplied Alpha Values

In many cases it is computationally more efficient to store the color
channels pre-multiplied by the alpha values. In the RGBA example, the
pixel (r, g, b,α) would actually be stored as (r*α, g*α, b*α, α). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an image is
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication is that once a pixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The functioniplPreMultiplyAlpha() implements various alpha
compositing operations between two images. One of them is converting the
pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example, in
an RGBA color model image, if (r, g, b,α) are the channel values for a
pixel, then upon pre-multiplication they are stored as (r*α, g*α, b*α,[α).

AlphaComposite
AlphaCompositeC
Composite two images using
alpha (opacity) values.

void iplAlphaComposite(IplImage* srcImageA , IplImage*

srcImageB , IplImage* dstImage , int compositeType ,

IplImage* alphaImageA , IplImage* alphaImageB , IplImage*

alphaImageDst , BOOL premulAlpha , BOOL divideMode);

Image Arithmetic and Logical Operations

5-19

5
void iplAlphaCompositeC(IplImage* srcImageA , IplImage*

srcImageB , IplImage* dstImage , int compositeType , int aA,

int aB, BOOL premulAlpha , BOOL divideMode);

srcImageA The foreground input image.

srcImageB The background input image.

dstImage The resultant output image.

compositeType The composition type to perform. SeeTable 5-2for the
type value and description.

aA The constant alpha value to use for the source image
srcImageA . Should be a positive number.

aB The constant alpha value to use for the source image
srcImageB . Should be a positive number.

alphaImageA The image to use as the alpha channel forsrcImageA . If
the imagealphaImageA contains an alpha channel, that
channel is used. Otherwise channel 1 inalphaImageA is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the
IplImage header for the image should be set
appropriately before calling this function. If the
argumentalphaImageA is NULL, then the internal alpha
channel ofsrcImageA is used. IfsrcImageA does not
contain an alpha channel, an error message is issued.

alphaImageB The image to use as the alpha channel forsrcImageB . If
the imagealphaImageB already contains an alpha
channel, that channel is used. Otherwise channel 1 in
alphaImageB is used as the alpha channel. If this is not
suitable for the application, then the alpha channel
number in the image header for the image should be set
appropriately before calling this function. If the
argumentalphaImageB is NULL, then the internal alpha
channel ofsrcImageB is used.

Intel® Image Processing Library Reference Manual

5-20

5
If srcImageB does not contain an alpha channel, then
the value (1- [αA) is used for the alpha, whereαA is a
scaled alpha value ofsrcImageA in the range 0 to 1.

alphaImageDst The image to use as the alpha channel fordstImage . If
the image already contains an alpha channel, that
channel is used. Otherwise channel 1 in the image is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the image
header for the image should be set appropriately before
calling this function. This argument can beNULL, in
which case the resultant alpha values are not saved.

premulAlpha A Boolean flag indicating whether or not the input
images contain pre-multiplied alpha values. If true, they
contain these values.

divideMode A Boolean flag related topremulAlpha . When true, the
resultant pixel color (seeTable 5-2) is further divided by
the resultant alpha value to get the final resultant pixel
color.

Discussion

The functioniplAlphaComposite() performs an image compositing
operation by overlaying the foreground imagesrcImageA with the
background imagesrcImageB to produce the resultant imagedstImage .

The functioniplAlphaComposite() executes under one of the following
conditions for the alpha channels:

Image Arithmetic and Logical Operations

5-21

5
• If alphaImageA andalphaImageB are bothNULL, then the internal

alpha channels of the two input images specified by their respective
IplImage headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srcImageB does not have an alpha channel, then its alpha value is set
to (1 - αA) whereαA is the scaled alpha value of imagesrcImageA in
the range 0 to 1.

• If both alpha imagesalphaImageA andalphaImageB are notNULL,
then they are used as the alpha values for the two input images. If
alphaImageB is NULL, then its alpha value is set to (1- αA) whereαA

is the scaled alpha value of imagealphaImageA in the range 0 to 1.

It is an error if none of the above conditions is satisfied.

If alphaImageDst is notNULL, then the resultant alpha values are written
to it. If it is NULL and the output imageimageDst contains an alpha
channel (specified by theIplImage header), then it is set to the resulting
alpha values.

The functioniplAlphaCompositeC() is used to specify constant alpha
valuesαA andαB to be used for the two input images (usually[αB is set to
the value 1- αA). The resultant alpha values (also constant) are not saved.

The type of compositing is specified by the argumentcompositeType

which can assume the values shown inTable 5-2.

The functionsiplAlphaCompositeC() and iplAlphaCompositeC()

can be used for unsigned pixel data only. They support ROI, mask ROI and
tiling.

Intel® Image Processing Library Reference Manual

5-22

5
Table 5-2 Types of Image Compositing Operations

Type Output Pixel
(see Note)

Output Pixel
(pre-mult. αααα)

Resultant
Alpha Description

OVER αA*A+

(1-[αA)*αB*B

A+(1-αA)*B αA+

(1-[αA)*[αB

A occludes B

IN αA*A*[αB A*αB αA*[αB A within B. A acts as a
matte for B. A shows only
where B is visible.

OUT αA*A*(1-[αB) A*(1-[αB) αA *(1-[αB) A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

ATOP αA*A*[αB+

(1-[αA)*αB*B

A*[αB+

(1-[αA)*B

αA*[αB+

(1-[αA)*[αB

Combination of (A IN B) and
(B OUT A). B is both back-
ground and matte for A.

XOR αA*A*(1-αB)+

(1-[αA)*[αB*B

A*(1-[αB)+

(1-[αA)*B

αA*(1-[αB)+

(1-[αA)*[αB

Combination of (A OUT B)
and (B OUT A). A and B
mutually exclude each
other.

PLUS αA *A + αB*B A + B αA + αB Blend without precedence

NOTE. In Table 5-2, the resultant pixel value is divided by the resultant
alpha whendivideMode is set to true (see the argument descriptions for
the iplAlphaComposite() function). The Greek letterα[[here and below
denotes normalized (scaled) alpha values in the range 0 to 1.

For example, for the OVER operation, the output C for each pixel in the
inputs A and B is determined as

C = αA * A + (1 - αA) * αB * B

Image Arithmetic and Logical Operations

5-23

5
The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alpha values, C is determined as

C = A + (1 - αA) * B

The resultant alpha valueaC (alpha in the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) fromaA (alpha
in the source image A) andaB (alpha in the source image B):

αC = αA + (1 - [αA) * αB

Thus, to perform an OVER operation, use theIPL_COMPOSITE_OVER

identifier for the argumentcompositeType . For all other types, use
IPL_COMPOSITE_IN, IPL_COMPOSITE_OUT, IPL_COMPOSITE_ATOP,
IPL_COMPOSITE_XOR, and IPL_COMPOSITE_PLUS, respectively.

The argumentdivideMode is typically set to false to give adequate results
as shown in the above example for an OVER operation and inTable 5-2.
WhendivideMode is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel value, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C = (αA * A + (1 - αA) * αB * B)/αC

There is no change in the value ofαC, and it is computed as shown above.
When both A and B are 100% transparent (that is,αA is zero andαB is
zero),αC is also zero and the result cannot be determined. In many cases,
the value ofαC is 1, so the division has no effect.

Intel® Image Processing Library Reference Manual

5-24

5
PreMultiplyAlpha
Pre-multiplies alpha
values of an image.

void iplPreMultiplyAlpha (IplImage* image ,

int alphaValue);

image The image for which the alpha pre-multiplication is
performed.

alphaValue The global alpha value to use in the range 0 to 256. If
this value is negative (for example,- 1), the internal
alpha channel of the image is used. It is an error
condition if an alpha channel does not exist.

Discussion

The functioniplPreMultiplyAlpha() converts an image to the pre-
multiplied alpha form. If (R, G, B, A) are the red, green, blue, and alpha
values of a pixel, then the pixel is stored as (R*α, G*α, B*α, A) after
execution of this function. Hereα[is the pixel’s normalized alpha value in
the range 0 to 1.

Optionally, a global alpha valuealphaValue can be used for the entire
image. Then the pixels are stored as (R*α, G*α, B*α, alphaValue) if the
image has an alpha channel or (R*α, G*α, B*α) if the image does not
have an alpha channel. Hereα[is the normalizedalphaValue in the range
0 to 1.

The function iplPreMultiplyAlpha() can be used for unsigned pixel
data only. It supports ROI, mask ROI and tiling.

Image Filtering

6-1

6
This chapter describes linear and non-linear filtering operations supported
by the Image Processing Library. Most linear filtering is performed through
convolution, either with user-defined convolution kernels or with the
provided fixed filter kernels. Table 6-1 lists the filtering functions.

Table 6-1 Image Filtering Functions

Group Function Name Description

Linear Filters iplBlur Applies a simple neighborhood
averaging filter.

2-dimensional Convolution
Linear Filters

iplCreateConvKernel
iplCreateConvKernelChar
iplCreateConvKernelFP

Creates a convolution kernel.

iplGetConvKernel
iplGetConvKernelChar
iplGetConvKernelFP

Reads the attributes of a
convolution kernel.

iplDeleteConvKernel
iplDeleteConvKernelFP

Deallocates a convolution
kernel.

iplConvolve2D
iplConvolve2DFP

Convolves an image with one or
more convolution kernels.

iplConvolveSep2D
iplConvolveSep2DFP

Convolves an image with a
separable convolution kernel.

iplFixedFilter Convolves an image with a
predefined kernel.

Non-linear Filters iplMedianFilter Applies a median filter.

iplColorMedianFilter Applies a color median filter

iplMaxFilter Applies a maximum filter.

iplMinFilter Applies a minimum filter.

Intel® Image Processing Library Reference Manual

6-2

6
Linear Filters

Linear filtering includes a simple neighborhood averaging filter, 2D
convolution operations, and a number of filters with fixed effects.

Blur
Applies simple neighborhood
averaging filter to blur the
image.

void iplBlur(IplImage* srcImage , IplImage* dstImage ,

int nCols , int nRows, int anchorX , int anchor Y);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols -1 , nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The functioniplBlur() sets each pixel in the output image as the average
of all the input image pixels in the neighborhood of sizenRows by nCols

with the anchor cell at that pixel. This has the effect of smoothing or
blurring the input image. The linear averaging filter of an image is also
called a box filter.

Image Filtering

6-3

6
2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in a variety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

NOTE. In some literature sources, the 2D convolution is referred to as
box filtering, which is an incorrect use of the term. A box filter is a linear
averaging filter (see functioniplBlur above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, a rectangular kernel is used. The kernel is a matrix of
signed integers or single-precision real values. The kernel could be a single
row (a row filter) or a single column (a column filter) or composed of
many rows and columns. There is a cell in the kernel called the “anchor,”
which is usually a geometric center of the kernel, but can be skewed with
respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as

ym,n = Σi Σk
hi,k xm-i,n-k

wherexm-i,n-k is the input pixel value andhi,k denotes the kernel. Optionally,
the output pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple kernels
which eliminates the need of storing the intermediate results when using
each kernel. The functionsiplConvolve2D() andiplConvolve2DFP()

can implement both ways.

Intel® Image Processing Library Reference Manual

6-4

6
In addition,iplConvolveSep2D() , a convolution function that uses
separable kernels, is also provided. It works with convolution kernels that
are separable into thex andy components.

Before performing a convolution, you should create the convolution kernel
and be able to access the kernel attributes. You can do this using
the functionsiplCreateConvKernel() , iplGetConvKernel() ,
iplCreateConvKernelFP() andiplGetConvKernelFP() .

In release 2.0, the functioniplFixedFilter() function has been added to
the library. It allows you to convolve images with a number of commonly
used kernels that correspond to Gaussian, Laplacian, highpass, and gradient
filtering.

Also, for compatibility with previous releases, the functions
iplCreateConvKernelChar() andiplGetConvKernelChar() have
been added. They use 1-bytechar kernel values, as opposed to integer
kernel values iniplCreateConvKernel() andiplGetConvKernel() .

Image Filtering

6-5

6
CreateConvKernel, CreateConvKernelChar,
CreateConvKernelFP
Creates a convolution
kernel.

IplConvKernel* iplCreateConvKernel(int nCols , int nRows,

int anchorX , int anchorY , int* values , int nShiftR);

IplConvKernel* iplCreateConvKernelChar(int nCols , int

nRows, int anchorX , int anchorY , char* values , int

nShiftR);

IplConvKernelFP* iplCreateConvKernelFP(int nCols , int

nRows, int anchorX , int anchorY , float * values);

nCols The number of columns in the convolution kernel.

nRows The number of rows in the convolution kernel.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be [nCols -1 , nRows-1]. For a 3 by
3 kernel, the coordinates of the geometric center
would be [1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactlynRows*nCols entries in this
array. For example, the array [1, 2, 3, 4, 5, 6, 7, 8,
9] would represent the following kernel matrix:

1 2 3
4 5 6
7 8 9

Intel® Image Processing Library Reference Manual

6-6

6
nShiftR Scale the resulting output pixel by shifting it to

the rightnShiftR times.

Discussion

FunctionsiplCreateConvKernel() andiplCreateConvKernelFP() are
used to create convolution kernels of arbitrary size with arbitrary anchor
point. The functioniplCreateConvKernelChar() serves primarily for
compatibility with previous releases of the library. It useschar rather than
integer input values to creates the same kernel as
iplCreateConvKernel() .

Return Value

A pointer to the convolution kernel structureIplConvKernel .

GetConvKernel, GetConvKernelChar
GetConvKernelFP
Reads the attributes of a
convolution kernel.

void iplGetConvKernel(IplConvKernel* kernel , int* nCols ,

int* nRows, int* anchorX , int* anchorY , int** values ,

int* nShiftR);

void iplGetConvKernelChar(IplConvKernel* kernel , int*

nCols , int* nRows, int* anchorX , int* anchorY , char**

values , int* nShiftR);

void iplGetConvKernelFP(IplConvKernelFP* kernel , int*

nCols , int* nRows, int* anchorX , int* anchorY , float**

values);

kernel The kernel to get the attributes for. The attributes
are returned in the remaining arguments.

Image Filtering

6-7

6
nCols, nRows Numbers of columns and rows in the convolution

kernel. Set by the function.

anchorX, anchorY Pointers to the [x, y] coordinates of the anchor
cell in the kernel. (SeeiplCreateConvKernel
above.) Set by the function.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactlynRows*nCols entries in this array.
For example, the array [1, 2, 3, 4, 5, 6, 7, 8, 9]
would represent the kernel matrix

1 2 3
4 5 6
7 8 9

nShiftR A pointer to the number of bits to shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

Discussion

FunctionsiplGetConvKernel() andiplGetConvKernelFP() are used to
read the convolution kernel attributes. TheiplGetConvKernelChar()

function serves primarily for compatibility with previous releases. It gives
you 1-bytechar rather than integer values of the convolution kernel; you’ll
probably need this function only if you create kernels using
iplCreateConvKernelChar() .

Intel® Image Processing Library Reference Manual

6-8

6
DeleteConvKernel
DeleteConvKernelFP
Deletes a convolution
kernel.

void iplDeleteConvKernel(IplConvKernel* kernel);

void iplDeleteConvKernelFP(IplConvKernelFP* kernel);

kernel The kernel to delete.

Discussion

FunctionsiplDeleteConvKernel() andiplDeleteConvKernelFP()

must be used to delete convolution kernels created, respectively, by
iplCreateConvKernel() andiplCreateConvKernelFP() .

Convolve2D
Convolve2DFP
Convolves an image
with one or more
convolution kernels.

void iplConvolve2D(IplImage* srcImage , IplImage* dstImage ,

IplConvKernel** kernel , int nKernels , int combineMethod);

void iplConvolve2DFP(IplImage* srcImage , IplImage* dstImage ,

IplConvKernelFP** kernel , int nKernels , int combineMethod);

srcImage The source image.

dstImage The resultant image.

kernel A pointer to an array of pointers to convolution
kernels. The length of the array isnKernels .

Image Filtering

6-9

6
nKernels The number of kernels in the arraykernel . The

value ofnKernels can be 1 or more.

combineMethod The way in which the results of applying each
kernel should be combined. This argument is
ignored when a single kernel is used. The
following combinations are supported:

IPL_SUM Sums the results.

IPL_SUMSQ Sums the squares of the results.

IPL_SUMSQROOTSums the squares of the results
and then takes the square root.

IPL_MAX Takes the maximum of the results.

IPL_MIN Takes the minimum of the results.

Discussion

FunctionsiplConvolve2D() andiplConvolve2D() are used to convolve
an image with a set of convolution kernels. The results of using each kernel
are then combined using thecombineMethod argument; see Example 6-1.

Example 6-1 Computing the 2-dimensional Convolution

int example61(void) {

IplImage *imga, *imgb;

int one[9] = {1,0,1, 0,0,0, 1,0,1}; // a kernel to check

IplConvKernel* kernel; // REFLECT border mode

__try {

int i;

imga= iplCreateImageHeader(1, 0, IPL_DEPTH_8U, "GRAY",

"GRAY", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL, NULL, NULL);

continued ☞

Intel® Image Processing Library Reference Manual

6-10

6
Example 6-1 Computing 2-dimensional Convolution (continued)

if(NULL == imga) return 0;

iplSetBorderMode(imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP|

IPL_SIDE_BOTTOM|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 0, 0);

if(NULL == imga->imageData) return 0;

// fill image by meaningless

for(i=0; i<16; i++)

((char*)imga->imageData)[i] = (char)(i+1);

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// create kernel 3x3 with (1,1) cross point

kernel = iplCreateConvKernel(3, 3, 1, 1, one, 0);

// convolve imga by kernel and place the result in imgb

iplConvolve2D(imga, imgb, &kernel, 1, IPL_SUM);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeleteConvKernel(kernel);

iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Image Filtering

6-11

6
ConvolveSep2D, ConvolveSep2DFP
Convolves an image with a
separable convolution kernel.

void iplConvolveSep2D (IplImage* srcImage ,

IplImage* dstImage , IplConvKernel* xKernel ,

IplConvKernel* yKernel);

void iplConvolveSep2DFP (IplImage* srcImage ,

IplImage* dstImage , IplConvKernelFP* xKernel ,

IplConvKernelFP* yKernel);

srcImage The source image.

dstImage The resultant image.

xKernel Thex or row kernel. Must contain only one row.

yKernel They or column kernel. Must contain only one column.

Discussion

The functionsiplConvolveSep2D() andiplConvolveSep2DFP() are
used to convolve the input imagesrcImage with the separable kernel
specified by the row kernelxKernel and column kernelyKernel . The
functions write the convolution results to the output imagedstImage .

UseiplConvolveSep2DFP() only for images with 32-bit floating-point
data. For all other image data types, useiplConvolveSep2D() .

One of the kernel argumentsxKernel or yKernel (but not both) can be
NULL, for example:

iplConvolveSep2DFP (src, dst, xKernel, NULL);

iplConvolveSep2DFP (src, dst, NULL, yKernel);

Intel® Image Processing Library Reference Manual

6-12

6
FixedFilter
Convolves an image with a
predefined kernel.

int iplFixedFilter(IplImage* srcImage ,

IplImage* dstImage , IplFilter filter);

srcImage The source image.

dstImage The resultant image.

filter One of predefined filter kernels (seeDiscussionfor
supported filters).

Discussion

The functioniplFixedFilter() is used to convolve the input image
srcImage with a predefined filter kernel specified byfilter . The
resulting output image isdstImage .

The filter kernel can be one of the following:

IPL_PREWITT_3x3_V A gradient filter (vertical Prewitt operator).
This filter uses the kernel

-1 0 1

-1 0 1

-1 0 1

IPL_PREWITT_3x3_H A gradient filter (horizontal Prewitt operator).
This filter uses the kernel

1 1 1

0 0 0

-1 -1 -1

IPL_SOBEL_3x3_V A gradient filter (vertical Sobel operator).
This filter uses the kernel

-1 0 1

-2 0 2

-1 0 1

Image Filtering

6-13

6
IPL_SOBEL_3x3_H A gradient filter (horizontal Sobel operator).
This filter uses the kernel

1 2 1

0 0 0

-1 -2 -1

IPL_LAPLACIAN_3x3 A 3x3 Laplacian highpass filter.
This filter uses the kernel

-1 -1 -1

-1 8 -1

-1 -1 -1

IPL_LAPLACIAN_5x5 A 5x5 Laplacian highpass filter.
This filter uses the kernel

-1 -3 -4 -3 -1

-3 0 6 0 -3

-4 6 20 6 -4

-3 0 6 0 -3

-1 -3 -4 -3 -1

IPL_GAUSSIAN_3x3 A 3x3 Gaussian lowpass filter.
This filter uses the kernelA/16 , where

1 2 1

A = 2 4 2

1 2 1

These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 0.85.

IPL_GAUSSIAN_5x5 A 5x5 Gaussian lowpass filter.
This filter uses the kernelA/571 , where

2 7 12 7 2

7 31 52 31 7

A = 12 52 127 52 12

7 31 52 31 7

2 7 12 7 2

Intel® Image Processing Library Reference Manual

6-14

6
These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 1.0.

IPL_HIPASS_3x3 A 3x3 highpass filter.
This filter uses the kernel

-1 -1 -1

-1 8 -1

-1 -1 -1

IPL_HIPASS_5x5 A 5x5 highpass filter.
This filter uses the kernel

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 24 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

IPL_SHARPEN_3x3 A 3x3 sharpening filter.
This filter uses the kernel

-1 -1 -1

(1/8) * -1 16 -1

-1 -1 -1

Return Value

The function returns zero if the execution is completed successfully, and a
non-zero integer if an error occurred.

Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

Image Filtering

6-15

6
MedianFilter
Apply a median filter to
the image.

void iplMedianFilter(IplImage* srcImage , IplImage*

dstImage , int nCols , int nRows, int anchorX ,

int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols -1 , nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The functioniplMedianFilter() sets each pixel in the output image as
the median value of all the input image pixel values in the neighborhood of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of removing the noise in the image.

Intel® Image Processing Library Reference Manual

6-16

6
Example 6-2 Applying the Median Filter

int example62(void) {

IplImage *imga, *imgb;

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

iplSetBorderMode(imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP|

IPL_SIDE_BOTTOM|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 1, 10);

if(NULL == imga->imageData) return 0;

// make a spike

((char*)imga->imageData)[2*4+2] = (char)15;

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// Filter imga and place the result in imgb

iplMedianFilter(imga, imgb, 3,3, 1,1);

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Image Filtering

6-17

6
ColorMedianFilter
Apply a color median
filter to the image.

void iplColorMedianFilter(IplImage* srcImage , IplImage*

dstImage , int nCols , int nRows, int anchorX , int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood.

Discussion

The previously described functioniplMedianFilter() processes R, G,
and B color planes of an image separately, and as a result any correlation
between color components is lost. If you want to preserve this information,
use theiplColorMedianFilter() function instead. For each input pixel,
this function computes differences between red, green, and blue
components of pixels in the neighborhood area of sizenRows by nCols

and the input pixel. The ‘distance’ between the input pixeli and the
neighborhood pixelj is formed as sum of absolute values

abs (R(i)-R(j)) + abs (G(i)-G(j)) + abs (B(i)-B(j)) .

After scanning all neighborhood area, the function sets the output value for
pixel i as the value of the neighborhood pixel with the smallest distance toi.

The functioniplColorMedianFilter() supports color images with or
without alpha channel.

Image Filtering

6-18

6
MaxFilter
Apply a max filter to the
image.

voi d iplMaxFilter(IplImage* srcImage , IplImage* dstImage ,

int nCols , int nRows, int anchorX , int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols -1 , nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The function iplMaxFilter() sets each pixel in the output image as the
maximum value of all the input image pixel values in the neighborhood of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of increasing the contrast in the image.

Intel® Image Processing Library Reference Manual

6-19

6
MinFilter
Apply a min filter to the
image.

voi d iplMinFilter(IplImage* srcImage , IplImage* dstImage ,

int nCols , int nRows, int anchorX , int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. (In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols -1 , nRows-1]. For a 3 by
3 neighborhood the coordinatesof the geometric
center would be [1, 1]). This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The function iplMinFilter() sets each pixel in the output image as the
minimum value of all the input image pixel values in the neighborhood of
sizenRows by nCols with the anchor cell at that pixel. This has the effect
of decreasing the contrast in the image.

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Linear Image Transforms

7-1

7
This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform
(DCT). Table 7-1 lists the functions performing linear image transform
operations.

Table 7-1 Linear Image Transform Functions

Group Function Name Description

Fast Fourier
Transform (FFT)

iplRealFft2D Computes the forward or inverse 2D
FFT of an image.

iplCcsFft2D Computes the forward or inverse 2D
FFT of an image in a complex-
conjugate format.

iplMpyRCPack2D Multiplies data in the RCPack format.

Discrete Cosine
Transform (DCT)

iplDCT2D Computes the forward or inverse 2D
DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and inverse
Fast Fourier Transform (FFT) on the 2-dimensional (2D) image data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of an image is
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A special format calledRCPack2D is provided for this
purpose.

Intel® Image Processing Library Reference Manual

7-2

7
The functioniplRealFft2D() transforms a 2D image and produces the
Fourier coefficients in theRCPack2D format. To complement this, function
iplCcsFft2D() is provided that uses its input inRCPack2D format,
performs the Fourier transform, and produces its output as a real 2D image.
The functionsiplRealFft2D() andiplCcsFft2D() together can be used
to perform frequency domain filtering of images.

RCPack2D format is defined based on the following Fourier transform
equations:

A f
ijl

L

iks

Ks j
l

L

k l
k

K

, , exp exp= −

 −

=

−

=

−

∑ ∑
0

1

0

1 2 2π π

f
LK

A
ijl

L

iks

Kk l s j
s

K

j

L

, , exp exp=

=

−

=

−

∑∑1 2 2

0

1

0

1 π π

wherei = −1 , fk,l is the pixel value in thek-th row andl-th column.

Note that the Fourier coefficients have the following relationship:

As,j = conj(AK-s, L-j) s = 1,... , K- 1; j = 1,... , L- 1;

A0,j = conj(A0, L-j) j = 1,... , L- 1;

As,0 = conj(AK-s,0) s = 1,... , K- 1.

Hence, to reconstruct theL*K complex coefficientsAs,j, it is enough to store
only L* K real values. The Fourier transform functions actually use
s = 0,... , K- 1; j = 0,... , L/2.

Other Fourier coefficients can be found using complex-conjugate relations.
Fourier coefficientsAs,j can be stored in theRCPack2D format, which is a
convenient compact representation of a complex conjugate-symmetric
sequence. In theRCPack2D format, the output samples of the FFT are
arranged as shown in Tables 7-2 and 7-3, whereRe corresponds to Real
andIm corresponds to Imaginary. Table 7-4 is an example of output
samples storage forK = 4 andL = 4.

Linear Image Transforms

7-3

7
Table 7-2 FFT Output in RCPack2D Format for Even K

Re A0,0 Re A0,1 Im A0,1
... Re A0,(L-1)/2 Im A0,(L-1)/2 Re A0,L/2

Re A1,0 Re A1,1 Im A1,1
... Re A1,(L-1)/2 Im A1,(L-1)/2 Re A1,L/2

Im A1,0 Re A2,1 Im A2,1
... Re A2,(L-1)/2 Im A2,(L-1)/2 Im A1,L/2

...

Re AK/2-1,0 Re AK-3,1 Im AK-3,1
... Re AK-3,(L-1)/2 Im AK-3,(L-1)/2 Re AK/2-1,L/2

Im AK/2-1,0 Re AK-2,1 Im AK-2,1
... Re AK-2,(L-1)/2 Im AK-2,(L-1)/2 Im AK/2-1,L/2

Re AK/2,0 Re AK-1,1 Im AK-1,1
... Re AK-1,(L-1)/2 Im AK-1,(L-1)/2 Re AK/2,L/2

(the last column is used for even L only)

Table 7-3 FFT Output in RCPack2D Format for Odd K

Re A0,0 Re A0,1 Im A0,1
... Re A0,(L-1)/2 Im A0,(L-1)/2 Re A0,L/2

Re A1,0 Re A1,1 Im A1,1
... Re A1,(L-1)/2 Im A1,(L-1)/2 Re A1,L/2

Im A1,0 Re A2,1 Im A2,1
... Re A2,(L-1)/2 Im A2,(L-1)/2 Im A1,L/2

...

Re AK/2,0 Re AK-2,1 Im AK-2,1
... Re AK-2,(L-1)/2 Im AK-2,(L-1)/2 Re AK/2,L/2

Im AK/2,0 Re AK-1,1 Im AK-1,1
... Re AK-1,(L-1)/2 Im AK-1,(L-1)/2 Im AK/2,L/2

(the last column is used for even L only)

Table 7-4 RealFFT2D Output Sample for K = 4, L = 4

Re A0,0 Re A0,1 Im A0,1 Re A0,2

Re A1,0 Re A1,1 Im A1,1 Re A1,2

Im A1,0 Re A2,1 Im A2,1 Im A1,2

Re A2,0 Re A3,1 Im A3,1 Re A2,2

Intel® Image Processing Library Reference Manual

7-4

7
RealFft2D
Computes the forward or
inverse 2D FFT of an image.

void iplRealFft2D(IplImage* srcImage , IplImage* dstImage ,

int flags);

srcImage The source image.

dstImage The resultant image inRCPack2D format
containing the Fourier coefficients. This image
must be a multi-channel image containing the
same number of channels assrcImage . The data
type for the image must be 8, 16 or 32 bits.

This image cannot be the same as the input image
srcImage (that is, an in-place operation is not
allowed).

flags Specifies how to perform the FFT. This is an
integer whose bits can be assigned the following
values using bitwise logicalOR:

IPL_FFT_Forw Do forward transform

IPL_FFT_Inv Do inverse transform

IPL_FFT_NoScale Do inverse transform without
scaling

IPL_FFT_UseInt Use only integer core

IPL_FFT_UseFloat Use only float core

IPL_FFT_Free Only free all working arrays
and exit.

Linear Image Transforms

7-5

7
Discussion

The functioniplRealFft2D() performs an FFT on each channel in the
specified rectangular ROI of the input imagesrcImage and writes the
Fourier coefficients inRCPack2D format into the corresponding channel of
the output imagedstImage . The output data will be clamped (saturated) to
the limitsMin andMax, which are determined by the data type of the output
image. For best results, use 32-bit data or, at least, 16-bit data.

Example 7-1 Computing the FFT of an Image

/*---

; Matlab example

» rand('seed',12345); x=round(rand(4,4)*10), fft2(x)

89 10 - 7i -9 10 + 7i

-1 + 6i 8 -21i 13 + 2i -8 - 3i

-3 10 + 1i 3 10 - 1i

-1 - 6i -8 + 3i 13 - 2i 8 +21i

// Result of iplRealFft2D function:

89 10 -7 -9

-1 8 -21 13

6 10 1 2

-3 -8 3 3

--*/

int example71(void) {

IplImage *imga, *imgb; int i;

const int src[16] = {

9, 7, 4, 1, 7, 5, 1, 7,

6, 6, 1, 9, 3, 10, 9, 4};

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

continued ☞

Intel® Image Processing Library Reference Manual

7-6

7
Example 7-1 Computing the FFT of an Image (continued)

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

// Create without filling

iplAllocateImage(imga, 0,0);

if(NULL == imga->imageData) return 0;

// Fill by sample data

for(i=0; i<16; i++)

((char*)imga->imageData)[i] = (char)src[i];

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

iplRealFft2D(imga, imgb, IPL_FFT_Forw);

// Compare Matlab and ipl result here

iplCcsFft2D(imgb, imga, IPL_FFT_Inv);

// Compare source data and obtained data

// Check if an error was occured

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplRealFft2D(NULL, NULL, IPL_FFT_Free);

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Linear Image Transforms

7-7

7
CcsFft2D
Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

void iplCcsFft2D(IplImage* srcImage , IplImage* dstImage ,

int flags);

srcImage The source image inRCPack2D format.

dstImage The resultant image. This image must be a multi-channel
image containing the same number of channels as
srcImage .
This image cannot be the same as the input image
srcImage (that is, an in-place operation is not allowed).

flags Specifies how to perform the FFT. This is an integer
whose bits can be assigned the following values using
bitwise logicalOR:

IPL_FFT_Forw Do forward transform.
IPL_FFT_Inv Do inverse transform.
IPL_FFT_NoScale Do inverse transform without

scaling.
IPL_FFT_UseInt Use only integer core.
IPL_FFT_UseFloat Use only float core.
IPL_FFT_Free Only free all working arrays and

exit.

Discussion

The functioniplCcsFft2D() performs an FFT on each channel in the
specified rectangle ROI of the input imagesrcImage and writes the output
in RCPack2D format to the imagedstImage . The output data will be
clamped (saturated) to the limitsMin andMax that are determined by the
data type of the output image.

Intel® Image Processing Library Reference Manual

7-8

7
MpyRCPack2D
Multiplies data of two
images in the RCPack
format.

void iplMpyRCPack2D (IplImage* srcA , IplImage* srcB ,

IplImage* dst);

srcA, srcB The source images inRCPack2D format.

dst The resultant image. This image must be a multi-channel
image containing the same number of channels assrcA

andsrcB .
This image cannot be the same as the input images (that
is, an in-place operation is not allowed) .

Discussion

The functioniplMpyRCPack2D() multiplies the data of the imagesrcA by
that ofsrcB and writes the result todst . All images are assumed to be in
the RCPack format, the format for storing the results of forward FFTs.
Thus, this function multiplies the data in "frequency domain". (This
corresponds to cyclic convolution in the original data domain.)

Discrete Cosine Transform

This section describes the functions that implement the forward and inverse
Discrete Cosine Transform (DCT) on the 2D image data. The output of the
DCT for real input data is real. Therefore, unlike FFT, no special format
for the transform output is needed.

Linear Image Transforms

7-9

7
DCT2D
Computes the forward
or inverse 2D DCT of an
image.

void iplDCT2D(IplImage* srcImage , IplImage* dstImage ,

int flags);

srcImage The source image.

dstImage The resultant image containing the DCT
coefficients. This image must be a multi-channel
image containing the same number of channels as
srcImage . The data type for the image must be
8, 16 or 32 bits.

This image cannot be the same as the input image
srcImage (that is, an in-place operation is not
allowed).

flags Specifies how to perform the DCT. This is an
integer whose bits can be assigned the following
values using bitwise logicalOR:

IPL_DCT_Forward Do forward transform.

IPL_DCT_Inverse Do inverse transform.

IPL_DCT_Free Only free all working arrays and exit.

IPL_DCT_UseInpBuf

Use the input image array for the intermediate
calculations. The performance of DCT increases, but
the input image is destroyed. You may use this value
only if both the source and destination image data types
are 16-bit signed.

Intel® Image Processing Library Reference Manual

7-10

7
Discussion

The functioniplDCT2D() performs a DCT on each channel in the
specified rectangular ROI of the input imagesrcImage and writes the
DCT coefficients into the corresponding channel of the output image
dstImage . The output data will be clamped (saturated) to the limitsMin

andMax, whereMin andMax are determined by the data type of the output
image. For best results, use 32-bit data or, at least, 16-bit data.

Example 7-2 Computing the DCT of an Image

int example72(void) {

IplImage *imga, *imgb;

const int width = 8, height = 8;

int i, x, y;

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, width, height, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, width, height, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

continued ☞

Linear Image Transforms

7-11

7
Example 7-2 Computing the DCT of an Image (continued)

// Create without filling

iplAllocateImage(imga, 0,0);

if(NULL == imga->imageData) return 0;

// Fill by sample data

for(i=0; i<width*height; i++)

((char*)imga->imageData)[i] = (char)(i+1);

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

iplDCT2D(imga, imgb, IPL_DCT_Forward);

// Now there are (width+height-1) DCT coefficients

for(y=1; y<height; y++)

for(x=1; x<width; x++)

((short*)imgb->imageData)[y*width+x]= (short)0;

// Restore source image from some DCT coefficients

iplDCT2D(imgb, imga, IPL_DCT_Inverse);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDCT2D(NULL, NULL, IPL_DCT_Free);

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();
}

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Morphological Operations

8-1

8
The morphological operations of the Image Processing Library are simple
erosion and dilation of an image. A specified number of erosions and
dilations are performed as part of image opening or closing operations in
order to (respectively) eliminate or fill small and thin holes in objects,
break objects at thin points or connect nearby objects, and generally
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Table 8-1 Morphological Operation Functions

Group Function Name Description

Erode, Dilate iplErode Erodes the image an indicated number
of times.

iplDilate Dilates the image an indicated number of
times.

Open, Close iplOpen Opens the image while smoothing the
boundaries of large objects.

iplClose Closes the image while smoothing the
boundaries of large objects.

Intel® Image Processing Library Reference Manual

8-2

8
Erode
Erodes the image.

void iplErode(IplImage* srcImage , IplImage* dstImage ,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode the image.

Discussion

The functioniplErode() performs an erosion of the imagenIterations

times. The way the image is eroded depends on whether it is a binary
image, a gray-scale image, or a color image.

• For a binary input image, the output pixel is set to zero if the
corresponding input pixel or any of its 8 neighboring pixels is a zero.

• For a gray scale or color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

• For a color image, each color channel in the output pixel is set to the
minimum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of erosion is to remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (that is, objects whose
pixel values are greater than those of the background).

Morphological Operations

8-3

8
Figure 8-1 shows an example of 8-bit gray scale image before erosion (left)
and the same image after erosion of a rectangular ROI (right).

Figure 8-1 Erosion in a Rectangular ROI: the Source (left) and Result (right)

__

The following code (Example 8-1) performs erosion of the image inside the
selected rectangular ROI.

Intel® Image Processing Library Reference Manual

8-4

8
Example 8-1 Code Used to Produce Erosion in a Rectangular ROI

int example81(void) { IplImage *imga, *imgb;

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 1, 7);

if(NULL == imga->imageData) return 0;

// Create a hole

((char*)imga->imageData)[2*4+2] = 0;

// Border is taken from the opposite side

iplSetBorderMode(imga, IPL_BORDER_WRAP,

IPL_SIDE_ALL, 0);

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// Erosion will increase the hole

iplErode(imga, imgb, 1);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();
}

Morphological Operations

8-5

8
NOTE. All source image attributes are defined in the image header
pointed to bysrcImage .

Dilate
Dilates the image.

void iplDilate(IplImage* srcImage , IplImage* dstImage , int

nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate the image.

Discussion

The functioniplDilate() performs a dilation of the imagenIterations

times. The way the image is dilated depends on whether the image is
binary, gray-scale, or a color image.

• For a binary input image, the output pixel is set to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixels is 1.

• For a gray-scale image, the output pixel is set to the maximum of the
corresponding input pixel and its 8 neighboring pixels.

• For a color image, each color channel in the output pixel is set to the
maximum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of dilation is to fill up holes and to thicken boundaries of objects
on a dark background (that is, objects whose pixel values are greater than
those of the background).

Intel® Image Processing Library Reference Manual

8-6

8
Open
Opens the image by
performing erosions
followed by dilations.

void iplOpen(IplImage* srcImage , IplImage* dstImage ,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode and dilate the
image.

Discussion

The functioniplOpen() performsnIterations of erosion followed by
nIterations of dilation performed byiplErode() andiplDilate() ,
respectively.

The process of opening has the effect of eliminating small and thin objects,
breaking objects at thin points, and generally smoothing the boundaries of
larger objects without significantly changing their area.

See Also

Erode

Dilate

Morphological Operations

8-7

8
Close
Closes the image by
performing dilations
followed by erosions.

void iplClose(IplImage* srcImage , IplImage* dstImage ,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate and erode the image.

Discussion

The functioniplClose() performsnIterations of dilation followed by
nIterations of erosion performed byiplDilate() andiplErode() ,
respectively.

The process of closing has the effect of filling small and thin holes in
objects, connecting nearby objects, and generally smoothing the boundaries
of objects without significantly changing their area.

See Also

Erode

Dilate

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Color Space Conversion

9-1

9
This chapter describes the Image Processing Library functions that perform
color space conversion. The library supports the following color space
conversions:

• Reduction from high bit resolution color to low bit resolution color
• Conversion of absolute color images to and from palette color images
• Color model conversion
• Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absolute-to-palette and palette-to-absolute color conversion, see “Working
in the Windows DIB Environment” in Chapter 4.

Table 9-1 Color Space Conversion Functions

Conversion Type Function Name Description

Reducing Bit
Resolution

iplReduceBits Reduces the number of bits
per channel in an image.

Bitonal to gray scale iplBitonalToGray Converts bitonal images to 8-
and 16-bit gray scale images.

Color to gray scale
and vice versa

iplColorToGray

iplGrayToColor

Convert color images to and
from gray scale images.

Color Models
Conversion

iplRGB2HSV ,
iplHSV2RGB

Convert RGB images to and
from HSV color model.

iplRGB2HLS ,
iplHLS2RGB

Convert RGB images to and
from HLS color model.

continued ☞

Intel® Image Processing Library Reference Manual

9-2

9
Table 9-1 Color Space Conversion Functions (continued)

Conversion Type Function Name Description

Color Models
Conversion

iplRGB2LUV ,
iplLUV2RGB

Convert RGB images to and
from LUV color model.

(continued) iplRGB2XYZ ,
iplXYZ2RGB

Convert RGB images to and
from XYZ color model.

iplRGB2YCrCb ,
iplYCrCb2RGB

Convert RGB images to and
from YCrCb color model.

iplRGB2YUV ,
iplYUV2RGB

Convert RGB images to and
from YUV color model.

iplYCC2RGB Convert PhotoYCC* images
to RGB color model.

Color Twist iplApplyColorTwist Applies a color-twist matrix to
an image.

iplCreateColorTwist Allocates memory for color-
twist matrix data structure.

iplDeleteColorTwist Deletes the color-twist matrix
data structure.

iplSetColorTwist Sets a color-twist matrix data
structure.

iplColorTwistFP Applies a color-twist matrix to
an image with floating-point
pixel values.

Color Space Conversion

9-3

9
Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

ReduceBits
Reduces the number of
intensity levels in an
image.

void iplReduceBits(IplImage* srcImage , IplImage* dstImage ,

int noise , int ditherType , int levels);

srcImage The source image .

dstImage The resultant image.

noise The number specifying the noise added.
This parameter is set as a percentage of range
[0..100].

ditherType The type of dithering to be used.
The following types are supported:

IPL_DITHER_NONE No dithering is done

IPL_DITHER_FS The Floid-Steinberg error
diffusion dithering
algorithm

IPL_DITHER_JJH The Jarvice-Judice-Ninke
error diffusion dithering
algorithm

IPL_DITHER_STUCKEY The Stucki error
diffusion dithering
algorithm

Intel® Image Processing Library Reference Manual

9-4

9
IPL_DITHER_BAYER The Bayer threshold

dithering algorithm.

levels The number of output levels for halftoning
(dithering); can be varied in the range
[2..(1<< depth)] ,
wheredepth is the bit depth of the destination
image.

Discussion

The functioniplReduceBits() reduces the number of intensity levels
in each channel of the source imagesrcImage and places the results in
respective channels of the destination imagedstImage .
The levels parameter sets the resultant number of intensity levels in each
channel of the destination image.
If the noise value is greater than 0, some random noise is added to the
threshold level used in computations; see [Schumacher]. The amplitude of
the noise signal is specified by thenoise parameter set as a percentage of
the destination image luminance range. For the 4x4 ordered dithering mode
(see [Bayer]) the threshold value is determined by the dither matrix used,
whereas for the error diffusion dithering mode the input threshold is set as
half of therange value, where

range = ((1<<depth) - 1)/(levels – 1)

and depth is the bit depth of the source image.

Color Space Conversion

9-5

9
The figure below illustrates the results of applying theiplReduceBits()

function with Stucki dithering to a source image that has 256 intensity
levels. The output images both have 2 intensity levels, the difference is in
the value of noise added for the error diffusion dithering algorithm.

Figure 9-1 Example of the source and resultant images for the bit reducing
function

Source image with 256
intensity levels

Intel® Image Processing Library Reference Manual

9-6

9

Table 9-2 lists the valid combinations of the source and resultant image bit
data types for reducing the bit resolution.

Table 9-2 Source and Resultant Image Data Types for Reducing the Bit
Resolution

Source Image Resultant Image

32 bits per channel 32s, 16u, 8u, 1u (1u for Gray only) bits per channel

16 bits per channel 16u, 8u, 1u (1u for Gray only) bits per channel

8 bits per channel 8u, 1u (1u for Gray only) bits per channel

Output image
(levels =2, noise =0)

Output image
(levels =2, noise =20)

Color Space Conversion

9-7

9
Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

BitonalToGray
Converts a bitonal
image to gray scale.

void iplBitonalToGray(IplImage* srcImage , IplImage*

dstImage , int ZeroScale , int OneScale);

srcImage The bitonal source image.

dstImage The resultant gray scale image. (See the
discussion below.)

ZeroScale The value that zero pixels of the source image
should have in the resultant image.

OneScale The value given to a resultant pixel if the
corresponding input pixel is 1.

Discussion

The functioniplBitonalToGray() converts the input 1-bit bitonal image
srcImage to an 8s, 8u, 16s or16u gray scale imagedstImage .

If an input pixel is 0, the corresponding output pixel is set toZeroScale .
If an input pixel is 1, the corresponding output pixel is set toOneScale .

Conversion of Absolute Colors to and from Palette Colors

Since theIplImage format supports only absolute color images, this
functionality is provided only within the context of converting an absolute
color imageIplImage to and from a palette color DIB image. See the
section “Working in the Windows DIB Environment” in Chapter 4.

Intel® Image Processing Library Reference Manual

9-8

9
Conversion from Color to Gray Scale

This section describes the function that performs the conversion of absolute
color images to gray scale.

ColorToGray
Converts a color image
to gray scale.

void iplColorToGray(IplImage* srcImage , IplImage*

dstImage);

srcImage The source image. See Table 9-3 for a list of valid
source and resultant image combinations.

dstImage The resultant image. See Table 9-3 for a list of
valid source and resultant image combinations.

Discussion

The functioniplColorToGray() converts a color source imagesrcImage

to a gray scale resultant imagedstImage .
Table 9-3 lists the valid combinations of source and resultant image bit
data types for conversion from color to gray scale.

Table 9-3 Source and Resultant Image Data Types for Conversion from
Color to Gray Scale

Source Image (data type) Resultant image (data type)

32 bit per channel Gray scale; 1, 8, or 16 bits per pixel

16 bit per channel Gray scale; 1, 8, or 16 bits per pixel

8 bit per channel Gray scale; 1, 8, or 16 bits per pixel

Color Space Conversion

9-9

9
The weights to compute true luminance from linear red, green and blue are
these:

Y = 0.212671* R + 0.715160* G+ 0.072169* B

Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor
Converts a gray scale to
color image.

void iplGrayToColor (IplImage* srcImage , IplImage*

dstImage, float FractR, float FractG, float FractB);

srcImage The source image. See Table 9-4 for a list of
valid source and resultant image
combinations.

dstImage The resultant image. See Table 9-4 for a list
of valid source and resultant image
combinations.

FractR,FractG,FractB The red, green and blue intensities for
image reconstruction. SeeDiscussionfor a
list of valid FractR , FractG , andFractB

values.

Discussion

The functioniplGrayToColor() converts a gray scale source image
srcImage to a resultant pseudo-color imagedstImage . Table 9-4 lists the
valid combinations of source and resultant image bit data types for
conversion from gray scale to color.

Intel® Image Processing Library Reference Manual

9-10

9
Table 9-4 Source and Resultant Image Data Types for Conversion from Gray

Scale to Color

Source Image (data type) Resultant image (data type)

Gray scale 1 bit 8 bit per channel

Gray scale 8 bit 8 bit per channel

Gray scale 16 bit 16 bit per channel

Gray scale 32 bit 32 bit per channel

The equations for chrominance in RGB from luminanceY are:

R = FractR * Y; 0 <= FractR <= 1
G= FractG * Y; 0 <= FractG <= 1
B = FractB * Y; 0 <= FractB <= 1.

If all three valuesFractR , FractG , FractB are zero, then the default
values are used in above equations so that:

R = 0.212671 * Y, G = 0.715160 * Y, B = 0.072169 * Y.

Conversion of Color Models

This section describes the conversion of red-green-blue (RGB) images to
and from other common color models: hue-saturation-value model (HSV),
hue-lightness-saturation (HLS) model, and a number of others.

As an alternative way of color models conversion (that works only for
somecolor models) you can just multiply pixel values by a color twist
matrix; see “Color Twist Matrices” section in this chapter.

Note also that conversion of RGB images to and from the cyan-magenta-
yellow (CMY) model can be performed by a simple subtraction. You can
use the functioniplSubtractS to accomplish this conversion. For
example, with maximum pixel value of 255 for 8-bit unsigned images,
the iplSubtractS() function is used as follows:

iplSubtractS(rgbImage , cmyImage , 255, TRUE)

Color Space Conversion

9-11

9
This call converts the RGB imagergbImage to the CMY imagecmyImage

by setting each channel in the CMY image as follows:

C = 255 - R
M = 255 - G
Y = 255 - B

The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.

Data ranges in the HLS and HSV Color Models

The ranges of color components in the hue-lightness-saturation (HLS) and
hue-saturation-value (HSV) color models are defined as follows:

hueH is in the range 0 to 360
lightnessL is in the range 0 to 1
saturationS is in the range 0 to 1
valueV is in the range 0 to 1.

In the Image Processing Library, these color components are represented
by the following integer values of hueH’ , lightnessL’ , saturationS’ , and
valueV’ :

H’ = H/2 for 8-bit unsigned color channels,H’ = H otherwise,
L’ = L* MAX_VAL

S’ = S* MAX_VAL

V’ = V* MAX_VAL.

Here
MAX_VAL= 255 for 8-bit unsigned color channels,
MAX_VAL= 65,535 for 16-bit unsigned color channels,
MAX_VAL= 2,147,483,647 for 32-bit signed color channels.

Intel® Image Processing Library Reference Manual

9-12

9
RGB2HSV
Converts RGB images
to the HSV color model.

void iplRGB2HSV(IplImage* rgbImage , IplImage* hsvImage);

rgbImage The source RGB image.

hsvImage The resultant HSV image.

Discussion

The function converts the RGB imagergbImage to the HSV image
hsvImage . The function checks that the input image is an RGB image. The
channel sequence and color model of the output image are set to HSV.

HSV2RGB
Converts HSV images
to the RGB color model.

void iplHSV2RGB(IplImage* hsvImage , IplImage* rgbImage);

hsvImage The source HSV image.

rgbImage The resultant RGB image.

Discussion

The function converts the HSV imagehsvImage to the RGB image
rgbImage . The function checks that the input image is an HSV image and
that the output image is RGB.

Color Space Conversion

9-13

9
RGB2HLS
Converts RGB images
to the HLS color model.

void iplRGB2HLS(IplImage* rgbImage , IplImage* hlsImage);

rgbImage The source RGB image.

hlsImage The resultant HLS image.

Discussion

The function converts the RGB imagergbImage to the HLS image
hlsImage . The function checks that the input image is an RGB image. The
function sets the channel sequence and color model of the output image to
HLS.

HLS2RGB
Converts HLS images to
the RGB color model.

void iplHLS2RGB(IplImage* hlsImage , IplImage* rgbImage);

hlsImage The source HLS image.

rgbImage The resultant RGB image.

Discussion

The function converts the HLS imagehlsImage to the RGB image
rgbImage ; see [Rogers85]. The function checks that the input image is an
HLS image and that the output image is RGB.

Intel® Image Processing Library Reference Manual

9-14

9
RGB2LUV
Converts RGB images
to the LUV color model.

void iplRGB2LUV(IplImage* rgbImage , IplImage* luvImage);

rgbImage The source RGB image.

luvImage The resultant LUV image.

Discussion

The function converts the RGB imagergbImage to the LUV image
luvImage . The function checks that the input image is an RGB image; it
sets the channel sequence and color model of the output image to LUV.
The function processes 32f images only.

LUV2RGB
Converts LUV images to
the RGB color model.

void iplLUV2RGB(IplImage* luvImage , IplImage* rgbImage);

luvImage The source LUV image.

rgbImage The resultant RGB image.

Discussion

The function converts the LUV imageluvImage to the RGB image
rgbImage . The function checks that the input image is an LUV image and
that the output image is RGB.
The function processes 32f images only.

Color Space Conversion

9-15

9
RGB2XYZ
Converts RGB images
to the XYZ color model.

void iplRGB2XYZ(IplImage* rgbImage , IplImage* xyzImage);

rgbImage The source RGB image.
xyzImage The resultant XYZ image.

Discussion

The function converts the RGB imagergbImage to the XYZ image
xyzImage according to the following formulas:

X = 0.4124·R + 0.3576·G + 0.1805·B
Y = 0.2126·R + 0.7151·G + 0.0721·B
Z = 0.0193·R + 0.1192·G + 0.9505·B.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to XYZ.
Since 0.0193 + 0.1192 + 0.9505 > 1,theZ value might saturate.

XYZ2RGB
Converts XYZ images to
the RGB color model.

void iplXYZ2RGB(IplImage* xyzImage , IplImage* rgbImage);

xyzImage The source XYZ image.
rgbImage The resultant RGB image.

Discussion

The function converts the XYZ imagexyzImage to the RGB image
rgbImage . The function checks that the input image is an XYZ image and
that the output image is RGB.

Intel® Image Processing Library Reference Manual

9-16

9
RGB2YCrCb
Converts RGB images to
the YCrCb color model.

void iplRGB2YCrCb(IplImage* rgbImage , IplImage*

YCrCbImage);

rgbImage The source RGB image.
YCrCbImage The resultant YCrCb image.

Discussion

The function converts the RGB imagergbImage to the YCrCb image
YCrCbImage (via the YUV model) according to the following formulas:

Y = 0.3·R + 0.6·G + 0.1·B
U = B - Y Cb= 0.5·(U + 1)
V = R - Y Cr = V/1.6+ 0.5.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to “YCr”.

YCrCb2RGB
Converts YCrCb images
to the RGB color model.

void iplYCrCb2RGB(IplImage* YCrCbImage , IplImage*

rgbImage);

YCrCbImage The source YCrCb image.
rgbImage The resultant RGB image.

Discussion

The function converts the YCrCb imageYCrCbImage to the RGB image
rgbImage . The function checks that the input image is a YCrCb image and
that the output image is RGB.

Color Space Conversion

9-17

9
RGB2YUV
Converts RGB images
to the YUV color model.

void iplRGB2YUV(IplImage* rgbImage , IplImage* yuvImage);

rgbImage The source RGB image.
yuvImage The resultant YUV image.

Discussion

The function converts the RGB imagergbImage to the YUV image
yuvImage according to the following formulas:

Y = 0.3·R + 0.6·G + 0.1·B
U = B - Y
V = R - Y.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to YUV.

YUV2RGB
Converts YUV images to
the RGB color model.

void iplYUV2RGB(IplImage* yuvImage , IplImage* rgbImage);

yuvImage The source YUV image.
rgbImage The resultant RGB image.

Discussion

The function converts the YUV imageyuvImage to the RGB image
yuvImage . The function checks that the input image is an YUV image and
that the output image is RGB.

Intel® Image Processing Library Reference Manual

9-18

9
YCC2RGB
Converts HLS images to
the RGB color model.

void iplYCC2RGB(IplImage* YCCImage, IplImage* rgbImage);

YCCImage The source YCC image.
rgbImage The resultant RGB image.

Discussion

The function converts the YCC imageYCCImage to the RGB image
rgbImage ; see [Rogers85]. The function checks that the input image is an
YCC image and that the output image is RGB. Both images must be 8-bit
unsigned.

Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrix [ti,j] that
converts the three channels (a, b, c) into (d, e, f) according to the following
matrix multiplication by a color-twist matrix (the superscriptT is used to
indicate the transpose of the matrix).

[d, e, f, 1]
T

= t11 t12 t13 t14 * [a, b, c, 1]
T

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 t44

To apply a color-twist matrix to an image, use the function
iplApplyColorTwist() . But first call theiplCreateColorTwist() and
iplSetColorTwist() functions to create the data structure
IplColorTwist . This data structure contains the color-twist matrix and
allows you to store the data internally in a form that is efficient for
computation.

Color Space Conversion

9-19

9
CreateColorTwist
Creates a color-twist
matrix data structure.

IplColorTwist* iplCreateColorTwist(int data [16],

int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values
are in row-wise order. Color-twist values
that are in the range- 1 to 1 should be
scaled up to be in the range- 231 to 231- 1.
(Simply multiply the floating point number
in the- 1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
thescalingValue is 31. This value is used for
normalization.

Discussion

The functioniplCreateColorTwist() allocates memory for the data
structureIplColorTwist and creates the color-twist matrix that can
subsequently be used by the functioniplApplyColorTwist() .

Return Value

A pointer to theIplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

Intel® Image Processing Library Reference Manual

9-20

9
SetColorTwist
Sets a color-twist matrix
data structure.

void iplSetColorTwist(IplColorTwist* cTwist , int data [16],

int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values
are in row-wise order. Color-twist values
that are in the range- 1 to 1 should be
scaled up to be in the range- 231 to 231.
(Simply multiply the floating point number
in the- 1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
thescalingValue is 31. This value is used for
normalization.

Discussion

The functioniplSetColorTwist() is used to set the vaules of the color-
twist matrix in the data structureIplColorTwist that can subsequently be
used by the functioniplApplyColorTwist() .

Return Value

A pointer to theIplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

Color Space Conversion

9-21

9
ApplyColorTwist
Applies a color-twist
matrix to an image.

void iplApplyColorTwist(IplImage* srcImage ,

IplImage* dstImage , IplColorTwist* cTwist , int offset);

srcImage The source image.

dstImage The resultant image.

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplSetColorTwist() .

offset An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

Discussion

The functioniplApplyColorTwist() applies the color-twist matrix to
each of the first three color channels in the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
PhotoYCC to normalizedPhotoRGB (both with an opacity channel) when
the channels are in the order YCC and RGB, respectively:

2
31

0 2
31

0

2
31

X Y 0

2
31

2
31

0 0

0 0 0 2
31

where X =- 416611827 (that is,- 0.194·231) and
Y = - 1093069176 (that is,- 0.509·231).

Color-twist matrices may also be used to perform many other color
conversions as well as the following operations:

Intel® Image Processing Library Reference Manual

9-22

9
• Lightening an image
• Color saturation
• Color balance
• R, G, and B color adjustments
• Contrast adjustment.

DeleteColorTwist
Frees memory used for a
color-twist matrix.

void iplDeleteColorTwist(IplColorTwist* cTwist);

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplCreateColorTwist() .

Discussion

The functioniplDeleteColorTwist() frees memory used for the color-
twist matrix structure referred to bycTwist .

Color Space Conversion

9-23

9
ColorTwistFP
Applies a color-twist
matrix to an image with
floating-point pixel values.

IPLStatus iplColorTwistFP (const IplImage* src , IplImage*

dst , float* cTwist)

src The source image.

dst The resultant image.

cTwist The array containing color-twist matrix elements.

Discussion

The functioniplColorTwistFP() applies the color-twist matrix stored in
the arraycTwist to each of the first three color channels.

Mathematically, the function performs the following operation:

R’ = t00·R + t01·G+ t02·B + t03

G’ = t10·R + t11·G+ t12·B + t13

B’ = t20·R + t21·G+ t22·B + t23

Here (R’ , G’ , B’) are the output values of the first three channels, and
(R, G, B) are the input values of these channels. The arraycTwist should
contain the color-twise matrix elements in this order:

t00 t01 t02 t03 t10 t11 t12 t13 t20 t21 t22 t23

Both src anddst images must contain 32-bit floating-point pixel data.
Tiling and rectangular ROIs are supported; masking and COIs are not.

The function returnsIPL_StsOk on success, or an error status code on
failure (if the application passes invalid arguments or if there is insufficient
memory to perform the operation).

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Histogram, Threshold, and Compare
Functions

10-1

10
This chapter describes functions that operate on an image on a pixel-by-
pixel basis: compare, threshold, and histogram functions. Table 10-1 lists
all functions in these groups.

Table 10-1 Histogram, Threshold, and Compare Functions

Group Function Name Description

Thresholding iplThreshold Performs a simple thresholding of
an image.

Lookup Table
and Histogram

iplContrastStretch Stretches the contrast of an image
using intensity transformation.

iplComputeHisto Computes the intensity histogram
of an image.

iplHistoEqualize Enhances an image by flattening
its intensity histogram.

Comparing
Images

iplGreater
iplLess
iplEqual

Compares the pixels of two input
images and writes the results
(0 or 1) to the corresponding pixels
of the 1-bit output image.

iplGreaterS
iplGreaterSFP
iplLessS
iplLessSFP
iplEqualS
iplEqualSFP

Compares the input image’s pixels
with a constant and writes the
results (0 or 1) to the
corresponding pixels in the 1-bit
output image.

continued ☞

Intel® Image Processing Library Reference Manual

10-2

10
Table 10-1 Compare, Threshold, and Histogram Functions (continued)

Group Function Name Description

Comparing
Images
(continued)

iplEqualFPEps Performs an equality test with
tolerance ε for two input images
containing 32-bit floating-point pixel
data and writes the results (0 or 1)
to each pixel of the output image.

iplEqualSFPEps Performs an equality test with
tolerance ε for the input image and
a constant, and writes the results
(0 or 1) to the corresponding pixels
of the output image.

Thresholding

The threshold operation changes pixel values depending on whether they
are less or greater than the specifiedthreshold . If an input pixel value is
less than thethreshold , the corresponding output pixel is set to the
minimum presentable value. Otherwise, it is set to the maximum
presentable value.

Threshold
Performs a simple
thresholding of an
image.

void iplThreshold(IplImage* srcImage , IplImage* dstImage ,

int threshold);

srcImage The source image.

dstImage The resultant image.

Histogram, Threshold, and Compare Functions

10-3

10
threshold The threshold value to use for each pixel. The

pixel value in the output is set to the maximum
presentable value if it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

Discussion

The functioniplThreshold() thresholds the source imagesrcImage

using the valuethreshold to create the resultant imagedstImage . The
pixel value in the output is set to the maximum presentable value (for
example, 255 for an 8-bit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable value
(for example, 0 for an 8-bit-per-channel image). This is done for each
channel in the input image.

To convert an image to bitonal, you can useiplThreshold() function as
shown in Example 10-1.

Intel® Image Processing Library Reference Manual

10-4

10
Example 10-1 Conversion to a Bitonal Image

int example101(void) {
IplImage *imga, *imgb;
const int width = 4, height = 4;

__try {
imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(
1, 0, IPL_DEPTH_1U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(NULL == imgb) return 0;

// Create with filling
iplAllocateImage(imga, 1, 3);
if(NULL == imga->imageData) return 0;
// Make a spike
((char*)imga->imageData)[7] = (char)7;
iplAllocateImage(imgb, 0, 0);
if(NULL == imgb->imageData) return 0;

// This is important. 4 bits occupy 4 bytes
// in the imgb image because of IPL_ALIGN_DWORD
iplThreshold(imga, imgb, 7);

// Check if an error occurred
if(iplGetErrStatus() != IPL_StsOk) return 0;

}
__finally {

iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);
iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

}
return IPL_StsOk == iplGetErrStatus();

}

Histogram, Threshold, and Compare Functions

10-5

10
Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually a LUT is
provided for each channel in the image, although sometimes the same LUT
can be shared by many channels.

The IplLUT Structure

You can set a lookup table using theIplLUT structure. The C language
definition of theIplLUT structure is as follows:

IplLUT Structure Definition

typedef struct _IplLUT {
int num; /* number of keys or values */

int* key ;

int* value ;

int* factor ;

int interpolateType ;

} IplLUT;

Thekey array has the lengthnum; thevalue andfactor are arrays of the
same lengthnum-1 . TheinterpolateType can be either
IPL_LUT_LOOKUPor IPL_LUT_INTER .
Consider the following example ofnum = 4:

key value factor

k0 v0 f0
k1 v1 f1
k2 v2 f2
k3

Intel® Image Processing Library Reference Manual

10-6

10
If interpolateType is LOOKUP, then any input intensityD in the range
k0 ≤ D < k1 will result in the valuev0 , in the rangek1 ≤ D < k2 will
result in the valuev1 and so on. IfinterpolateType is INTER, then an
intensityD in the rangek0 ≤ D < k1 will result in the linearly
interpolated value

v0 + [(v1 – v0)/(k1 – k0)] * (D – k0)

The value(v1-v0)/(k1-k0) is pre-computed and stored asf0 in the array
factor in the IplLUT data structure, the value(v2-v1)/(k2-k1) is
stored asf1 and so on. Thus, the actual formula used by library functions
to compute the interpolated value ofD for example in the range
k2 ≤ D < k3 is as follows:

D’ = v2 + f2 * (D – k2)

Note that to calculate the interpolated value ofD in this last interval,
library functions do not need the valuev3 , which is used only by the
application to pre-compute the factorf2 .

The data structure described above can be used to specify a piece-wise
linear transformation that is ideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensities in the
image are distributed. The same data structureIplLUT is used for a
histogram except thatinterpolateType is alwaysIPL_LUT_LOOKUPand
factor is aNULL pointer for a histogram. However, unlike the LUT, the
value array represents counts of pixels falling in the specified ranges in
thekey array.

The sections that follow describe the functions that use the above data
structure.

Histogram, Threshold, and Compare Functions

10-7

10
ConstrastStretch
Stretches the contrast of
an image using an
intensity transformation.

void iplContrastStretch(IplImage* srcImage ,

IplImage* dstImage , IplLUT** lut);

srcImage The source image.

dstImage The resultant image.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key , value andfactor arrays fully initialized
(see “The IplLUT Structure”). One or more
channels may share the same LUT. Specifies an
intensity transformation.

Discussion

The functioniplContrastStretch() stretches the contrast in a color
source imagesrcImage by applying intensity transformations specified by
LUTs in lut to produce an output imagedstImage . Fully specified LUTs
should be provided to this function.

Example 10-2 Using the Function iplContrastStretch() to Enhance an Image

void fullRange() {

const int width = 32, height = 32, range = 256;
IplLUT lu t = { range+1, NULL,NULL,NULL, IPL_LUT_INTER };
IplLUT* plut = &lut;
int i, mn, mx;
/// make a full range image
IplImage* img = iplCreateImageJaehne(IPL_DEPTH_8U, width,
height);

Continued ☞

Intel® Image Processing Library Reference Manual

10-8

10
Example 10-2 Using the Function iplContrastStretch() to Enhance an Image

(continued)

/// allocate LUT's arrays
lut.key = malloc(sizeof(int)*(range+1));
lut.value = malloc(sizeof(int)*range);
lut.factor = malloc(sizeof(int)*range);

/// make the image with a narrow and shifted range
iplRShiftS(img, img, 4);
iplAddS(img, img, 4);

/// compute histogram and find min and max values
for(i=0; i<=range; i++) lut.key[i] = i;
iplComputeHisto(img, &plut);
mn = 0; while(!lut.value[mn]) mn++;
mx = 255; while(!lut.value[mx]) mx--;

/// prepare LUT for stretching
lut.interpolateType = IPL_LUT_INTER; /// interpolation
mode, not lookup
lut.num = 2; /// num of key values
lut.key[0] = 0; /// lower value
lut.key[1] = 255; /// upper value
lut.factor[0] = 255 / (mx - mn); /// factor to extend
range
lut.value[0] = -lut.factor[0] * mn; /// value to shift

/// The operation is: x(i) = x(i) * factor + value
iplContrastStretch(img, img, &plut);

/// compute histogram and find min and max values again
lut.num = 257;
lut.key[1] = 1;
iplComputeHisto(img, &plut);
mn = 0; while(!lut.value[mn]) mn++;
mx = 255; while(!lut.value[mx]) mx--;

free(lut.factor);
free(lut.value);
free(lut.key);
iplDeallocate(img, IPL_IMAGE_ALL);

}

Histogram, Threshold, and Compare Functions

10-9

10
ComputeHisto
Computes the intensity
histogram of an image.

void iplComputeHisto(IplImage* srcImage , IplLUT** lut);

srcImage The source image for which the histogram will be
computed.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key array fully initialized. Thevalue array will
be filled by this function. (For thekey andvalue

arrays, see “The IplLUT Structure” above.) The
same LUT can be shared by one or more
channels.

Discussion

The functioniplComputeHisto() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
arraylut containing all the LUTs. Thekey array in each LUT should be
initialized before calling this function. Thevalue array containing the
histogram information will be filled in by this function. (For thekey and
value arrays, see “The IplLUT Structure” above.)

Intel® Image Processing Library Reference Manual

10-10

10
HistoEqualize
Enhances an image by
flattening its intensity
histogram.

void iplHistoEqualize(IplImage* srcImage ,

IPLImage* dstImage , IplLUT** lut);

srcImage The source image for which the histogram will be
computed.

dstImage The resultant image after equalizing.

lut The histogram of the image is represented as an
array of pointers to LUTs, one pointer for each
channel. Each lookup table should have thekey

andvalue arrays fully initialized. (For thekey

andvalue arrays, see “The IplLUT Structure”
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call ofiplHistoEqualize() is
destructive with respect to the LUTs.

Discussion

The functioniplHistoEqualize() enhances the source imagesrcImage

by flattening its histogram represented bylut and places the enhanced
image in the output imagedstImage . After execution,lut points to the
flattened histogram of the output image; see Example 10-2.

Histogram, Threshold, and Compare Functions

10-11

10
Example 10-3 Computing and Equalizing the Image Histogram

int example102(void) {
IplImage *imga;
const int width = 4, height = 4, range = 256;
IplLUT lu t = { range+1, NULL,NULL,NULL, IPL_LUT_LOOKUP };
IplLUT* plut = &lut;

__try {
int i;
lut.key = malloc(sizeof(int)*(range+1));
lut.value = malloc(sizeof(int)*range);
imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, width, height, NULL, NULL,
NULL, NULL);

if(NULL == imga) return 0;

// Create with filling
iplAllocateImage(imga, 1, 3);
if(NULL == imga->imageData) return 0;
// Make the two level data
for(i=0; i<8; i++) ((char*)imga->imageData)[i] = (char)7;
// Initialize the histogram levels
for(i=0; i<=range; i++) lut.key[i] = i;

// Compute histogram
iplComputeHisto(imga, &plut);
// Equalize histogram = rescale range of image data
iplHistoEqualize(imga, imga, &plut);

// Check if an error occurred
if(iplGetErrStatus() != IPL_StsOk) return 0;

}
__finally {

iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);
if(lut.key) free(lut.key);
if(lut.value) free(lut.value);

}
return IPL_StsOk == iplGetErrStatus();

}

Intel® Image Processing Library Reference Manual

10-12

10
Comparing Images

This section describes the functions that allow you to compare images.
Each compare function writes its results to a 1-bit output image. The output
pixel is set to 1 if the corresponding input pixel(s) satisfied the compare
condition; otherwise, the output pixel is set to 0. Often, you might wish to
use the compare functions to generate a 1-bit mask image for future use in
other image-processing operations.

Functions whose names have a capitalS (for example,iplGreaterS)
compare the pixels ofa single input imageand a scalar variable. Functions
whose names don’t have anS (such asiplGreater) compare the
corresponding pixels intwo input images. The two input images must have
the same bit depth, origin, and channel of interest (COI) setting.

When the input pixels have more than one channel and the COI is not set,
the result will be 1 only for those pixels in whicheach channelsatisfies the
compare condition.

For example, in case ofiplGreater (two input images) one RGB pixel is
“greater” than another only if all three channel values of the first pixel are
greater than those of the second. Thus, if at least one of the channel values
in an input pixel is less than or equal to that channel’s value in the other
image, theniplGreater will set the corresponding output pixel to 0.

Functions that use a single input image work similarly. If you don’t set the
COI, the function compares all channel values to the input scalar value.
Again, the result will be 1 only for those pixels in which each channel
satisfies the required condition. For example, an RGB pixel is considered
to be “equal” to the input scalar value only if all three RGB channels are
equal to that value. If at least one of the channel values is greater or less
than the scalar value, the functioniplEqualS will set the corresponding
output pixel to 0.

Histogram, Threshold, and Compare Functions

10-13

10
Greater
Tests if the pixel values of the
first image are greater than
those of the second image.

IPLStatus iplGreater (IplImage* img1, IplImage* img2 ,

IplImage* dst);

img1, img2 The source images.

dst The resultant 1-bit image.

Discussion

The functioniplGreater() compares the corresponding pixels of two
input images for “greater than” and writes the results to a 1-bit imagedst .
If a pixel’s value inimg1 is greater than that pixel’s value inimg2 , then the
corresponding pixel indst is set to 1; otherwise the pixel indst is set to 0.

The imagesimg1 andimg2 must have the same bit depth, origin, and COI
settings. If the COI is not set, animg1 pixel is considered to be “greater”
than animg2 pixel only if each channel in theimg1 pixel is greater than
that channel in theimg2 pixel. If the COI is set, the function compares only
the COI values.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass incompatibleimg1 andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

Intel® Image Processing Library Reference Manual

10-14

10
Less
Tests if the pixel values of the
first image are less than those of
the second image.

IPLStatus iplLess (IplImage* img1, IplImage* img2 ,

IplImage* dst);

img1, img2 The source images.

dst The resultant 1-bit image.

Discussion

The functioniplLess() compares the corresponding pixels of two input
images for “less than” and writes the results to a 1-bit imagedst . If a
pixel’s value inimg1 is less than that pixel’s value inimg2 , then the
corresponding pixel indst is set to 1; otherwise the pixel indst is set to 0.

The imagesimg1 andimg2 must have the same bit depth, origin, and COI
settings. If the COI is not set, animg1 pixel is considered to be “less” than
an img2 pixel only if each channel in theimg1 pixel is less than that
channel in theimg2 pixel. If the COI is set, the function compares only the
COI values.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass incompatibleimg1 andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

Histogram, Threshold, and Compare Functions

10-15

10
Equal
Tests if the pixel values of the
first image are equal to those of
the second image.

IPLStatus iplEqual (IplImage* img1, IplImage* img2 ,

IplImage* dst);

img1, img2 The source images.

dst The resultant 1-bit image.

Discussion

The functioniplEqual() compares the corresponding pixels of two input
images for equality and writes the results to a 1-bit imagedst . If a pixel’s
value inimg1 is equal to that pixel’s value inimg2 , then the corresponding
pixel in dst is set to 1; otherwise the pixel indst is set to 0.

The imagesimg1 andimg2 must have the same bit depth, origin, and COI
settings. If the COI is not set, animg1 pixel is considered to be equal to an
img2 pixel only if each channel in theimg1 pixel is equal to that channel in
the img2 pixel. If the COI is set, the function compares only the COI
values.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass incompatibleimg1 andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

Intel® Image Processing Library Reference Manual

10-16

10
EqualFPEps
Tests if the floating-point pixel
values in two images are equal
within a toleranceε.

IPLStatus iplEqualFPEps (IplImage* img1, IplImage* img2 ,

IplImage* dst , float eps);

img1, img2 The source images.

dst The resultant 1-bit image.

eps The tolerance value.

Discussion

The functioniplEqualFPEps() tests if the corresponding pixels of two
input images are equal within the toleranceeps , and writes the results to a
1-bit imagedst . If the absolute value of difference of the pixel values in
img1 andimg2 is less thaneps , then the corresponding pixel indst is set
to 1; otherwise the pixel indst is set to 0.

Both img1 andimg2 must contain 32-bit floating-point pixel data. They
must have the same origin and COI settings. If the COI is not set, pixels in
img1 andimg2 are considered to be “equal” only if each channel in the
img1 pixel is equal, within the toleranceeps , to that channel in theimg2

pixel. If the COI is set, the function compares only the COI values.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass incompatibleimg1 andimg2 or a null pointer, the function does
not perform the compare operation and returns an error status code.

Histogram, Threshold, and Compare Functions

10-17

10
GreaterS
Tests if the image’s pixel values
are greater than an integer
scalar value.

IPLStatus iplGreaterS (IplImage* src , int s,

IplImage* dst);

src The source image.

s The integer scalar value to be compared with
pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplGreaterS() compares the pixels of the input imagesrc

and a scalar values for “greater than” and writes the results to a 1-bit
imagedst . If a pixel’s value is greater thans , then the corresponding pixel
in dst is set to 1; otherwise the pixel indst is set to 0.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functioniplGreaterSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be “greater” thans only if each channel in the pixel is greater
thans . If the COI is set, the function comparess and the pixel values in the
COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Intel® Image Processing Library Reference Manual

10-18

10
GreaterSFP
Tests if the image’s pixel values
are greater than a floating-point
scalar value.

IPLStatus iplGreaterSFP (IplImage* src , float s,

IplImage* dst);

src The source image.

s The 32-bit floating-point scalar value to be
compared with pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplGreaterSFP() compares the pixels of the input image
src and a scalar values for “greater than” and writes the results to a 1-bit
imagedst . If an input pixel’s value is greater thans , then the
corresponding pixel indst is set to 1; otherwise the pixel indst is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the functioniplGreaterS()

described on the previous page.) If the source image COI is not set, a pixel
is considered to be “greater” thans only if each channel in the pixel is
greater thans . If the COI is set, the function comparess and the pixel
values in the COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Histogram, Threshold, and Compare Functions

10-19

10
LessS
Tests if the image’s pixel values
are less than an integer scalar
value.

IPLStatus iplLessS (IplImage* src , int s,

IplImage* dst);

src The source image.

s The integer scalar value to be compared with
pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplLessS() compares the pixels of the input imagesrc and
a scalar values for “less than” and writes the results to a 1-bit imagedst .
If a pixel’s value is less thans , then the corresponding pixel indst is set to
1; otherwise the pixel indst is set to 0.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functioniplLessSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be “less” thans only if each channel in the pixel is less than
s . If the COI is set, the function comparess and the pixel values in the
COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Intel® Image Processing Library Reference Manual

10-20

10
LessSFP
Tests if the image’s pixel values
are less than a floating-point
scalar value.

IPLStatus iplLessSFP (IplImage* src , float s,

IplImage* dst);

src The source image.

s The 32-bit floating-point scalar value to be
compared with pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplLessSFP() compares the pixels of the input imagesrc

and a scalar values for “less than” and writes the results to a 1-bit image
dst . If an input pixel’s value is lesss , then the corresponding pixel indst

is set to 1; otherwise the pixel indst is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the functioniplLessS()

described on the previous page.) If the source image COI is not set, a pixel
is considered to be “less” thans only if each channel in the pixel is less
thans . If the COI is set, the function comparess and the pixel values in the
COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Histogram, Threshold, and Compare Functions

10-21

10
EqualS
Tests if the image’s pixel values
are equal to an integer scalar
value.

IPLStatus iplEqualS (IplImage* src , int s,

IplImage* dst);

src The source image.

s The integer scalar value to be compared with
pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplEqualS() compares the pixels of the input imagesrc and
an integer scalar values for equality and writes the results to a 1-bit image
dst . If a pixel’s value is equal tos , then the corresponding pixel indst is
set to 1; otherwise the pixel indst is set to 0.

The function supports all pixel data types except 32-bit floating-point data.
(For images with floating-point data, use the functioniplEqualSFP()

described on the next page.) If the source image COI is not set, a pixel is
considered to be equal tos only if each channel in the pixel is equal tos . If
the COI is set, the function comparess and the pixel values in the COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Intel® Image Processing Library Reference Manual

10-22

10
EqualSFP
Tests if the image’s pixel values
are equal to a floating-point
scalar value.

IPLStatus iplEqualSFP (IplImage* src , float s,

IplImage* dst);

src The source image.

s The 32-bit floating-point scalar value to be
compared with pixel values.

dst The resultant 1-bit image.

Discussion

The functioniplEqualSFP() compares the pixels of the input imagesrc

and a scalar values for equality and writes the results to a 1-bit imagedst .
If an input pixel’s value is equal tos , then the corresponding pixel indst

is set to 1; otherwise the pixel indst is set to 0.

The function supports only images with 32-bit floating-point pixel data.
(For images with data of other types, use the functioniplEqualS()

described on the previous page.) If the source image COI is not set, a pixel
is considered to be “equal” tos only if each channel in the pixel is equal to
s . If the COI is set, the function comparess and the pixel values in the
COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

Histogram, Threshold, and Compare Functions

10-23

10
EqualSFPEps
Tests if the pixel values are
equal to a floating-point scalar
value within a toleranceε.

IPLStatus iplEqualSFPEps (IplImage* src , float s,

IplImage* dst , float eps);

src The source image.

s The 32-bit floating-point scalar value to be
compared with pixel values.

dst The resultant 1-bit image.

eps The toleranceε.

Discussion

The functioniplEqualSFPEps() tests if pixels of the input imagesrc are
equal to a scalar values within the toleranceeps , and writes the results to
a 1-bit imagedst . If the absolute value of difference of the input pixel
value ands is less thaneps , then the corresponding pixel indst is set to 1;
otherwise the pixel indst is set to 0.

The function supports only images with 32-bit floating-point pixel data.
If the source image COI is not set, a pixel is considered to be “equal” tos

only if each channel in the pixel is equal tos within the given tolerance. If
the COI is set, the function comparess and the pixel values in the COI.

The function returnsIPL_StsOK if the compare operation is successful.
If you pass an image with data of an unsupported type or a null pointer, the
function does not perform the compare operation and returns an error status
code.

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Geometric Transforms

11-1

11
This chapter describes the functions that perform geometric transforms
to resize the image, change the image orientation, or warp the image. There
is also a special function,iplRemap() , for performing geometric
transforms with a user-defined coordinate mapping.

Table 11-1 lists image geometric transform functions and macro
definitions.

Table 11-1 Image Geometric Transform Functions and Macros

Group Function Name Description

Resizing iplZoom Zooms or expands an image.

iplDecimate Decimates (shrinks) an image.

iplDecimateBlur Blurs an image, then decimates the
blurred image.

iplResize Resizes an image.

iplZoomFit
iplDecimateFit
iplResizeFit

Change image size using image’s
dimensions to set scaling factors
(macro definitions).

Changing iplMirror Mirrors an image.

Orientation iplRotate Rotates an image.

iplGetRotateShift Computes the shift for iplRotate() ,
given the rotation center and angle.

iplRotateCenter Rotates an image around an arbitrary
center (macro definition).

Warping iplShear Shears an image.

iplWarpAffine Performs affine transforms with the
specified coefficients.

Continued ☞

Intel® Image Processing Library Reference Manual

11-2

11
Table 11-1 Image Geometric Transform Functions (continued)

Group Function Name Description

Warping
(cont.)

iplWarpBilinear Performs a bilinear
transform with the specified
coefficients.

iplWarpBilinearQ Performs a bilinear
transform with the specified
reference quadrangle.

iplWarpPerspective Performs a perspective
transform with the specified
coefficients.

iplWarpPerspectiveQ Performs a perspective
transform with the specified
reference quadrangle.

Warping
support

iplGetAffineBound
iplGetBilinearBound
iplGetPerspectiveBound

Compute the bounding
rectangle for the rectangular
ROI transformed by the
warping functions.

iplGetAffineQuad
iplGetBilinearQuad
iplGetPerspectiveQuad

Compute coordinates of the
quadrangle to which the ROI
is mapped by the warping
functions.

iplGetAffineTransform
iplGetBilinearTransform
iplGetPerspectiveTransform

Compute the coefficients of
transforms performed by the
warping functions.

Arbitrary
mapping

iplRemap Re-maps the image using a
doordinate look-up table.

Geometric Transforms

11-3

11
Internally, all geometric transformation functions handle regions of interest
(ROIs) with the following sequence of operations:

• transform the rectangular ROI of the source image to a quadrangle in
the destination image

• find the intersection of this quadrangle and the rectangular ROI of the
destination image

• update the destination image in the intersection area, taking into
account mask images (if any).

The source and destination images must be different; that is, in-place
operations are not supported. The coordinates in the source and destination
images must have the same origin.

Most of the geometric transformation functions have tointerpolatethe
pixel values of the source image in order to compute the pixel values of the
destination image. The Image Processing Library supports several
interpolation algorithms. For more information on the algorithms supported
in the library, seeAppendix B.

Changing the Image Size

This section describes the functions that scale the input image in thex- or
y-directions, without changing the image orientation.

These functions perform image resampling by using various kinds of
interpolation algorithms: nearest neighbor, linear interpolation, cubic
interpolation, and super-sampling.

Intel® Image Processing Library Reference Manual

11-4

11
Zoom
Zooms or expands an
image.

void iplZoom(IplImage* srcImage , IplImage* dstImage , int

xDst , int xSrc , int yDst , int ySrc , int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc ≥ 1 andyDst/ySrc ≥ 1 - the factors
by which thex andy dimensions of the image’s
ROI are changed. For example, setting
xDst = 2, xSrc = 1, yDst = 2, ySrc = 1
doubles the image size in each dimension to
increase the image area by a factor of four.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC Cubic interpolation.

Discussion

The functioniplZoom() zooms or expands the source imagesrcImage

by xDst/xSrc in thex direction andyDst/ySrc in they direction. The
interpolation specified byinterpolate is used for resampling the input
image.

Geometric Transforms

11-5

11
Decimate
Decimates or shrinks an
image.

void iplDecimate(IplImage* srcImage , IplImage* dstImage ,

int xDst , int xSrc , int yDst , int ySrc , int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc ≤ 1 andyDst/ySrc ≤ 1 - the factors
by which thex andy dimensions of the image’s
ROI are changed. For example, setting
xDst = 1, xSrc = 2, yDst = 1, ySrc = 2
decreases the image size in each dimension by
half.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

IPL_INTER_SUPER Super-sampling.

Discussion

The functioniplDecimate() decimates or shrinks the source image
srcImage by xDst/xSrc in thex direction andyDst/ySrc in they
direction. The interpolation specified byinterpolate is used for
resampling the input image.

Intel® Image Processing Library Reference Manual

11-6

11
DecimateBlur
Blurs and decimates an
image.

void iplDecimateBlur (IplImage* srcImage ,

IplImage* dstImage , int xDst , int xSrc , int yDst , int

ySrc , int interpolate , int xMaskSize , int yMaskSize);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc ≤ 1 andyDst/ySrc ≤ 1 - the factors
by which thex andy dimensions of the image’s
ROI are changed (similar toiplDecimate).

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

xMaskSize,yMaskSize Thex andy size of the blur mask.

Discussion

The functioniplDecimateBlur() blurs the input image using an
xMaskSize by yMaskSize mask, then decimates the blurred image by a
factor ofxDst/xSrc in thex direction andyDst/ySrc in they direction.

If mask rows and columns contain odd numbers of pixels, the mask anchor
is exactly at the center of the mask. Otherwise, the functionrounds upthe
center coordinates. Thus, in a 3x3 mask with top left corner at (0,0), the
anchor is at (1,2). In a 3x4 mask, the anchor would be at (1,2).

The interpolation specified byinterpolate is used for resampling the
input image.

Geometric Transforms

11-7

11
Resize
Resizes an image.

void iplResize(IplImage* srcImage , IplImage* dstImage , int

xDst , int xSrc , int yDst , int ySrc , int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc andyDst/ySrc - the factors by
which thex andy dimensions of the image’s ROI
are changed. For example, setting
xDst = 1, xSrc = 2, yDst = 2, ySrc = 1
halves thex and doubles they dimension.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

IPL_INTER_SUPER Super-sampling (can be
used only forxDst ≤ xSrc , yDst ≤ ySrc).

Discussion

The functioniplResize() resizes the source imagesrcImage by
xDst/xSrc in thex direction andyDst/ySrc in they direction.
The function differs fromiplZoom andiplDecimate in that it can
increase one dimension of an image while decreasing the other dimension.

The interpolation specified byinterpolate is used for resampling the
input image.

Intel® Image Processing Library Reference Manual

11-8

11
iplZoomFit
iplDecimateFit
iplResizeFit
Macro definitions that change
the image size using the images’
dimensions as scaling factors.

iplZoomFit(SRC, DST, INTER);

iplDecimateFit(SRC, DST, INTER);

iplResizeFit(SRC, DST, INTER);

SRC The source image.

DST The destination image.

INTER The type of interpolation to perform for
resampling the source image.

Discussion

Use macro definitionsiplZoomFit(), iplDecimateFit(),

iplResizeFit() to resize a source image ROI so that its dimensions fit
into the destination ROI (or the whole image) size. These macros use
dimensions of source and destination images’ ROIs (or the sizes of whole
images) to determine the respective scaling factors inx- andy- directions.
Note thatSRC and DSTpointers toIplImage structures are used but not
checked in the macros. Thus, it is essential that your application checks
that these pointers specify valid source and destination images.

Geometric Transforms

11-9

11
Example 11-1 Using Macro Definition to Resize an Image

int ResizeFit(void) {

IplImage *imga = iplCreateImageJaehne(
IPL_DEPTH_8U, 5, 5);

IplImage *imgb = iplCreateImageJaehne(
IPL_DEPTH_8U, 7, 7);

IPLStatus st;

iplResizeFit(imga, imgb, IPL_INTER_NN);
st = iplGetErrStatus();

iplDeallocate(imga, IPL_IMAGE_ALL);
iplDeallocate(imgb, IPL_IMAGE_ALL);

return IPL_StsOk == st;

}

Changing the Image Orientation

The functions described in this section change the image orientation by
rotating or mirroring the source image. Rotation involves image resampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
interpolation (seeAppendix B). Mirroring is performed by flipping the
image axis in horizontal or vertical direction.

Rotate
Rotates an image
around the (0,0) origin.

void iplRotate(IplImage* srcImage , IplImage* dstImage ,

double angle , double xShift , double yShift,

int interpolate);

srcImage The source image.

Intel® Image Processing Library Reference Manual

11-10

11
dstImage The resultant image.

angle The angle (in degrees) to rotate the image.
The image is rotated around the corner with
coordinates (0,0).

xShift , yShift The shifts along thex- andy-axes to be
performed after the rotation.

interpolate The type of interpolation to perform for
resampling the source image. The following
modes are supported:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGESmooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functioniplRotate() rotates the source imagesrcImage by angle

degrees around the origin (0,0) and shifts it byxShift andyShift along
thex- andy-axis, respectively. The interpolation specified by
interpolate is used for resampling the input image.

If you need to rotate the image around an arbitrary center (xCenter ,
yCenter) rather than the origin (0,0), you can computexShift and
yShift using the functioniplGetRotateShift and then call
iplRotate() . Alternatively, you can use theiplRotateCenter macro
definition.

Geometric Transforms

11-11

11
GetRotateShift
Computes shifts for iplRotate, given
the rotation center and angle.

void iplGetRotateShift(double xCenter , double yCenter ,

double angle , double* xShift , double* yShift);

xCenter , yCenter Coordinates of the rotation center for which you
wish to compute the shifts.

angle The angle (in degrees) to rotate the image around
the point with coordinates (xCenter , yCenter).

xShift , yShift Output parameters: the shifts along thex- andy-
axes to be passed toiplRotate() in order to
achieve rotation around the specified center
(xCenter , yCenter) by the specifiedangle .

Discussion

Use the functioniplGetRotateShift() if you wish to rotate an image
around an arbitrary center (xCenter , yCenter) rather than the origin (0,0).
Just pass the rotation center (xCenter , yCenter) and the angle of rotation
to iplGetRotateShift() , and the function will recompute the shifts
xShift , yShift .

Calling iplRotate() with thesexShift andyShift is equivalent to
rotating the image around the center (xCenter , yCenter).

Example 11-2 Rotating an Image

int example111(void) {

IplImage *imga, *imgb;

const int width = 5, height = 5;

__try {

int i;

continued ☞

Intel® Image Processing Library Reference Manual

11-12

11
Example 11-2 Rotating an Image (continued)

double xshift=0, yshift=0;

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, width, height, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, width, height, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

// Create with filling

iplAllocateImage(imga, 1, 0);

if(NULL == imga->imageData) return 0;

// Make horizontal line

for(i=0; i<width; i++)

(imga->imageData + 2*imga->widthStep)[i] =

(uchar)7;

iplAllocateImage(imgb, 0, 0);

if(NULL == imgb->imageData) return 0;

// Rotate by 45 degrees around point(2,2)

iplGetRotateShift(2.0,2.0,45.0, &xshift, &yshift);

iplRotate(imga, imgb, 45.0, xshift, yshift,

IPL_INTER_LINEAR);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Geometric Transforms

11-13

11
iplRotateCenter
This function-like macro allows to
rotate an image around thegiven
center.

iplRotateCenter(srcImage, dstImage, angle, xCenter ,

yCenter , interpolate);

srcImage The source image.

dstImage The destination image.

angle The angle (in degrees) to rotate the image
around the point with coordinates
(xCenter , yCenter).

xCenter , yCenter Coordinates of the center of rotation.

interpolate The type of interpolation to perform for
resampling the input image. The following
modes are supported:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to
interpolation by using
bitwise logical OR.

Discussion

Use the macro iplRotateCente r to rotate an image around an arbitrary
center. The rotation center coordinates (xCenter , yCenter) are passed
as arguments, and the call to the auxiliary function that recomputes the
shifts is hidden.

Intel® Image Processing Library Reference Manual

11-14

11
Example 11-3 Using Macro Definition to Rotate an Image

int RotateCenter(void) {

IplImage *imga = iplCreateImageJaehne(IPL_DEPTH_8U, 5, 5);
IplImage *imgb = iplCloneImage(imga);
IPLStatus st;

// Rotate by 45 about point(2,2)
iplRotateCenter(imga, imgb, 45, 2, 2, IPL_INTER_NN);
st = iplGetErrStatus();

iplDeallocate(imga, IPL_IMAGE_ALL);
iplDeallocate(imgb, IPL_IMAGE_ALL);

return IPL_StsOk == st;
}

Mirror
Mirrors an image about a
horizontal or vertical axis.

void iplMirror(IplImage* srcImage , IplImage* dstImage ,

int flipAxis);

srcImage The source image.

dstImage The resultant image.

flipAxis Specifies the axis to mirror the image.
Use the following values to specify the axes:
0 for the horizontal axis, 1 for the vertical axis,
- 1 for both horizontal and vertical axes.

Discussion

The functioniplMirror() mirrors or flips the source imagesrcImage

about a horizontal or vertical axis or both.

Geometric Transforms

11-15

11
Warping

This section describes shearing and warping functions of the Image
Processing Library. These functions have been added in release 2.0.
They perform the following operations:

• affine warping (the functionsiplWarpAffine andiplShear)
• bilinear warping (iplWarpBilinear , iplWarpBilinearQ)
• perspective warping (iplWarpPerspective , iplWarpPerspectiveQ).

Affinewarping operations are more complex and more general than
resizing or rotation. A single call toiplWarpAffine() can perform a
rotation, resizing, and mirroring. (This can require some matrix math on
the part of the user to calculate the transform coefficients.)

Bilinear andperspectivewarping operations can be viewed as further
generalizations of affine warping. They give you even more degrees of
freedom in transforming the image. For example, an affine transformation
always maps parallel lines to parallel lines, while bilinear and perspective
transformations might not preserve parallelism; a bilinear transformation
might even map straight lines to curves.

Unlike rotation or zooming, the warping functions do not necessarily map
the rectangular ROI of the source image to a rectangle in the destination
image. Affine warping functions map the rectangular ROI to a
parallelogram; bilinear and perspective warping functions map the ROI to a
general quadrangle.

To help you cope with the complex behavior of warping transformations,
the library includes a number of auxiliary functions that compute the
following warping parameters:

• coordinates of the four points to which the ROI’s vertices are mapped
• the bounding rectangle for the transformed ROI
• the transformation coefficients.

These auxiliary functions are described immediately after the function that
performs the respective warping operation.

Intel® Image Processing Library Reference Manual

11-16

11
Shear
Performs a shear of
the source image.

void iplShear(IplImage* srcImage , IplImage* dstImage , double xShear ,
double yShear , double xShift , double yShift , int interpolate);

srcImage The source image.

dstImage The resultant image.

xShear, yShear The shear coefficients.

xShift, yShift Additional shift values for thex andy directions.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGESmooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functioniplShear() performs a shear of the source image according
to the following formulas:

x’ = x + xShear ·y + xShift

y’ = y + yShear ·x + yShift

wherex andy denote the original pixel coordinates;x’ andy’ denote the
pixel coordinates in the sheared image. This shear transform is a special
case of affine transform performed byiplWarpAffine (see below).

The interpolation specified byinterpolate is used for resampling the
input image.

Geometric Transforms

11-17

11
WarpAffine
Warps an image by an affine transform.

void iplWarpAffine(IplImage* srcImage , IplImage* dstImage ,

const double coeffs [2][3], int interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs The affine transform coefficients.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGESmooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

Discussion

The functioniplWarpAffine() warps the source image by an affine
transformation according to the following formulas:

x’ = coeffs [0][0] ·x + coeffs [0][1] ·y + coeffs [0][2]

y’ = coeffs [1][0] ·x + coeffs [1][1] ·y + coeffs [1][2]

wherex andy denote the original pixel coordinates;x’ andy’ denote the
pixel coordinates in the transformed image.

The interpolation specified byinterpolate is used for resampling the
input image. To compute the affine transform parameters, use the functions
iplGetAffineBound() , iplGetAffineQuad() and
iplGetAffineTransform() . These functions are described in the sections
that follow.

Intel® Image Processing Library Reference Manual

11-18

11
GetAffineBound
Computes the bounding
rectangle for ROI transformed
by iplWarpAffine.

void iplGetAffineBound(IplImage* image , const double

coeffs [2][3], double rect [2][2]);

image The image to be passed toiplWarpAffine() .

coeffs The iplWarpAffine() transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpAffine() mapsimage ’s ROI.

Discussion

The functioniplGetAffineBound() computes the coordinates of vertices
of the smallest possible rectangle with horizontal and vertical sides that
bounds the figure to whichiplWarpAffine() mapsimage ’s ROI.

GetAffineQuad
Computes the quadrangle to
which the image ROI would be
mapped by iplWarpAffine.

void iplGetAffineQuad(IplImage* image , const double

coeffs [2][3], double quad [4][2]);

image The image to be passed toiplWarpAffine() .

coeffs The affine transform coefficients.

Geometric Transforms

11-19

11
quad Output array: coordinates of the quadrangle to

which theimage ’s ROI would be mapped by
iplWarpAffine() .

Discussion

The functioniplGetAffineQuad() computes coordinates of the
quadrangle to which theimage ’s ROI would be mapped by
iplWarpAffine() with the transform coefficientscoeffs .

GetAffineTransform
Computes the iplWarpAffine
coefficients, given the ROI-
quadrangle pair.

void iplGetAffineTransform(IplImage* image , double

coeffs [2][3], const double quad [4][2]);

image The image to be passed toiplWarpAffine() .

coeffs Output array: the affine transform coefficients.

quad Coordinates of the 4 points to which theimage ’s
ROI vertices would be mapped by
iplWarpAffine() .

Discussion

The functioniplGetAffineTransform() computes the coefficients of
iplWarpAffine() transform, given the vertices of the quadrangle to
which theimage ’s ROI would be mapped byiplWarpAffine() with
these coefficients.

Intel® Image Processing Library Reference Manual

11-20

11
WarpBilinear
WarpBilinearQ
Warps an image by a
bilinear transform.

void iplWarpBilinear(IplImage* srcImage , IplImage* dstImage ,
const double coeffs [2][4], int warpFlag , int interpolate);

void iplWarpBilinearQ(IplImage* srcImage , IplImage* dstImage ,
const double quad [4][2], int warpFlag , int interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs Array with bilinear transform coefficients.

warpFlag A flag: eitherIPL_R_TO_Q (ROI to quadrangle) or
IPL_Q_TO_R (quadrangle to ROI). SeeDiscussion.

interpolate The type of interpolation to perform for resampling.
Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGESmooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

quad Array of coordinates of the reference quadrangle
vertices. IfwarpFlag is IPL_R_TO_Q, the
rectangular ROI of the source image is mapped to
the reference quadrangle. IfwarpFlag is
IPL_Q_TO_R, the source quadrangle is mapped to
the rectangular ROI of the destination image.

Geometric Transforms

11-21

11
Discussion

The functionsiplWarpBilinear() andiplWarpBilinearQ() warp the
source image by a bilinear transformation according to the following
formulas:

x’ = c00·xy + c01·x + c02·y + c03

y’ = c10·xy + c11·x + c12·y + c13

wherex andy denote the original pixel coordinates;x’ andy’ denote the
pixel coordinates in the transformed image.

The two functions differ in their third argument:iplWarpBilinear() uses
a 2-by-4 input array of transform coefficientscmn= coeff [m][n] ,
whereasiplWarpBilinearQ() computes the coefficients internally from
the input arrayquad containing coordinates of the reference quadrangle.

If warpFlag is IPL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If warpFlag is IPL_Q_TO_R, the functions transform the source quadrangle
into the rectangular ROI of the resultant image.

The interpolation specified byinterpolate is used for resampling the
input image.

To compute the bilinear transform parameters, use the auxiliary functions:
iplGetBilinearBound() , iplGetBilinearQuad() and
iplGetBilinearTransform() . These functions are described in the
sections that follow.

Intel® Image Processing Library Reference Manual

11-22

11
GetBilinearBound
Computes the bounding
rectangle for ROI transformed
by iplWarpBilinear.

void iplGetBilinearBound(IplImage* image , const double

coeffs [2][4], double rect [2][2]);

image The image to be passed toiplWarpBilinear() .

coeffs The bilinear transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpBilinear() mapsimage ’s ROI.

Discussion

The functioniplGetBilinearBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical sides
that bounds the figure to whichiplWarpBilinear() mapsimage ’s ROI.

GetBilinearQuad
Computes the quadrangle to
which the image ROI would be
mapped by iplWarpBilinear.

void iplGetBilinearQuad(IplImage* image , const double

coeffs [2][4], double quad [4][2]);

image The image to be passed toiplWarpBilinear() .

coeffs The bilinear transform coefficients.

Geometric Transforms

11-23

11
quad Output array: coordinates of the quadrangle to

which theimage ’s ROI would be mapped by
iplWarpBilinear() .

Discussion

The functioniplGetBilinearQuad() computes coordinates of the
quadrangle to which theimage ’s ROI would be mapped by
iplWarpBilinear() with the transform coefficientscoeffs .

GetBilinearTransform
Computes the iplWarpBilinear
coefficients, given the ROI-
quadrangle pair.

void iplGetBilinearTransform(IplImage* image , double

coeffs [2][4], const double quad [4][2]);

image The image to be passed toiplWarpBilinear() .

coeffs Output array: the bilinear transform coefficients.

quad Coordinates of the 4 points to which theimage ’s
ROI vertices would be mapped by
iplWarpBilinear() .

Discussion

The functioniplGetBilinearTransform() computes the
iplWarpBilinear() transform coefficients, given the vertices of the
quadrangle to which theimage ’s ROI would be mapped by
iplWarpBilinear() with these coefficients.

Intel® Image Processing Library Reference Manual

11-24

11
WarpPerspective
WarpPerspectiveQ
Warps an image by a
perspective transform.

void iplWarpPerspective(IplImage* srcImage , IplImage* dstImage ,
const double coeffs [3][3], int warpFlag , int interpolate);

void iplWarpPerspectiveQ(IplImage* srcImage , IplImage* dstImage ,
const double quad [4][2], int warpFlag , int interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs Array with perspective transform coefficients.

warpFlag A flag: eitherIPL_R_TO_Q (ROI to quadrangle) or
IPL_Q_TO_R (quadrangle to ROI). SeeDiscussion.

interpolate The type of interpolation to perform for resampling.
Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

+IPL_SMOOTH_EDGE Smooth edges of an image.
Can be added to interpolation
by using bitwise logical OR
(seeAppendix Bfor details).

quad Array of coordinates of the reference quadrangle
vertices. IfwarpFlag is IPL_R_TO_Q, the
rectangular ROI of the source image is mapped to
the reference quadrangle. IfwarpFlag is
IPL_Q_TO_R, the source quadrangle is mapped to
the rectangular ROI of the destination image.

Geometric Transforms

11-25

11
Discussion

The functionsiplWarpPerspective() andiplWarpPerspectiveQ()

warp the source image by a perspective transformation according to the
following formulas:

x’ = (c00·x + c01·y + c02)/(c20·x + c21·y + c22)
y’ = (c10·x + c11·y + c12)/(c20·x + c21·y + c22)

wherex andy denote the original pixel coordinates;x’ andy’ denote the
pixel coordinates in the transformed image.

The two functions differ in their third argument:iplWarpPerspective()

uses a 3-by-3 input array of transform coefficientscmn= coeff [m][n] ,
whereasiplWarpPerspectiveQ() computes the coefficients internally
from the input arrayquad containing coordinates of the reference
quadrangle.

If warpFlag is IPL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If warpFlag is IPL_Q_TO_R, the functions transform the source quadrangle
into the rectangular ROI of the resultant image.

The interpolation specified byinterpolate is used for resampling the
input image.

To compute the perspective transform parameters, use these auxiliary
functions:iplGetPerspectiveBound() , iplGetPerspectiveQuad()

andiplGetPerspectiveTransform() . They are described in the sections
that follow.

Intel® Image Processing Library Reference Manual

11-26

11
GetPerspectiveBound
Computes the bounding
rectangle for ROI transformed
by iplWarpPerspective.

void iplGetPerspectiveBound(IplImage* image , const double

coeffs [3][3], double rect [2][2]);

image The image to be passed to
iplWarpPerspective() .

coeffs The perspective transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpPerspective() mapsimage ’s ROI.

Discussion

The functioniplGetPerspectiveBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical sides
that bounds the figure to whichiplWarpPerspective() mapsimage ’s
ROI.

GetPerspectiveQuad
Computes the quadrangle to
which the ROI is mapped by
iplWarpPerspective.

void iplGetPerspectiveQuad(IplImage* image , const double

coeffs [3][3], double quad [4][2]);

image The image to be passed to
iplWarpPerspective() .

coeffs The perspective transform coefficients.

Geometric Transforms

11-27

11
quad Output array: coordinates of the quadrangle to

which theimage ’s ROI would be mapped by
iplWarpPerspective() .

Discussion

The functioniplGetPerspectiveQuad() computes coordinates of the
quadrangle to which theimage ’s ROI would be mapped by
iplWarpPerspective() with the transform coefficientscoeffs .

GetPerspectiveTransform
Computes the coefficients of
iplWarpPerspective, given the
ROI-quadrangle pair.

void iplGetPerspectiveTransform(IplImage* image , double

coeffs [3][3], const double quad [4][2]);

image The image to be passed to
iplWarpPerspective() .

coeffs Output array: perspective transform coefficients.

quad Coordinates of the 4 points to which theimage ’s
ROI vertices would be mapped by
iplWarpPerspective() .

Discussion

The functioniplGetPerspectiveTransform() computes the
iplWarpPerspective() transform coefficients, given the vertices of the
quadrangle to which theimage ’s ROI would be mapped by
iplWarpBilinear() with these coefficients.

Intel® Image Processing Library Reference Manual

11-28

11
Arbitrary Transforms

To perform special geometric transforms not covered in the above sections,
the Image Processing Library includes theiplRemap() function. Unlike
other geometric transform functions,iplRemap() uses coordinate tables
supplied by the application. For each pixel in the destination image, you
have to provide coordinates of the source image’s point which you would
like to be mapped to that destination pixel.

Remap
Re-maps the image using a
coordinate look-up table.

void iplRemap(IplImage* srcImage , IplImage* xMap,

IplImage * yMap, IplImage* dstImage ,

int interpolate);

srcImage The source image.

dstImage The resultant image.

xMap One-channel 32-bit floating-point image storing
the table ofx-coordinates.

yMap One-channel 32-bit floating-point image storing
the table ofy-coordinates.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic interpolation.

Geometric Transforms

11-29

11
Discussion

The functioniplRemap() maps the imagesrcImage to dstImage using a
coordinate table supplied by the application in the imagesxMap andyMap.
To each pixel in the destination imagedstImage , the function assigns the
value taken from the point (x,y) in the source image; the coordinatesx and
y are retrieved from the locations inxMap andyMap corresponding to the
destination pixel.

Your application has to compute the floating-point coordinates and store
them inxMap andyMap prior to callingiplRemap() ; see Example 11-2.

Data order and bit depth ofsrcImage anddstImage must be the same.
The function supports source and destination images with 1-bit, 8-bit
unsigned, and 16-bit unsigned pixel channels. ROIs and tiling ofsrcImage

anddstImage are supported. Mask is not directly supported. For masking
some of the image pixels, you can just specify the correspondingx andy
values that are outside the source image’s ROI.

Example 11-4 Re-mapping an Image

int example_remap(void) {

const int width = 8, height = 8;

int x, y; float norm;

/// source and destination images: 8u

IplImage *src = iplCreateImageJaehne(IPL_DEPTH_8U,

width,height);

IplImage *dst = iplCreateImageHeader (

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_DWORD, width, height, NULL,

NULL, NULL, NULL);

/// create images for x and y coordinates

IplImage *xmap = iplCreateImageJaehne(IPL_DEPTH_32F,

width, height);

IplImage *ymap = iplCloneImage(xmap);

continued ☞

Intel® Image Processing Library Reference Manual

11-30

11
Example 11-4 Re-mapping an Image (continued)

/// allocate memory destination with zero data

iplAllocateImage(dst, 1, 0);

/// provide the x and y coordinates

/// these coords map the image to an identical one

for(y=0; y<height; ++y) {

float yy = (float)y;

for(x=0; x<width; ++x) {

float xx = (float)x;

iplPutPixel(xmap, x, y, &xx);

iplPutPixel(ymap, x, y, &yy);

}

}

/// now remap to get the same image

iplRemap(src, xmap, ymap, dst, IPL_INTER_LINEAR);

/// find max abs difference, should be 0

norm = (float)iplNorm(src, dst, IPL_C);

/// deallocate images

iplDeallocate(xmap, IPL_IMAGE_ALL);

iplDeallocate(ymap, IPL_IMAGE_ALL);

iplDeallocate(src, IPL_IMAGE_ALL);

iplDeallocate(dst, IPL_IMAGE_ALL);

return IPL_StsOk == iplGetErrStatus() && norm == 0;

}

Image Statistics Functions

12-1

12
This chapter describes the Image Processing Library functions that allow
you to compute the following statistical parameters of an image:

• theC, L1, andL2 norms of the image pixel values
• spatial moments of order 0 to 3
• central moments of order 0 to 3
• minimum and maximum pixel values (for floating-point data only)

Table 12-1 lists the image statistics functions.

Table 12-1 Image Statistics Functions

Group Function Name Description

Norms iplNorm Computes the C, L1, or L2 norm of pixel
values.

Moments iplMoments Computes all image moments of order
0 to 3.

iplGetCentralMoment
iplGetSpatialMoment

Return image moments computed by
iplMoments() .

iplGetNormalizedCentralMoment
iplGetNormalizedSpatialMoment

Return normalized image moments
computed by iplMoments() .

iplCentralMoment
iplSpatialMoment

Compute an image moment of the
specified order.

iplNormalizedCentralMoment
iplNormalizedSpatialMoment

Compute a normalized image moment
of the specified order.

Cross-
correlation

iplNormCrossCorr Computes the normalized cross-
correlation of an image and a template.

Minimum and
maximum

iplMinMaxFP Retrieves the actual minimum and
maximum pixel values in an image with
32-bit floating-point data.

Intel® Image Processing Library Reference Manual

12-2

12
Image Norms

The iplNorm() function described in this section allows you to compute
the following norms of the image pixel values:

• L1 norm (the sum of absolute pixel values)

• L2 norm (the square root of the sum of squared pixel values)

• C norm (the largest absolute pixel value).

This function also helps you compute the norm of differences in pixel
values of two input images as well as the relative error for two input
images.

Norm
Computes the norm of pixel
values or of differences in pixel
values of two images.

double iplNorm(IplImage* srcImageA , IplImage* srcImageB ,

int normType);

srcImageA The first source image.

srcImageB The second source image.

normType Specifies the norm type. Can beIPL_C , IPL_L1 , or
IPL_L2 ; if the srcImageB pointer is notNULL, the
normType argument can also beIPL_RELATIVEC ,
IPL_RELATIVEL1 , or IPL_RELATIVEL2 .

Discussion

You can use theiplNorm() function to compute the following norms of
pixel values:

Image Statistics Functions

12-3

12
(1) the norm ofsrcImageA pixel values,||a||

(2) the norm of differences of the source images’ pixel values,||a - b||

(3) the relative error||a - b|| / ||b|| (see formulas below).

Let a = {ak} and b = {bk} be vectors containing pixel values ofsrcImageA

andsrcImageB , respectively (all channels are used except alpha channel).

(1) If the srcImageB pointer isNULL, the function returns the norm of
srcImageA pixel values:

||a||L1
= Σk |ak| for normType = IPL_L1

||a||L2
= (Σk |ak|

2)1/2
for normType = IPL_L2

||a||C = max
k |ak| for normType = IPL_C .

(2) If the srcImageB pointer is notNULL, the function returns the norm of
differences ofsrcImageA andsrcImageB pixel values:

||a - b||L1
= Σk |ak - bk| for normType = IPL_L1

||a - b||L2
= (Σk |ak - bk|

2)1/2
for normType = IPL_L2

||a - b||C = max
k |ak - bk| for normType = IPL_C .

(3) If normType is IPL_RELATIVEC , IPL_RELATIVEL1 , or
IPL_RELATIVEL2 , thesrcImageB pointer must not beNULL.
The function first computes the norm of differences, as defined in (2). Then
this norm is divided by the norm ofb, and the function returns the relative
error||a - b|| / ||b||.

Return Value

The computed norm or relative error in double floating-point format.

Intel® Image Processing Library Reference Manual

12-4

12
Example 12-1 Computing the Norm of Pixel Values

int example51(void) {

IplImage *imga, *imgb;

const int width = 4;

const int height = 4;

double norm;

__try {

imga = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, height, width, NULL, NULL,

NULL, NULL);

if(NULL == imga) return 0;

imgb = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

IPL_ALIGN_QWORD, height, width, NULL, NULL,

NULL, NULL);

if(NULL == imgb) return 0;

iplAllocateImage(imga, 1, 127);

if(NULL == imga->imageData) return 0;

iplAllocateImage(imgb, 1, 1);

if(NULL == imgb->imageData) return 0;

norm = iplNorm(imga, imgb, IPL_RELATIVEC);

// Check if an error occurred

if(iplGetErrStatus() != IPL_StsOk) return 0;

}

__finally {

iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

}

return IPL_StsOk == iplGetErrStatus();

}

Image Statistics Functions

12-5

12
Image Moments

Spatial and central moments are important statistical characteristics of an
image. The spatial momentMU(m,n) and central momentUU(m,n) are
defined as follows:

()M m n x y PU
j

nRows

k
m

j
n

j k
k

nCols

, ,=
=

−

=

−

∑ ∑
0

1

0

1

() () ()U m n x x y y PU
j

nRows

k

m

j

n

j k
k

nCols

, ,= − −
=

−

=

−

∑ ∑
0

1

0 0
0

1

where the summation is performed for all rows and columns in the image;
Pj,k are pixel values;xk andyj are pixel coordinates;m andn are integer
power exponents;x0 andy0 are the gravity center’s coordinates:

x0 = MU(1,0)/MU(0,0)

y0 = MU(0,1)/MU(0,0).

The sum of exponentsm + n is called the moment order. The library
functions support moments of order 0 to 3 (that is, 0≤ m + n ≤ 3).

In the Image Processing Library image moments are stored in structures of
the IplMomentState type. The type declaration is given below.

IplMomentState Structure Definition

typedef struct {
double scale /* scaling factor for the moment */
double value /* the moment */

} ownMoment;
typedef ownMoment IplMomentState[4][4];

Intel® Image Processing Library Reference Manual

12-6

12
Moments
Computes all image
moments of order 0 to 3.

void iplMoments(IplImage* image , IplMomentState mState);

image The image for which the moments will be
computed.

mState The structure for storing the image moments.

Discussion

The functioniplMoments() computes all spatial and central moments of
order 0 to 3 for theimage . The moments and the corresponding scaling
factors are stored in themState structure. To retrieve a particular moment
value, use the functions described in the sections that follow.

GetSpatialMoment
Returns a spatial moment
computed by iplMoments.

double iplGetSpatialMoment(IplMomentState mState , int

mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Image Statistics Functions

12-7

12
Discussion

The functioniplGetSpatialMoment() returns the spatial moment
MU(m,n) previously computed by theiplMoments() function.

GetCentralMoment
Returns a central moment
computed by iplMoments.

double iplGetCentralMoment(IplMomentState mState , int

mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplGetCentralMoment() returns the central moment
UU(m,n) previously computed by theiplMoments() function.

GetNormalizedSpatialMoment
Returns the normalized
spatial moment computed
by iplMoments.

double iplGetNormalizedSpatialMoment(IplMomentState

mState , int mOrd, int nOrd);

Intel® Image Processing Library Reference Manual

12-8

12
mState The structure storing the image moments.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplGetNormalizedSpatialMoment() returns the
normalized spatial momentMU(m,n)/(nCols

m·nRows
n
), whereMU(m,n) is

the spatial moment previously computed by theiplMoments() function,
nCols andnRows are the numbers of columns and rows, respectively.

GetNormalizedCentralMoment
Returns the normalized
central moment computed
by iplMoments.

double iplGetNormalizedCentralMoment(IplMomentState

mState , int mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplGetNormalizedCentralMoment() returns the
normalized central momentUU(m,n)/(nCols

m·nRows
n
), whereUU(m,n) is

the central moment previously computed by theiplMoments() function,
nCols andnRows are the numbers of columns and rows, respectively.

Image Statistics Functions

12-9

12
SpatialMoment
Computes a spatial
moment.

double iplSpatialMoment(IplImage* image , int mOrd, int

nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplSpatialMoment() computes the spatial momentMU(m,n)
for the image .

CentralMoment
Computes a central
moment.

double iplCentralMoment(IplImage* image , int mOrd, int

nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Intel® Image Processing Library Reference Manual

12-10

12
Discussion

The functioniplCentralMoment() computes the central momentUU(m,n)
for the image .

NormalizedSpatialMoment
Computes a normalized
spatial moment.

double iplNormalizedSpatialMoment(IplImage* image , int

mOrd, int nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplNormalizedSpatialMoment() computes the normalized
spatial momentMU(m,n)/(nCols

m·nRows
n
) for the image .

HereMU(m,n) is the spatial moment,nCols andnRows are the numbers of
pixel columns and rows, respectively.

Image Statistics Functions

12-11

12
NormalizedCentralMoment
Computes a normalized
central moment.

double iplNormalizedCentralMoment(IplImage* image , int

mOrd, int nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponentsm andn (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The functioniplNormalizedCentralMoment() computes the normalized
central momentUU(m,n)/(nCols

m·nRows
n
) for the image .

HereUU(m,n) is the central moment,nCols andnRows are the numbers of
pixel columns and rows, respectively.

Intel® Image Processing Library Reference Manual

12-12

12
Cross-Correlation

This section describes theiplNormCrossCorr() function that allows you
to compute the cross-correlation of an image and a template (another
image). The cross-correlation values are image similarity measures: the
higher cross-correlation at a particular pixel, the more similarity between
the template and the image in the neighborhood of the pixel.

The mathematical definition of the cross-correlationRtx(r,c) between a
template and an image at the pixel in rowr and columnc is given by this
equation:

() ∑∑
−

=

−

=

−+−+=
1

0

1

0

)2/,2/(),(,
tplCols

i

tplRows

j
tx tplColsictplRowsjrxijtcrR

wherex(r,c) is the image’s pixel value in rowr and columnc, andt(r,c) is
the template’s pixel value; the template size istplColsx tplRows.

The iplNormCrossCorr() function of the Image Processing Library
computesnormalizedcross-correlation values,ρtx(r,c), defined as follows:

() ()
() ()2/,2/,

,
,

tplColstplRowsRcrR

crR
Acr

ttxx

tx
tx =ρ .

HereA is a factor for scaling the computed values to the full range of pixel
values in the destination image;Rxx andRtt denote the auto-correlation of
the image and the template, respectively:

∑∑
−+

−−=

−+

−−=

=
2/)1(

2/)1(
,,

2/)1(

2/)1(

),(
tplColsc

tplColsci
ijij

tplRowsr

tplRowsrj
xx xxcrR

() ∑∑
−

=

−

=

=
1

0
,,

1

0

2/,2/
tplCols

i
ijij

tplRows

j
tt tttplColstplRowsR .

Image Statistics Functions

12-13

12
NormCrossCorr
Computes normalized cross-correlation
between an image and a template.

IPLStatus iplNormCrossCorr (IplImage* srcImage ,

IplImage* tplImage , IplImage* dstImage);

srcImage, tplImage The source and template images.

dstImage The destination image.

Discussion

For each pixel insrcImage , the functioniplNormCrossCorr() computes
the normalized cross-correlation valueρtx(r,c) with the templatetplImage ,
and stores the computed value in the corresponding pixel of the output
imagedstImage . The template anchor for matching the image pixel is
always at the geometric center of the template. (See the formula forρtx on
the previous page.)

All three images passed toiplNormCrossCorr() must have the same data
order (pixels or planes), origin (top-left or bottom-left), number of
channels, alpha channel number, and COI number. The function supports
images with 8-bit and 16-bit pixel data (both signed and unsigned) as well
as 32-bit signed and 32-bit floating-point data.

Both srcImage anddstImage can have any combination of ROIs
(rectangular ROIs, mask ROIs, and COIs). If you set any of these ROIs, the
function will update pixels ofdstImage only in the intersection of all
applicable ROIs.

The tplImage ’s mask, even if present, has no effect on the results.

The source and destination images can be either tiled or non-tiled. The
template image must be non-tiled only.

The function returnsIPL_StsOK on success, and an error status code on
failure.

Intel® Image Processing Library Reference Manual

12-14

12
Minimu m and Maximum

The iplMinMaxFP() function described in this section allows you to
compute the minimum and maximum pixel values for an imagewith 32-bit
floating-point data.

MinMaxFP
Retrieves the minimum
and maximum floating-
point pixel value.

IPLStatu s iplMinMaxF P (cons t IplImage* image , float* min ,

float* max);

image The image with 32-bit floating-point pixel data
for which the minimum and maximum values
wil l be retrieved.

min, max The output values: minimum and maximum.

Discussion

The function iplMinMaxFP() stores in min andmax the actual minimum
and maximum pixel values of the image . The function returnsIPL_StsOK

on success, and an error status code on failure.

User Defined Functions

13-1

13
This chapter describes library functions that enable users to create their
own image processing functions and make calls to them from application
programs. You can define functions that perform point operations either on
each channel value of processed pixels of an image separately, or on all
channel values simultaneously. Both integer and floating-point image data
can be processed.

To introduce your own image processing function, you must first define it
as one of the following types:

IplUserFunc For functions that operate on images with integer
data and process each channel value of a pixel
separately.

IplUserFuncFP For functions that operate on images with all data
types and process each channel value of a pixel
separately.

IplUserFuncPixel For functions that operate on images with all data
types and process all channel values of a pixel
simultaneously.

Afterwards you can call your own functions by using the respective library
functionsIplUserProcess() , IplUserProcessFP() , or
IplUserProcessPixel() , described later in this chapter.

Intel® Image Processing Library Reference Manual

13-2

13
UserFunc
The type of user-defined
functions that perform point
operations on a separate
channel value of a pixel (for
images with integer data).

The prototype specified by the callback function of typeIplUserFunc

must be as follows:

typedef int (__STDCALL *IplUserFunc)(int src);

src The source pixel channel value converted
to int type.

Discussion
The user function defined with the above prototype must take the channel
valuesrc of type int as input and return the computed destination pixel
channel value also asint type. To use the function for image processing,
its name must be passed to the calling functioniplUserProcess() as the
last parameter in the arguments list.
The saturation of the returned result to the destination data range is done by
the calling function.

The user function of typeIplUserFunc may callIPL_ERRORto set the
IPL error status.

SeeiplUserProcess() for more information.

User Defined Functions

13-3

13
UserFuncFP
The type of user-defined
functions that perform point
operations on a separate
channel value of a pixel (for
images with all data types).

The prototype specified by the callback function of typeIplUserFuncFP

must be as follows:

typedef float (__STDCALL *IplUserFuncFP)(float src);

src The source pixel channel value converted
to float type.

Discussion

The user function defined with the above prototype must take thefloat

channel valuesrc as input and return the computed destination pixel
channel value also asfloat . To use the function for image processing, its
name must be passed to the calling functioniplUserProcessFP() as the
last parameter in the arguments list.
The saturation of the returned result to the destination data range is done by
the calling function in case when the source and destination images contain
integer data.

The user function of typeIplUserFuncFP may callIPL_ERRORto set the
IPL error status.

SeeiplUserProcessFP() for more information.

Intel® Image Processing Library Reference Manual

13-4

13
UserFuncPixel
The type of user-defined
functions that perform point
operations simultaneously on
all channel values of a pixel
in an image.

The prototype specified by the callback function of type
IplUserFuncPixel must be as follows:

typedef void (__STDCALL *IplUserFuncPixel)(IplImage*
srcImage , void* srcPixel , IplImage* dstImage , void*
dstPixel);

srcImage The source image header (used by the
function to determine the source image
depth and number of channels).

dstImage The destination image header (used by the
function to determine the destination image
depth and number of channels).

srcPixel Pointer to the array of channel values of the
source pixel.

dstPixel Pointer to the array of channel values of the
destination pixel.

Discussion

Function of the typeIplUserFuncPixel performs user-defined point
operations on a source image pixel by processing all channel values of a
given pixel simultaneously. ThesrcPixel anddstPixel pointers must
be converted by the user function to arrays of source and destination
channel values that have respective bit depths.
To use the function for image processing, its name must be passed to the
calling functioniplUserProcessPixel() as the last parameter in the
arguments list.

User Defined Functions

13-5

13
If saturation of the computed result is necessary, it must be provided within
the user function.

The user function of typeIplUserFuncPixel may callIPL_ERRORto set
the IPL error status.

See iplUserProcessPixel() for more information.

UserProcess
Calls user-defined function
to separately process each
channel value of pixels in an
image with integer data.

void iplUserProcess(IplImage* srcImage , IplImage*
dstImage , IplUserFunc cbFunc);

srcImage The source image.

dstImage The destination image.

cbFunc The pointer to the user-defined function (of
IplUserFunc type).

Discussion

The functioniplUserProcess() scans pixels of a source image
srcImage , retrieves respective channel values, and passes them to the user-
defined functioncbFunc for processing.
The source image must contain integer data of 8-, 16-, or 32-bit depth.
Before passing channel values tocbFunc , the function
iplUserProcess() converts them toint type.
After processing bycbFunc , the returned values are saturated to the
destination data range, and written to the respective channel of the
destination imagedstImage . The saturation is done only for 8- or 16-bit

Intel® Image Processing Library Reference Manual

13-6

13
data. To perform saturation of 32-bit integer data, use
iplUserProcessFP() function instead.

The functioniplUserProcess() supports tiled images and images with
rectangle ROI and mask ROI. The operations can be performed in-place.
The source and destination images must contain data of the same bit depth
and have the same number of processed channels.

Example 13-1 Image Channel Values Processing by User Defined Function

static int __STDCALL bw(int src) {
if(src < 127) return 0;
return 255;

}

void UserFunc(void) {

IplImage *imga = iplCreateImageJaehne(IPL_DEPTH_8U,
16, 5);

IplImage *imgb = iplCloneImage(imga);

iplUserProcess(imga, imgb, bw);

iplDeallocate(imga, IPL_IMAGE_ALL);
iplDeallocate(imgb, IPL_IMAGE_ALL);

}

User Defined Functions

13-7

13
UserProcessFP
Calls user-defined function
to separately process each
channel value of pixels in
images with all data types.

void iplUserProcessFP(IplImage* srcImage , IplImage*
dstImage , IplUserFuncFP cbFunc);

srcImage The source image.

dstImage The destination image.

cbFunc The pointer to the user-defined function (of
IplUserFuncFP type).

Discussion

The functioniplUserProcessFP() scans pixels of a source image
srcImage , retrieves respective channel values, and passes them to the user-
defined functioncbFunc for processing. The source image can contain
either integer data of 8-, 16-, 32-bit depth, or floating-point 32f data.
Before passing channel values tocbFunc , the function
iplUserProcessFP() converts them tofloat type.
After processing bycbFunc , the returned values are saturated to the
destination data range (except the case of 32f image data), and written to
the respective channel of the destination imagedstImage .

The functioniplUserProcessFP() supports tiled images and images with
rectangle ROI and mask ROI. The operations can be performed in-place.
The source and destination images must contain data of the same bit depth
and have the same number of processed channels.

Intel® Image Processing Library Reference Manual

13-8

13
UserProcessPixel
Calls user-defined function to
simultaneously process channel
values of pixels in an image.

void iplUserProcessPixel(IplImage* srcImage , IplImage*
dstImage , IplUserFuncPixel cbFunc);

srcImage The source image.

dstImage The destination image.

cbFunc The pointer to the user-defined function (of
IplUserFuncPixel type).

Discussion

Use the functioniplUserProcessPixel() if you want to call your own
image processing functioncbFunc of type IplUserFuncPixel that
performs point operations using all channel values of a pixel.
For each pixel to be processed, the functioniplUserProcessPixel()

creates arrays of source and destination pixel channel values, and calls the
functioncbFunc , passing the pointers to these arrays as arguments. Thus,
all channel values of a source image pixel are processed simultaneously.
After processing bycbFunc , the results are placed into the respective pixel
channel values of the destination imagedstImage without saturation.
When necessary, saturation should be provided bycbFunc .
On return fromcbFunc , the functioniplUserProcessPixel() checks
IplError() status to see if an error has occurred.
The source image can contain either integer data of 8-, 16-, 32-bit depth, or
floating-point 32f data. The bit depths and the number of channels in the
source and destination images may be different. The function
iplUserProcessPixel() supports tiled images and images with rectangle
ROI and mask ROI. The channel ROI is not supported, it must be provided
by the user function when necessary.

User Defined Functions

13-9

13
Example 13-2 Pixel Values Processing by User Defined Function

static void __STDCALL rgb2gray(IplImage* srcImage,
void* srcPixel, IplImage* dstImage, void* dstPixel)

{

uchar* src = (uchar*)srcPixel;
uchar* dst = (uchar*)dstPixel;
if(1 != dstImage->nChannels) {

IPL_ERROR(IPL_BadNumChannels, "rgb2gray",
"Output image must be one-channel image");

return;
}
dst[0] = (uchar)(0.212671 * src[0] +

0.71516 * src[1] + 0.072169 * src[2] + 0.5);
}

void exmRgb2Gray(void) {

const int side = 5;
IplROI ro i = { 1, 0, 0, side, side };
IplImage *jmg, *dst, *src = iplCreateImageHeader(

3, 0, IPL_DEPTH_8U, "RGBA", "BGRA",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, side, side, &roi, NULL,
NULL, NULL);

iplAllocateImage(src, 0, 0);
dst = iplCreateImageHeader(

1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, side, side, NULL, NULL,
NULL, NULL);

iplAllocateImage(dst, 1, 0);
jmg = iplCreateImageJaehne(IPL_DEPTH_8U, side, side);
iplCopy(jmg, src);
src->roi = 0;
iplUserProcessPixel(src, dst, rgb2gray);
iplDeallocate(jmg, IPL_IMAGE_ALL);
iplDeallocate(dst, IPL_IMAGE_ALL);
iplDeallocate(src, IPL_IMAGE_ALL);

}

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Library Version

14-1

14
This chapter describes the function iplGetLibVersion() that returns the
version number and other information about the Image Processing Library.

GetLibVersion
Returns information about the
library version.

cons t IPLLibVersion * iplGetLibVersion(void);

Discussion

The function iplGetLibVersion() retrieves the following information
about the Image Processing Library:

• major version number
• minor version number
• build number
• DLL or static library fil e name
• version number string
• internal version string
• build date string
• calling convention string

Retur n Value

The function returns the library information in the structure
IPLLibVersion .

Intel® Image Processing Library Reference Manual

14-2

14
The IPLLibVersio n structure is defined as follows:

typede f struc t _IPLLibVersio n {

int major; / * e.g . 2 */

int minor; / * e.g . 0 */

int build; / * e.g . 1 */

cons t cha r * Name; / * "ipl6l.lib","iplm5.dll " */

cons t cha r * Version; / * e.g . "v2.00" */

cons t cha r * InternalVersion; / * e.g.

"[2.00.01.023,01/01/99]" */

cons t cha r * BuildDate ; / * e.g . "Ja n 1 99" */

cons t cha r * CallConv;

} IPLLibVersion;

Supported Image Attributes
and Operation Modes

A-1

A
This appendix contains tables that list the supported image attributes and
operation modes for functions that have input and/or output images.
The ipl prefixes in the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions

Input and output images Rect. In-place Tiling

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Set u or s† operates on a single image x x x

SetFP 32f† operates on a single image x x x

PutPixel all operates on a single image x

GetPixel all operates on a single image x

Copy all x x x x x x x

CloneImage all x x x x x x x

Exchange all x x x x x x x

Scale u or s x x x x x

ScaleFP 32f‡ x x x x x

NoiseImage all x x x x x x x

Convert u or s x

† u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel; u = unsigned; s = signed; f = float.
‡ only one of the images is 32f, the other must be 8s, 8u, 16s, 16u, 32s bits per channel

Intel® Image Processing Library Reference Manual

A-2

A
Table A-2 Windows DIB Conversion Functions

Function Depths Input and output images have the same

input output order origin number of channels

ConvertFromDIB all‡ 1u,8u,16u

ConvertFromDIBSep all‡ 1u,8u,16u

ConvertToDIB 1u,8u,16u all‡ x

ConvertToDIBSep 1u,8u,16u all‡ x

TranslateDIB 1bpp 1u clone x x

≥4bpp‡ 8u clone x x

‡ all = 1, 4, 8, 16, 24, 32 bpp DIB images;
≥4bpp stands for 4, 8, 16, 24, 32 bpp DIB images.

For iplConvertFromDIB and iplConvertFromDIBSep , the number of channels, bit depth
per channel and the dimensions of the IplImage should be greater than or equal to those of

the DIB image. When converting a DIB RGBA image, the IplImage should also contain an

alpha channel.

Supported Image Attributes and Operation Modes

A-3

A
Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions

Input and output images Rect. In-place Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Abs u or s† x x x x x x x x

AddS u or s x x x x x x x x

SubtractS u or s x x x x x x x x

MultiplyS u or s x x x x x x x x

AddSFP 32f x x x x x x x x

SubtractSFP 32f x x x x x x x x

MultiplySFP 32f x x x x x x x x

MultiplySScale 8u,16u x x x x x x x x

Square all† x x x x x x x x

Add all x x x x x x x x

Subtract all x x x x x x x x

Multiply all x x x x x x x x

MultiplyScale 8u,16u x x x x x x x x

LShiftS u or s x x x x x x x x

RShiftS u or s x x x x x x x x

Not u or s x x x x x x x x

AndS u or s x x x x x x x x

OrS u or s x x x x x x x x

XorS u or s x x x x x x x x

And u or s x x x x x x x x

Or u or s x x x x x x x x

Xor u or s x x x x x x x x

† u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)

all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

Intel® Image Processing Library Reference Manual

A-4

A
Table A-4 Image Attributes and Modes of Alpha-Blending Functions

Input and output images Rect. In-place Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

PreMultiplyAlpha 8u,16u x x x x x x x x
AlphaComposite 8u,16u x x x x x x x x
AlphaCompositeC 8u,16u x x x x x x x x

Table A-5 Image Attributes and Modes of Filtering Functions

Input and output images Rect. Border In- Tiling Mask

Function Depths must have the same ROI Mode place

depth order origin COI s u p p o r t e d (x)

Blur u or s x x x x x x x x x
Convolve2D u or s x x x x x x x x x
Convolve2DFP 32f x x x x x x x x
ConvolveSep2D u or s x x x x x x x x

ConvolveSep2DFP 32f x x x x x x x x
MaxFilter u or s x x x x x x x x
MinFilter u or s x x x x x x x x
MedianFilter u or s x x x x x x x x
ColorMedianFilter 8u/s,

16u/s,32f
x x x x x x x x

FixedFilter all x x x x x x x x

Table A-6 Image Attributes and Modes of Fourier and DCT Functions

Input & output images Rect. In- Tiling Mask

Function Depths have the same ROI place

input output order origin COI s u p p o r t e d (x)

DCT2D ≥8u/s‡, 32f ≥8u/s, 32f x x x
RealFft2D ≥8u/s, 32f ≥8u/s, 32f x x x x
CcsFft2D ≥8u/s, 32f ≥8u/s, 32f x x x x
MpyRCPack2D ≥8s, 32f ≥8s, 32f x x

‡ ≥8u/s stands for 8u, 8s, 16u, 16s, 32s; [≥8s stands for 8s, 16s, 32s bits per channel

Supported Image Attributes and Operation Modes

A-5

A
Table A-7 Image Attributes and Modes of Morphological Operations

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Erode 1u,8u,16u x x x x x x x x

Dilate 1u,8u,16u x x x x x x x x

Open 1u,8u,16u x x x x x x x x

Close 1u,8u,16u x x x x x x x x

Table A-8 Image Attributes and Modes of Color Space Conversion Functions

Input & output images Rect. In- Tiling

Function Depths have the same ROI place

input output depth order origin COI s u p p o r t e d (x)

ReduceBits 32s 1u, 8u,16u, 32s x x x x

16u 1u, 8u,16u x x x x

8u 1u, 8u x x x x

GrayToColor 32s,
gray†

color† x x x x

ColorToGray color† gray† x x x x

BitonalToGray 1u ≥8u/s‡ x

RGB to/from other
color model

8u,16u,32s;
for LUV, also 32f

x x x x x

ApplyColorTwist 8u,16u x x x x x x x

ColorTwistFP 32f x x x x x x x

† gray = 1u, 8u, 16u bits per pixel

color = 8u, 16u, 32s bits per channel
‡ ≥8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

Intel® Image Processing Library Reference Manual

A-6

A
Table A-9 Image Attributes and Modes of Histogram and Thresholding Functions

Input and output images Rect. In-place Tiling

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Threshold 8u,8s,16u,
16s, 32s†

x x x x x x

ComputeHisto 1u,8u,16u no output image x x

HistoEqualize 8u,16u x x x x x x x

ContrastStretch 8u,16u x x x x x x x

Compare functions all‡ x x x x x x
†output image can also be 1u bit per channel
‡ Functions with FP postfix compare 32f data; in-place mode for 1u images is not supported.

Table A-10 Image Attributes and Modes of Geometric Transform Functions

Input and output images Rect. In- Tiling Mask

Function Depths must have the same ROI place

depth order origin COI s u p p o r t e d (x)

Mirror 1u,8u,16u,32f x x x x x x x x

Rotate 1u,8u,16u,32f x x x x x x

Zoom 1u,8u,16u,32f x x x x x x x

Decimate 1u,8u,16u,32f x x x x x x

DecimateBlur 1u,8u,16u,32f x x x x x x

Resize 1u,8u,16u,32f x x x x x x

WarpAffine 1u,8u,16u,32f x x x x x x

WarpBilinear 1u,8u,16u,32f x x x x x x

WarpBilinearQ 1u,8u,16u,32f x x x x x x

WarpPerspective 1u,8u,16u,32f x x x x x x

Warp
PerspectiveQ

1u,8u,16u,32f x x x x x x

Shear 1u,8u,16u,32f x x x x x x

Remap† 1u,8u,16u,32f x x x x x x
† In iplRemap , the mapping coordinates are stored in one-channel 32-bit floating-point images.

Supported Image Attributes and Operation Modes

A-7

A
Table A-11 Image Attribute s and Modes of Image Statisctic s Functions

All images Rect. Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Norm all † x x x x x x x

Moments all operates on a single image x x x

[Normalized]
SpatialMoment

all operates on a single image x x x

[Normalized]
CentralMoment

all operates on a single image x x x

NormCrossCorr ≥8 x x x x x x x

MinMaxFP 32f operates on a single image x x

† Bi t dept h short hand:
u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel
≥8 stands for 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

Table A-12 Image Attribute s and Modes of Function s for User-Define d Image
Processing

All images Rect. Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

UserProcess ≥8u/s † x x x x x x x

UserProcessFP ≥8 x x x x x x x

UserProc essPixel ≥8 x x n/s ‡ x x x

† Bi t dept h short hand:
≥8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

≥8 stands for 8u, 8s, 16u, 16s, 32s, or 32f bits per channel
‡ n/s - not supported

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Interpolation in
Geometric Transform Functions

B-1

B
This appendix describes the interpolation algorithms used in the geometric
transformation functions of the Image Processing Library. For more
information about each of the geometric transform functions, see
Chapter 11, Geometric Transforms.

Overview of Interpolation Modes

In geometric transformations, the grid of input image pixels is not
necessarily mapped onto the grid of pixels in the output image. Therefore,
to compute the pixel intensities in the output image, the geometric
transform functions need tointerpolatethe intensity values of several input
pixels that are mapped to a certain neighborhood of the output pixel.

Geometric transformations can use various interpolation algorithms. When
calling the geometric transform functions of the Image Processing Library,
the application code specifies the interpolation mode (that is, the type of
interpolation algorithm) by using the parameterinterpolate . The library
supports the following interpolation modes:

• nearest neighbor interpolation (interpolate = IPL_INTER_NN)

• linear interpolation (interpolate = IPL_INTER_LINEAR)

• cubic interpolation (interpolate = IPL_INTER_CUBIC)

• super-sampling (interpolate = IPL_INTER_SUPER)

Intel® Image Processing Library Reference Manual

B-2

B
Table B-1 lists the supported interpolation modes for all geometric
transform functions. For certain functions, you can combine the above
interpolation algorithms with additional smoothing (antialiasing) of edges
to which the original image’s borders are transformed. To use this edge
smoothing, set the parameterinterpolate to the bitwise OR of
IPL_SMOOTH_EDGE and the desired interpolation mode. For example, in
order to rotate an image with cubic interpolation and smooth the rotated
image’s edges, you pass to iplRotate() the following value:
interpolat e = IPL_INTER_CUBI C | IPL_SMOOTH_EDGE.

Table B-1 Interpolatio n Modes Supp orted by Geometri c Transf orm Functions

Function Nearest neighbor Linear Cubic Super-sampling Edge smoothing

Mirror This function does not need interpolation

Rotate x x x x

Zoom x x x

Decimate x x x x

DecimateBlur x x x

Resize x x x x

WarpAffine x x x x

WarpBilinear x x x x

WarpBilinearQ x x x x

Warp
Perspective

x x x x

Warp
PerspectiveQ

x x x x

Shear x x x x

The sections that follow provide more details on each interpolation mode.

Interpolation in Geometric Transformation Functions

B-3

B
Mathematical Notation

In this appendix we’ll use the following notation:

(xD,yD) pixel coordinates in the destination image
(integer values)

(xS, yS) the computed coordinates of a point in the source
image that is mapped exactly to (xD,yD)

S(x, y) pixel value (intensity) in the source image

D(x, y) pixel value (intensity) in the destination image.

Nearest Neighbor Interpolation

This is the fastest and least accurate interpolation mode. The pixel value in
the destination image is set to the value of the source image’s pixel closest
to the point (xS,yS): D(xD,yD) = S(round(xS),round(yS)).

To use the nearest neighbor interpolation, set the parameterinterpolate

to IPL_INTER_NN .

Linear Interpolation

The linear interpolation is slower but more accurate than the nearest
neighbor interpolation. On the other hand, it is faster but less accurate than
cubic interpolation. The linear interpolation algorithm uses source image
intensities at the four pixels (xS0,yS0), (xS1,yS0), (xS0,yS1), (xS1,yS1) which are
closest to (xS,yS) in the source image:

xS0 = int(xS), xS1 = xS0 + 1, yS0 = int(yS), yS1 = yS0 + 1.

First, the intensity values are interpolated along thex-axis to produce two
intermediate resultsI0 andI1 (see Figure B-1):

I0 = S(xS, yS0) = S(xS0, yS0)* (xS1 - xS) + S(xS1, yS0)* (xS – xS0)

I1 = S(xS, yS1) = S(xS0, yS1)* (xS1 - xS) + S(xS1, yS1)* (xS – xS0).

Intel® Image Processing Library Reference Manual

B-4

B
Then, the sought-for intensityD(xD,yD) is computed by interpolating the
intermediate valuesI0 andI1 along they-axis:

D(xD,yD) = I0* (yS1 - yS) + I1* (yS – yS0).

To use the linear interpolation, set the parameterinterpolate to
IPL_INTER_LINEAR .

For images with 1-bit and 8-bit unsigned color channels, the functions
iplWarpAffine , iplRotate , andiplShear compute the coordinates
(xS,yS) with the accuracy 2–16 = 1/65536. For images with 16-bit unsigned
color channels, these functions compute the coordinates with floating-point
precision.

Figure B-1 Linear Interpolation

y

x(xS0,yS0)

(xS0,yS1)

(xS1,yS0)

(xS1,yS1)

(xS,yS)

S(xS0,yS1)

S(xS0,yS0)
S(xS1,yS0)

S(xS1,yS1)

D(xS,yS)

I1

intensity

I0

Interpolation in Geometric Transformation Functions

B-5

B
Cubic Interpolation

The cubic interpolation algorithm (see Figure B-2) uses source image
intensities at sixteen pixels in the neighborhood of the point (xS,yS) in the
source image:

xS0 = int(xS) - 1 xS1 = xS0 + 1 xS2 = xS0 + 2 xS3 = xS0 + 3

yS0 = int(yS) - 1 yS1 = yS0 + 1 yS2 = yS0 + 2 yS3 = yS0 + 3.

First, for eachySk the algorithm determines four cubic polynomialsF0(x),
F1(x), F2(x), andF3(x):

Fk(x) = akx
3 + bkx

2 + ckx + dk 0 ≤ k ≤[3,

such that

Fk(xS0) = S(xS0,ySk), Fk(xS1) = S(xS1, ySk), Fk(xS2) = S(xS2,ySk), Fk(xS3) = S(xS3,ySk).

In Figure B-2, these polynomials are shown by solid curves.

Then, the algorithm determines a cubic polynomialFy(y) such that

Fy(yS0) = F0(xS), Fy(yS1) = F1(xS), Fy(yS2) = F2(xS), Fy(yS3) = F3(xS).

The polynomialFy(y) is represented by the dashed curve in Figure B-2.

Finally, the sought-for intensityD(xD,yD) is set to the valueFy(yS).

To use the cubic interpolation, set the parameterinterpolate to
IPL_INTER_CUBIC .

For images with 1-bit and 8-bit unsigned color channels, the functions
iplWarpAffine , iplRotate , andiplShear compute the coordinates
(xS,yS) with the accuracy 2–16 = 1/65536. For images with 16-bit unsigned
color channels, these functions compute the coordinates with floating-point
precision.

Intel® Image Processing Library Reference Manual

B-6

B
Figure B-2 Cubic Interpolation

x

yyS3

D(xS,yS)

yS2yS1yS0

xS3

xS1

xS0

xS2

F0(x)
F1(x)

F2(x) F3(x)

xS

yS

intensity

Super-Sampling

If the destination image is much smaller than the source image, the above
interpolation algorithms may skip some pixels in the source image (that is,
these algorithms not necessarily use all source pixels when computing the
destination pixels’ intensity). In order to use all pixel values of the source
image, theiplDecimate andiplResize functions support thesuper-
samplingalgorithm, which is free of the above drawback.

The super-sampling algorithm is as follows:

(1) Divide the source image’s rectangular ROI (or the whole image, if there
is no ROI) into equal rectangles, each rectangle corresponding to some
pixel in the destination image. Note that each source pixel is represented by
a 1x1 square.

(2) Compute a weighted sum of source pixel values for all pixels that are
contained in the rectangle or have a non-zero intersection with the
rectangle. If a source pixel is fully contained in the rectangle, that pixel’s
value is taken with weight 1. If the rectangle and the source pixel’s square
have an intersection of areaa < 1, that pixel’s value is taken with weighta.

Interpolation in Geometric Transformation Functions

B-7

B
For each source pixel intersecting with the rectangle, Figure B-3 shows the
corresponding weight value.

(3) To compute the pixel value in the destination image, divide this
weighted sum by the rectangle area(xSrc*ySrc)/(xDst*yDst) .

HerexSrc , xDst , ySrc , andyDst are parameters passed to the functions
iplDecimate andiplResize to set the decimation ratiosxDst /xSrc and
yDst /ySrc .

Figure B-3 Super-sampling Weights

1 1 1

1 1 1

∆1 ∆1 ∆1

∆2∆2 ∆2

∆3

∆3

∆2x∆3

∆1x∆3

To use super-sampling, set the valueIPL_INTER_SUPER for the parameter
interpolate .

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Bibliography

Biblio-1

This bibliography provides a list of publications that might be useful to the
Image Processing Library users. This list is not complete; it serves only as
a starting point. The books [Rogers85], [Rogers90], and [Foley90] are
good resources of information on image processing and computer graphics,
with mathematical formulas and code examples.

The Image Processing Library is part of Intel® Performance Library Suite.
The manuals [RPL] and [SPL] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Library Suite.

[Bragg] Dennis Bragg.A simple color reduction filter, Graphic
Gems III: 20–22.

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes.Computer Graphics — Principles
and Practice,Second Edition. Addison Wesley, 1990.

[J95] Jaehne, Bernd.Digital Image Processing,3rd Edition,
Springer-Verlag, Berlin 1995.

[J97] Jaehne, Bernd.Practical Handbook on Image Processing
for Scientific Applications, CRC Press, New York, 1997.

[Rec709] ITU-R Recommendation BT.709,Basic Parameter
Values for the HDTV Standard for the Studio and
International Programme Exchange[formerly CCIR
Rec.709] ITU, Geneva, Switzerland, 1990.

[Rogers85] David Rogers.Procedural Elements for Computer
Graphics,McGraw-Hill, 1985.

[Rogers90] David Rogers and J.Alan Adams.Mathematical
Elements for Computer Graphics, McGraw-Hill, 1990.

Intel® Image Processing Library Reference Manual

Biblio-2

[RPL] Intel® Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785.

[SPL] Intel® Signal Processing Library Reference Manual.
Intel Corp. Order number 630508.

[Schumacher] Dale A. Schumacher.A comparison of digital halftoning
techniques,Graphic Gems III: 57–71.

[Thomas] Spencer W. Thomas and Rod G. Bogart.Color
dithering, Graphic Gems II: 72–77.

You may also find useful the following publications, which are not
referenced in this manual but contain valuable information on particular
functions:

Geometrical transforms

G.Wolberg.Digital Image Warping, IEEE Computer Society Press, 1996.

Wavelet transforms

A.Akansu, M.Smith (editors).Subband and Wavelet transform. Design
and Applications, Kluwer Academic Publishers, 1996.

Median filter

H.Myler, A.Weeks. Computer Imaging Recipes in C, Prentice Hall, 1993.

Randy Crane.A Simplified Approach to Image Processing,Prentice Hall PTR,
1997

Moments functions

G.Ritter, J.Wilson. Computer Vision. Algorithms in Image Algebra. CRC
Press, New York, 1996.

Glossary

Glossary-1

absolute colors Colors specified by each pixel’s coordinates in a
color space. Intel Image Processing Library
functions use images with absolute colors.See
palette colors.

alpha channel A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

arithmetic operation An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

channel of interest The color channel on which an operation acts
(or processing occurs). Channel of interest
(COI) can be considered as a separate case of
region of interest (ROI).

CMY Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow color
channels.

CMYK Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

COI Seechannel of interest.

color-twist matrix A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

conjugate The conjugate of a complex numbera+bi is
a- bi.

DCT Acronym for the discrete cosine transform.See
“Discrete Cosine Transform” in Chapter 7.

decimation A geometric transform operation that shrinks the
source image.

Intel® Image Processing Library Reference Manual

Glossary-2

DIB Device-independent bitmap, an image format
used by the library in Windows environment.

dilation A morphological operation that sets each output
pixel to the minimum of the corresponding input
pixel and its 8 neighbors.

dyadic operation An operation that has two input images. It can
have other input parameters as well.

erosion A morphological operation that sets each output
pixel to the maximum of the corresponding
input pixel and its 8 neighbors.

FFT Acronym for the fast Fourier transform.See
“Fast Fourier Transform” in Chapter 7.

four-channel model A color model that uses four color channels; for
example, the RGBA color model.

geometric transform
functions

Functions that perform geometric
transformations of images: resizing, rotation,
mirror, shear, and warping functions.

gray scale image An image characterized by a single intensity
channel so that each intensity value corresponds
to a certain shade of gray.

HLS Hue-lightness-saturation. A three-channel color
model that uses hue, lightness, and saturation
channels. The HLS and HSV models differ in
the way of scaling the image luminance.See
HSV.

HSV Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HSI
(hue-saturation-intensity) models.SeeHLS.

hue A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60 corresponds
to yellow, 120 to green, 180 to cyan, 240 to
blue, and 300 to magenta. Hue is undefined for
shades of gray.

Glossary

Glossary-3

in-place operation An operation whose output image is one of the
input images.Seeout-of-place operation.

linear filtering In this library, either neighborhood averaging
(blur) or 2D convolution operations.

linear image transforms In this library, the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

luminance A measure of image intensity, as perceived by a
“standard observer”. Since human eyes are more
sensitive to green and less to red or blue,
different colors of equal physical intensity make
different contribution to luminance.See
ColorToGray in Chapter 9.

LUT Acronym for lookup table (palette).

LUV A three-channel color model designed to acieve
perceptual uniformity, that is, to make the
perceived distance between two colors
proportional to the numerical distance.

MMX TM technology A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions implementing
the SIMD (single instruction, multiple data)
technique.

monadic operation An operation that has a single input image. It
can have other input parameters as well.

morphological operation An erosion, dilation, or their combinations.

MSI Acronym for multi-spectral image. An MSI can
use any number of channels and colors.

non-linear filtering In the Image Processing Library, minimum,
maximum, or median filtering operation.

opacity channel Seealpha channel.

out-of-place operation An operation whose output is an image other
than the input image(s).Seein-place operation.

Intel® Image Processing Library Reference Manual

Glossary-4

palette colors Colors specified by a palette, or lookup table.
The Image Processing Library uses palette
colors only in operations of image conversion to
and from absolute colors.Seeabsolute colors.

PhotoYCC* A Kodak* proprietary color encoding and image
compression scheme.SeeYCC.

pixel depth The number of bits determining a single pixel in
the image.

pixel-oriented ordering Storing the image information in such an order
that the values of all color channels for each
pixel are clustered; for example, RGBRGB... .
See“Channel Sequence” in Chapter 2.

plane-oriented ordering Storing the image information so that all data of
one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

region of interest An image region on which an operation acts
(or processing occurs).

RGB Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

RGBA Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or
opacity) channels.

ROI Seeregion of interest.

saturation A quantity used for measuring the purity of
colors. The maximum saturation corresponds to
the highest degree of color purity; the minimum
(zero) saturation corresponds to shades of gray.

scanline All image data for one row of pixels.

standard gray palette A complete palette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

three-channel model A color model that uses three color channels; for
example, the CMY color model.

Glossary

Glossary-5

XYZ A three-channel color model designed to
represent a wider range of colors than the RGB
model: some XYZ-representable colors would
have a negative value of R. For conversion
formulas, seeRGB2XYZ.

YCC A three-channel color model that uses one
luminance channel (Y) and two chroma
channels (usually denoted by CR and CB). The
term is sometimes used as a synonym for the
entire PhotoYCC encoding scheme.See
PhotoYCC.

YUV A three-channel color model frequently used in
television. For conversion formulas, see
RGB2YUV.

zoom A geometric transform function that magnifies
the source image.

This page is left blank for double-sided printing

This page is left blank for double-sided printing

Index

Index-1

A

a function that helps you

add a constant to pixel values, 5-3

add pixel values of two images, 5-7

allocate a quadword-aligned memory block,
4-27

allocate image data, 4-13

allocate memory for 16-bit words, 4-28

allocate memory for 32-bit double words,
4-28

allocate memory for double floating-point
elements, 4-30

allocate memory for floating-point
elements, 4-29

apply a color-twist matrix, 9-21, 9-23

assign a new error-handling function, 3-6

average neighboring pixels, 6-2

change the image orientation, 11-9

change the image size, 11-3

compare pixel values and a constant for
equality, 10-21, 10-22, 10-23

compare pixel values and a constant for
greater than, 10-17, 10-18

compare pixel values and a constant forless
than, 10-19, 10-20

compare pixels in two images for equality,
10-15

within toleranceε, 10-16

compare pixels in two images forgreater
than, 10-13

compare pixels in two images forless than,
10-14

compute absolute pixel values, 5-6

compute bitwise AND of pixel values and a
constant, 5-12

compute bitwise AND of pixel values of
two images, 5-15

compute bitwise NOT of pixel values, 5-12

compute bitwise OR of pixel values and a
constant, 5-13

compute bitwise OR of pixel values of two
images, 5-15

compute bitwise XOR of pixel values and a
constant, 5-14

compute bitwise XOR of pixel values of
two images, 5-16

compute CCS fast Fourier transform, 7-7

compute discrete cosine transform, 7-9

compute image moments, 12-5

compute moments of order 0 to 3, 12-6

compute real fast Fourier transform, 7-4

compute the image histogram, 10-9

compute the norm of pixel values, 12-2

convert a bitonal image to gray scale, 9-7

Intel® Image Processing Library Reference Manual

Index-2

convert a color image to gray scale, 9-8

convert a gray scale image to color, 9-9

convert images from DIB (changing
attributes), 4-50, 4-53

convert images from DIB (preserving
attributes), 4-47

convert images to DIB, 4-54, 4-55

convert RGB images to and from other
color models, 9-10

convolve an image with 2D kernel, 6-8

convolve an image with a predefined
kernel, 6-12

convolve an image with a separable kernel,
6-11

copy entire images, 4-15

copy image data, 4-32

create 2D convolution kernel, 6-5

create a color twist matrix, 9-19

create a region of interest (ROI), 4-21

create image header, 4-9

create the IplTileInfo structure, 4-25

decimate the image, 11-5, 11-6

delete 2D convolution kernel, 6-8

delete a color twist matrix, 9-22

delete a region of interest (ROI) structure,
4-21

delete the IplTileInfo structure, 4-26

dilate an image, 8-5

divide pixel values by 2N, 5-11

equalize the image histogram, 10-10

erode an image, 8-2

exchange data of two images, 4-35

filter the image, 6-1

free memory allocated by Malloc functions,
4-30

free the image data memory, 4-15

free the image header memory, 4-16

get error-handling mode, 3-4

get the error status code, 3-3

get the value of pixel (x,y), 4-38

handle an error, 3-2, 3-7

initialize the image data, 4-31

magnify the image, 11-4

mirror the image, 11-14

multiply data in RCPack format, 7-8

multiply pixel values by a color-twist
matrix, 9-21, 9-23

multiply pixel values by a constant, 5-4

multiply pixel values by a constant and
scale the products, 5-5

multiply pixel values of two images, 5-8

multiply pixel values of two images and
scale the products, 5-9

perform several erosions and dilations, 8-6,
8-7

pre-multiply pixel values by alpha values,
5-24

produce error messages for users, 3-5

read convolution kernel’s attributes, 6-6

reduce the image bit resolution, 9-3

re-map images by using coordinate tables,
11-28

report an error, 3-2, 3-7

resize the image, 11-7

rotate the image, 11-9

scale the image data, 4-40, 4-41

set a color twist matrix, 9-20

Index

Index-3

set a region of interest (ROI), 4-22

set error-handling mode, 3-4

set one pixel to a new value, 4-38

set pixels to the maximum value of the
neighbors, 6-17

set pixels to the median value of the
neighbors, 6-15

set pixels to the minimum value of the
neighbors, 6-18

set the error status code, 3-3

set the image border mode, 4-23

set the IplTileInfo structure fields, 4-26

shear images, 11-16

shift pixel bits to the left, 5-10

shift pixel bits to the right, 5-11

shrink the image, 11-5, 11-6

smooth the image, 8-6, 8-7

square pixel values, 5-6

stretch the image contrast, 10-7

subtract pixel values from a constant, 5-4

subtract pixel values of two images, 5-8

threshold the source image, 10-3

warp images by affine transforms, 11-17

warp images by bilinear transforms, 11-20

warp images by perspective transforms, 11-
24

warp images by using coordinate tables, 11-
28

zoom the image, 11-4

about this manual, 1-2

about this software, 1-1

Abs function, 5-6

absolute color images, 2-2

absolute pixel values, 5-6

Add function, 5-7

adding a constant to pixel values, 5-3

adding pixels of two images, 5-7

AddS function, 5-3

AddSFP function, 5-3

alignment

image data, 2-7

rectangular ROIs, 2-5

scanline, 2-7

AllocateImage function, 4-13

AllocateImageFP function, 4-13

allocating memory

for 16-bit words, 4-28

for 32-bit double words, 4-28

for double floating-point elements, 4-30

for floating-point elements, 4-29

quadword-aligned blocks, 4-27

alpha channel, 2-7

alpha pre-multiplication, 5-24

alpha-blending

alpha pre-multiplication, 5-24

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

ATOP operation, 5-22

IN operation, 5-22

OUT operation, 5-22

OVER operation, 5-22

PLUS operation, 5-22

PreMultiplyAlpha function, 5-24

XOR operation, 5-22

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

And function, 5-15

Intel® Image Processing Library Reference Manual

Index-4

AndS function, 5-12

ApplyColorTwist function, 9-21

argument order conventions, 1-7

arithmetic operations, 5-1

Abs, 5-6

Add, 5-7

AddS, 5-3

AddSFP, 5-3

AlphaComposite, 5-18

AlphaCompositeC, 5-18

Multiply , 5-8

MultiplyS, 5-4

MultiplyScale, 5-9

MultiplySFP, 5-4

MultiplySScale, 5-5

PreMultiplyAlpha, 5-24

Square, 5-6

Subtract, 5-8

SubtractS, 5-4

SubtractSFP, 5-4

ATOP compositing operation, 5-22

attributes of an image, 4-4

audience for this manual, 1-4

averaging the neighboring pixels, 6-2

B

bit depths supported, A-1

BitonalToGray function, 9-7

bitwise AND

with a constant, 5-12

with another image, 5-15

bitwise NOT, 5-12

bitwise OR

with a constant, 5-13

with another image, 5-15

bitwise XOR

with a constant, 5-14

with another image, 5-16

Blur function, 6-2

brightening the image, 5-3

C

call-backs, 2-9

CcsFft2D function, 7-7

CentralMoment function, 12-9

changing the image orientation, 11-9

changing the image size, 11-3

channel of interest, 2-4

channel sequence, 2-3

CheckImageHeader function, 4-17

CloneImage function, 4-15

Close function, 8-7

COI. See channel of interest

color data order, 2-3

color models, 2-1

gray scale, 2-1

multi-spectral image, 2-2

three or four channels, 2-1

color space conversion functions

ApplyColorTwist, 9-21

BitonalToGray, 9-7

ColorToGray, 9-8

ColorTwistFP, 9-23

CreateColorTwist, 9-19

Index

Index-5

DeleteColorTwist, 9-22

GrayToColor, 9-9

HLS2RGB, 9-13

HSV2RGB, 9-12

LUV2RGB, 9-14

ReduceBits, 9-3

RGB2HLS, 9-13

RGB2HSV, 9-12

RGB2LUV, 9-14

RGB2XYZ, 9-15

RGB2YCrCb, 9-16

RGB2YUV, 9-17

SetColorTwist, 9-20

XYZ2RGB, 9-15

YCC2RGB, 9-18

YCrCb2RGB, 9-16

YUV2RGB, 9-17

ColorToGray function, 9-8

color-twist matrices, 9-18

ColorTwistFP function, 9-23

compare operations, 10-12

Equal, 10-15

EqualFPEps, 10-16

EqualS, 10-21

EqualSFP, 10-22

EqualSFPEps, 10-23

Greater, 10-13

GreaterS, 10-17

GreaterSFP, 10-18

Less, 10-14

LessS, 10-19

LessSFP, 10-20

ComputeHisto function, 10-9

computing the norm of pixel values, 12-2

ContrastStretch function, 10-7

conventions

font, 1-5

names of constants and variables, 1-6

names of functions, 1-6

order of arguments, 1-7

Convert function, 4-36

ConvertFromDIB function, 4-50

ConvertFromDIBSep function, 4-53

converting bitonal images to gray scale, 9-7

converting color images to gray scale, 9-8

converting gray-scale images to color, 9-9

converting HLS images to RGB, 9-13

converting HSV images to RGB, 9-12

converting images from DIB (changing
attributes), 4-50, 4-53

converting images from DIB (preserving
attributes), 4-47

converting images to DIB, 4-54, 4-55

converting LUV images to RGB, 9-14

converting RGB images to HLS, 9-13

converting RGB images to HSV, 9-12

converting RGB images to LUV, 9-14

converting RGB images to XYZ, 9-15

converting RGB images to YCrCb, 9-16

converting RGB images to YUV, 9-17

converting XYZ images to RGB, 9-15

converting YCC images to RGB, 9-18

converting YCrCb images to RGB, 9-16

converting YUV images to RGB, 9-17

ConvertToDIB function, 4-54

ConvertToDIBSep function, 4-55

Intel® Image Processing Library Reference Manual

Index-6

convolution, 6-3

Convolve2D function, 6-8

Convolve2DFP function, 6-8

ConvolveSep2D function, 6-11

ConvolveSep2DFP function, 6-11

coordinate systems, 2-4

Copy function, 4-32

copying entire images, 4-15

copying the image data, 4-32

CreateColorTwist function, 9-19

CreateConvKernel function, 6-5

CreateConvKernelChar function, 6-5

CreateConvKernelFP function, 6-5

CreateImageHeader function, 4-9

CreateImageJaehne function, 4-18

CreateROI function, 4-21

CreateTileInfo function, 4-25

creating images, 4-1, 4-9

cross-correlation, 12-12

D

darkening the image, 5-3

data architecture, 2-1

data exchange, 4-2

data exchange functions, 4-31

Convert, 4-36

Copy, 4-32

Exchange, 4-35

GetPixel, 4-38

NoiseGaussianInit, 4-44

NoiseGaussianInitFp, 4-44

NoiseImage, 4-42

NoiseUniformInit, 4-43

NoiseUniformInitFp, 4-43

PutPixel, 4-38

Scale, 4-40

ScaleFP, 4-41

Set, 4-31

SetFP, 4-31

data ordering, 2-3

data ranges in HLS and HSV models, 9-11

data types, 2-2

DCT. Seediscrete cosine transform

DCT2D function, 7-9

Deallocate function, 4-16

DeallocateImage function, 4-15

Decimate function, 11-5

DecimateBlur function, 11-6

DecimateFit macro, 11-8

decimating the image, 11-7

DeleteColorTwist function, 9-22

DeleteConvKernel function, 6-8

DeleteConvKernelFP function, 6-8

DeleteROI function, 4-21

DeleteTileInfo function, 4-26

device-independent bitmap, 4-3

DIB. Seedevice-independent bitmap

DIB palette images, 2-2

Dilate function, 8-5

dilation of an image, 8-5

discrete cosine transform, 7-8

dividing pixel values by 2N, 5-11

dMalloc function, 4-30

dyadic operations, 5-1

Index

Index-7

E

Equal function, 10-15

EqualFPEps function, 10-16

equalizing the image histogram, 10-10

EqualS function, 10-21

EqualSFP function, 10-22

EqualSFPEps function, 10-23

Erode function, 8-2

erosion of an image, 8-2

ErrModeLeaf error mode, 3-4

ErrModeParent error mode, 3-5

ErrModeSilent error mode, 3-5

error checks, 3-1

Error function, 3-2

error handling, 3-1

example, 3-13

status codes, 3-10

user-defined error handler, 3-15

error handling macros, 3-9

error processing modes

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

error-handling functions, 3-2

Error, 3-2

ErrorStr, 3-5

GetErrMode, 3-4

GetErrStatus, 3-3

GuiBoxReport, 3-7

NullDevReport, 3-7

RedirectError, 3-6

SetErrMode, 3-4

SetErrStatus, 3-3

StdErrReport, 3-7

ErrorStr function, 3-5

Exchange function, 4-35

execution architecture, 2-8

in-place and out-of-place operations, 2-8

overflow and underflow, 2-8

saturation, 2-8

F

fast Fourier and discrete cosine transforms

CcsFft2D, 7-7

DCT2D, 7-9

MpyRCPack2D, 7-8

RealFft2D, 7-4

fast Fourier transform, 7-1

FFT.Seefast Fourier transform

filling image’s pixels with a value, 4-38

filtering functions, 6-1

Blur, 6-2

Convolve2D, 6-8

Convolve2DFP, 6-8

ConvolveSep2D, 6-11

ConvolveSep2DFP, 6-11

CreateConvKernel, 6-5

CreateConvKernelChar, 6-5

CreateConvKernelFP, 6-5

DeleteConvKernel, 6-8

DeleteConvKernelFP, 6-8

FixedFilter, 6-12

GetConvKernel, 6-6

GetConvKernelChar, 6-6

Intel® Image Processing Library Reference Manual

Index-8

GetConvKernelFP, 6-6

MaxFilter, 6-17

MedianFilter, 6-15

MinFilter, 6-18

FixedFilter function, 6-12

font conventions, 1-5

Free function, 4-30

free memory allocated by Malloc functions, 4-
30

function descriptions, 1-4

function name conventions, 1-6

G

geometric transform functions

Decimate, 11-5

DecimateBlur, 11-6

GetAffineBound, 11-18

GetAffineQuad, 11-18

GetAffineTransform, 11-19

GetBilinearBound, 11-22

GetBilinearQuad, 11-22

GetBilinearTransform, 11-23

GetPerspectiveBound, 11-26

GetPerspectiveQuad, 11-26

GetPerspectiveTransform, 11-27

GetRotateShift, 11-11

Mirror, 11-14

Remap, 11-28

Resize, 11-7

Rotate, 11-9

Shear, 11-16

WarpAffine, 11-17

WarpBilinear, 11-20

WarpBilinearQ, 11-20

WarpPerspective, 11-24

WarpPerspectiveQ, 11-24

Zoom, 11-4

geometric transform macros

DecimateFit, 11-8

ResizeFit, 11-8

RotateCenter, 11-13

ZoomFit, 11-8

GetAffineBound function, 11-18

GetAffineQuad function, 11-18

GetAffineTransform function, 11-19

GetBilinearBound function, 11-22

GetBilinearQuad function, 11-22

GetBilinearTransform function, 11-23

GetCentralMoment function, 12-7

GetConvKernel function, 6-6

GetConvKernelChar function, 6-6

GetConvKernelFP function, 6-6

GetErrMode function, 3-4

GetErrStatus function, 3-3

GetLibVersion function, 14-1

GetNormalizedCentralMoment function, 12-8

GetNormalizedSpatialMoment function, 12-7

GetPerspectiveBound function, 11-26

GetPerspectiveQuad function, 11-26

GetPerspectiveTransform function, 11-27

GetPixel function, 4-38

GetRotateShift function, 11-11

GetSpatialMoment function, 12-6

gray-scale images, 2-1

GrayToColor function, 9-9

Index

Index-9

Greater function, 10-13

GreaterS function, 10-17

GreaterSFP function, 10-18

GuiBoxReport function, 3-7

H

handling overflow and underflow, 2-8

hardware and software requirements, 1-1

HistoEqualize function, 10-10

histogram and thresholding functions, 10-1

ComputeHisto, 10-9

ContrastStretch, 10-7

HistoEqualize, 10-10

Threshold, 10-2

histogram of an image, 10-9

histogram operations, 10-5

HLS2RGB function, 9-13

HSV2RGB function, 9-12

I

image attributes, 4-4, A-1

image compositing

alpha pre-multiplication, 5-24

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

ATOP operation, 5-22

IN operation, 5-22

OUT operation, 5-22

OVER operation, 5-17, 5-22

PLUS operation, 5-22

PreMultiplyAlpha function, 5-24

XOR operation, 5-22

image creation functions, 4-1

AllocateImage, 4-13

AllocateImageFP, 4-13

CheckImageHeader, 4-17

CloneImage, 4-15

CreateImageHeader, 4-9

CreateImageJaehne, 4-18

CreateROI, 4-21

CreateTileInfo, 4-25

Deallocate, 4-16

DeallocateImage, 4-15

DeleteROI, 4-21

DeleteTileInfo, 4-26

SetBorderMode, 4-23

SetROI, 4-22

SetTileInfo, 4-26

image dimensions, 2-7

image filtering functions, 6-1

image format, 4-4

image header, 4-4

image histogram, 10-9

image moments, 12-5

image norms, 12-2

Image Processing Library functionality

2D convolution, 6-3

alpha-blending, 5-1

arithmetic operations, 5-1

color space conversion, 9-1

compare functions, 10-1

data exchange, 4-1

DIB environment functions, 4-45

discrete cosine transform, 7-8

Intel® Image Processing Library Reference Manual

Index-10

error handling, 3-1

fast Fourier transform, 7-1

filtering functions, 6-1

geometric transform functions, 11-1

histogram and thresholding functions, 10-1

image creation, 4-1

image statistics, 12-1

image tiling, 2-8, 4-8

interpolation algorithms, B-1

logical operations, 5-1

memory allocation, 4-27

moments and norms, 12-1

morphological operations, 8-1

supported image attributes and modes, A-1

user-defined functions, 13-1

version of the library, 14-1

image row data, 2-7

image size, 2-7

image structure

borders, 4-23

channel sequence, 2-3

color models, 2-1

coordinate systems, 2-4

data architecture, 2-1

data ordering, 2-3

data types, 2-2

header attributes, 4-4

image size, 2-7

regions of interest, 2-4

tile size, 2-9

tiling, 2-8, 4-8

image tiling, 2-8, 4-8

call-backs, 2-9

IplTileInfo structure, 4-8

iMalloc function, 4-28

IN compositing operation, 5-22

in-place operations, 2-8

interpolation algorithms, B-1

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

iplAbs, 5-6

iplAdd, 5-7

iplAddS, 5-3

iplAddSFP, 5-3

iplAllocateImage, 4-13

iplAllocateImageFP, 4-13

iplAlphaComposite, 5-18

iplAlphaCompositeC, 5-18

iplAnd, 5-15

iplAndS, 5-12

iplApplyColorTwist, 9-21

iplBitonalToGray, 9-7

iplBlur, 6-2

iplCcsFft2D, 7-7

iplCentralMoment, 12-9

iplCheckImageHeader, 4-17

iplCloneImage, 4-15

iplClose, 8-7

iplColorToGray, 9-8

iplColorTwistFP, 9-23

iplComputeHisto, 10-9

iplContrastStretch, 10-7

iplConvert, 4-36

iplConvertFromDIB, 4-50

iplConvertFromDIBSep, 4-53

Index

Index-11

iplConvertToDIB, 4-54

iplConvertToDIBSep, 4-55

iplConvolve2D, 6-8

iplConvolve2DFP, 6-8

iplConvolveSep2D, 6-11

iplConvolveSep2DFP, 6-11

iplCopy, 4-32

iplCreateColorTwist, 9-19

iplCreateConvKernel, 6-5

iplCreateConvKernelChar, 6-5

iplCreateConvKernelFP, 6-5

iplCreateImageHeader, 4-9

iplCreateImageJaehne, 4-18

iplCreateROI, 4-21

iplCreateTileInfo, 4-25

iplDCT2D, 7-9

iplDeallocate, 4-16

iplDeallocateImage, 4-15

iplDecimate, 11-5

iplDecimateBlur, 11-6

iplDecimateFit, 11-8

iplDeleteColorTwist, 9-22

iplDeleteConvKernel, 6-8

iplDeleteConvKernelFP, 6-8

iplDeleteROI, 4-21

iplDeleteTileInfo, 4-26

iplDilate, 8-5

ipldMalloc, 4-30

iplEqual, 10-15

iplEqualFPEps, 10-16

iplEqualS, 10-21

iplEqualSFP, 10-22

iplEqualSFPEps, 10-23

iplErode, 8-2

iplError, 3-2

iplErrorStr, 3-5

iplExchange, 4-35

iplFixedFilter, 6-12

iplFree, 4-30

iplGetAffineBound, 11-18

iplGetAffineQuad, 11-18

iplGetAffineTransform, 11-19

iplGetBilinearBound, 11-22

iplGetBilinearQuad, 11-22

iplGetBilinearTransform, 11-23

iplGetCentralMoment, 12-7

iplGetConvKernel, 6-6

iplGetConvKernelChar, 6-6

iplGetConvKernelFP, 6-6

iplGetErrMode, 3-4

iplGetErrStatus, 3-3

iplGetLibVersion, 14-1

iplGetNormalizedCentralMoment, 12-8

iplGetNormalizedSpatialMoment, 12-7

iplGetPerspectiveBound, 11-26

iplGetPerspectiveQuad, 11-26

iplGetPerspectiveTransform, 11-27

iplGetPixel, 4-38

iplGetRotateShift, 11-11

iplGetSpatialMoment, 12-6

iplGrayToColor, 9-9

iplGreater, 10-13

iplGreaterS, 10-17

iplGreaterSFP, 10-18

iplGuiBoxReport, 3-7

iplHistoEqualize, 10-10

Intel® Image Processing Library Reference Manual

Index-12

iplHLS2RGB, 9-13

iplHSV2RGB, 9-12

IplImage structure, 4-7

ipliMalloc, 4-28

IplLastStatus variable, 3-5

iplLess, 10-14

iplLessS, 10-19

iplLessSFP, 10-20

iplLShiftS, 5-10

iplLUV2RGB, 9-14

iplMalloc, 4-27

iplMaxFilter, 6-17

iplMedianFilter, 6-15

iplMinFilter, 6-18

iplMinMaxFP, 12-14

iplMirror, 11-14

iplMoments, 12-6

IplMomentState structure, 12-5

iplMpyRCPack2D, 7-8

iplMultiply, 5-8

iplMultiplyS, 5-4

iplMultiplyScale, 5-9

iplMultiplySFP, 5-4

iplMultiplySScale, 5-5

iplNoiseGaussianInit, 4-44

iplNoiseGaussianInitFp, 4-44

iplNoiseImage, 4-42

iplNoiseUniformInit, 4-43

iplNoiseUniformInitFp, 4-43

iplNorm, 12-2

iplNormalizedCentralMoment, 12-11

iplNormalizedSpatialMoment, 12-10

iplNormCrossCorr, 12-13

iplNot, 5-12

iplNullDevReport, 3-7

iplOpen, 8-6

iplOr, 5-15

iplOrS, 5-13

iplPreMultiplyAlpha, 5-24

iplPutPixel, 4-38

iplRealFft2D, 7-4

iplRedirectError, 3-6

iplReduceBits, 9-3

iplRemap, 11-28

iplResize, 11-7

iplResizeFit, 11-8

iplRGB2HLS, 9-13

iplRGB2HSV, 9-12

iplRGB2LUV, 9-14

iplRGB2XYZ, 9-15

iplRGB2YCrCb, 9-16

iplRGB2YUV, 9-17

iplRotate, 11-9

iplRotateCenter, 11-13

iplRShiftS, 5-11

iplScale, 4-40

iplScaleFP, 4-41

iplSet, 4-31

iplSetBorderMode, 4-23

iplSetColorTwist, 9-20

iplSetErrMode, 3-4

iplSetErrStatus, 3-3

iplSetFP, 4-31

iplSetROI, 4-22

iplSetTileInfo, 4-26

iplShear, 11-16

Index

Index-13

iplsMalloc, 4-29

iplSpatialMoment, 12-9

iplSquare, 5-6

iplStdErrReport, 3-7

iplSubtract, 5-8

iplSubtractS, 5-4

iplSubtractSFP, 5-4

iplThreshold, 10-2

IplTileInfo structure, 4-8

iplTranslateDIB, 4-47

iplUserFunc, 13-2

iplUserFuncFP, 13-3

iplUserFuncPixel, 13-4

iplUserProcess, 13-5

iplUserProcessFP, 13-7

iplUserProcessPixel, 13-8

iplWarpAffine, 11-17

iplWarpBilinear, 11-20

iplWarpBilinearQ, 11-20

iplWarpPerspective, 11-24

iplWarpPerspectiveQ, 11-24

iplwMalloc, 4-28

iplXor, 5-16

iplXorS, 5-14

iplXYZ2RGB, 9-15

iplYCC2RGB, 9-18

iplYCrCb2RGB, 9-16

iplYUV2RGB, 9-17

iplZoom, 11-4

iplZoomFit, 11-8

L

Less function, 10-14

LessS function, 10-19

LessSFP function, 10-20

linear filters, 6-2

logical operations, 5-1

And, 5-15

AndS, 5-12

LShiftS, 5-10

Not, 5-12

Or, 5-15

OrS, 5-13

RShiftS, 5-11

Xor, 5-16

XorS, 5-14

lookup table.Seepalette color images

lookup table operations, 10-5

LShiftS function, 5-10

LUV2RGB function, 9-14

M

magnifying the image, 11-4, 11-7

Malloc function, 4-27

manual organization, 1-2

mask, 2-4

MaxFilter function, 6-17

maximum permissible value, 2-8

maximum pixel value, 12-14

MedianFilter function, 6-15

memory allocation functions, 4-2, 4-27

dMalloc, 4-30

Free, 4-30

Intel® Image Processing Library Reference Manual

Index-14

iMalloc, 4-28

Malloc, 4-27

sMalloc, 4-29

wMalloc, 4-28

MinFilter function, 6-18

minimum permissible value, 2-8

minimum pixel value, 12-14

MinMaxFP function, 12-14

Mirror function, 11-14

mirroring the image, 11-14

moments, 12-5

moments and norms

CentralMoment, 12-9

GetCentralMoment, 12-7

GetNormalizedCentralMoment, 12-8

GetNormalizedSpatialMoment, 12-7

GetSpatialMoment, 12-6

MinMaxFP, 12-14

Moments, 12-6

Norm, 12-2

NormalizedCentralMoment, 12-11

NormalizedSpatialMoment, 12-10

SpatialMoment, 12-9

Moments function, 12-6

monadic operations, 5-1

morphological operations

Close, 8-7

Dilate, 8-5

Erode, 8-2

Open, 8-6

MpyRCPack2D function, 7-8

MSI. Seemulti-spectral image

multi-image operations, 2-5

Multiply function, 5-8

multiplying and scaling pixel values

by a constant, 5-5

in two input images, 5-9

multiplying pixel values

by a color-twist matrix, 9-21, 9-23

by a constant, 5-4

by a negative power of 2, 5-11

in two input images, 5-8

squares of pixel values, 5-6

MultiplyS function, 5-4

MultiplyScale function, 5-9

MultiplySFP function, 5-4

MultiplySScale function, 5-5

multi-spectral image, 2-2

N

naming conventions, 1-6

NoiseGaussianInit function, 4-44

NoiseGaussianInitFp function, 4-44

NoiseImage function, 4-42

NoiseUniformInit function, 4-43

NoiseUniformInitFp function, 4-43

Norm function, 12-2

normalized cross-correlation, 12-12

NormalizedCentralMoment function, 12-11

NormalizedSpatialMoment function, 12-10

NormCrossCorr function, 12-13

Not function, 5-12

notational conventions, 1-5

NullDevReport function, 3-7

numerical exceptions, 3-1

Index

Index-15

O

online version of this manual, 1-5

opacity channel. See alpha channel

Open function, 8-6

opening and smoothing the image, 8-6

operation modes of library functions, A-1

Or function, 5-15

OrS function, 5-13

OUT compositing operation, 5-22

out-of-place operations, 2-8

OVER compositing operation, 5-17, 5-22

P

palette color images, 2-2

parallelism, 1-1

pixel depth, 2-2

pixel values, setting and retrieving, 4-38

PLUS compositing operation, 5-22

PreMultiplyAlpha function, 5-24

producing error messages for users, 3-6

PutPixel function, 4-38

R

RCPack2D format, 7-1

real-complex packed format, 7-1

RealFft2D function, 7-4

rectangular region of interest, 2-4

RedirectError function, 3-6

ReduceBits function, 9-3

reducing the image bit resolution, 9-3

region of interest, 2-4, 4-20

channel, 2-4

mask image, 2-4

rectangular, 2-4

Remap function, 11-28

reporting an error, 3-2, 3-8

Resize function, 11-7

ResizeFit macro, 11-8

return values, 1-4

RGB2HLS function, 9-13

RGB2HSV function, 9-12

RGB2LUV function, 9-14

RGB2XYZ function, 9-15

RGB2YCrCb function, 9-16

RGB2YUV function, 9-17

ROI. See region of interest

Rotate function, 11-9

RotateCenter macro, 11-13

rotating the image

around an arbitrary center, 11-11

around the origin, 11-9

RShiftS function, 5-11

S

saturation, 2-8

Scale function, 4-40

ScaleFP function, 4-41

scanline. See image row data

scanline alignment, 2-7

Set function, 4-31

SetBorderMode function, 4-23

SetColorTwist function, 9-20

SetErrMode function, 3-4

Intel® Image Processing Library Reference Manual

Index-16

SetErrStatus function, 3-3

SetFP function, 4-31

SetROI function, 4-22

SetTileInfo function, 4-26

Shear function, 11-16

shearing the image, 11-16

shifting pixel bits

to the left, 5-10

to the right, 5-11

shrinking the image, 11-5, 11-6, 11-7

signed data, 2-2

SIMD instructions, 1-1

sMalloc function, 4-29

smoothing the image, 8-7

SpatialMoment function, 12-9

Square function, 5-6

squares of pixel values, 5-6

status codes, 3-10

StdErrReport function, 3-7

stretching the image contrast, 10-7

Subtract function, 5-8

subtracting pixel values

from aconstant, 5-4

two input images, 5-8

SubtractS function, 5-4

SubtractSFP function, 5-4

supported image attributes and modes, A-1

T

Threshold function, 10-2

thresholding the source image, 10-3

tiling, 2-8, 4-8

call-backs, 2-9

CreateTileInfo function, 4-25

DeleteTileInfo function, 4-26

IplTileInfo structure, 4-8

SetTileInfo function, 4-26

TranslateDIB function, 4-47

two-dimensional convolution, 6-3

U

user-defined coordinate transformations, 11-28

user-defined error handler, 3-15

user-defined functions

UserFunc type, 13-2

UserFuncFP type, 13-3

UserFuncPixel type, 13-4

UserProcess, 13-5

UserProcessFP, 13-7

UserProcessPixel, 13-8

V

version of the library, 14-1

W

WarpAffine function, 11-17

WarpBilinear function, 11-20

WarpBilinearQ function, 11-20

warping the image, 11-15, 11-28

WarpPerspective function, 11-24

WarpPerspectiveQ function, 11-24

Windows DIB functions, 4-3, 4-45

ConvertFromDIB, 4-50

Index

Index-17

ConvertFromDIBSep, 4-53

ConvertToDIB, 4-54

ConvertToDIBSep, 4-55

TranslateDIB, 4-47

wMalloc function, 4-28

X

XOR compositing operation, 5-22

Xor function, 5-16

XorS function, 5-14

XYZ2RGB function, 9-15

Y

YCC2RGB function, 9-18

YCrCb2RGB function, 9-16

YUV2RGB function, 9-17

Z

Zoom function, 11-4

ZoomFit macro, 11-8

zooming the image, 11-4, 11-7

	Intel® Image Processing Library Reference Manual
	How to Use This Manual
	Revision History
	Legal Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience forThis Manual
	Online Version
	Sources of Related Information

	Notational Conventions
	Font Conventions
	Naming Conventions
	X-Y Argument Order Convention

	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions of Interest
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	ImageTiling
	Tile Size
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling

	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus, SetErrStatus
	GetErrMode, SetErrMode
	ErrorStr
	RedirectError
	NullDevReport, StdErrReport, GuiBoxReport

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	Tiling Fields in the IplImage Structure
	IplTileInfo Structure
	Creating Images
	CreateImageHeader
	AllocateImage, AllocateImageFP
	DeallocateImage
	CloneImage
	Deallocate
	CheckImageHeader
	CreateImageJaehne

	Setting Regions of Interest
	CreateROI
	DeleteROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	Malloc
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set, SetFp
	Copy
	Exchange
	Convert
	PutPixel, GetPixel
	Scale
	ScaleFP
	NoiseImage
	NoiseUniformInit, NoiseUniformInitFp
	NoiseGaussianInit, NoiseGaussianInitFp

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertFromDIBSep
	ConvertToDIB
	ConvertToDIBSep

	Chapter 5 Image Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS, AddSFP
	SubtractS, SubtractSFP
	MultiplyS, MultiplySFP
	MultiplySScale
	Square
	Abs

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	Using Pre-multiplied Alpha Values
	AlphaComposite, AlphaCompositeC
	PreMultiplyAlpha

	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel, CreateConvKernelChar, CreateConvKernelFP
	GetConvKernel, GetConvKernelChar, GetConvKernelFP
	DeleteConvKernel, DeleteConvKernelFP
	Convolve2D, Convolve2DFP
	ConvolveSep2D, ConvolveSep2DFP
	Fixed Filter

	Non-linear Filters
	MedianFilter
	ColorMedianFilter
	MaxFilter
	MinFilter

	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	Real-Complex Packed (RCPack2D) Format
	RealFft2D
	CcsFft2D
	MpyRCPack2D

	Discrete Cosine Transform
	DCT2D

	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	Data ranges in the HLS and HSV Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB
	RGB2LUV
	LUV2RGB
	RGB2XYZ
	XYZ2RGB
	RGB2YCrCb
	YCrCb2RGB
	RGB2YUV
	YUV2RGB
	YCC2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist
	ColorTwistFP

	Chapter 10 Histogram, Threshold, and Compare Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	The IplLUT Structure
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Comparing Images
	Greater
	Less
	Equal
	EqualFPEps
	GreaterS
	GreaterSFP
	LessS
	LessSFP
	EqualS
	EqualSFP
	EqualSFPEps

	Chapter 11 Geometric Transforms
	Changing the Image Size
	Zoom
	Decimate
	DecimateBlur
	Resize
	ZoomFit, DecimateFit, ResizeFit

	Changing the Image Orientation
	Rotate
	GetRotateShift
	RotateCenter
	Mirror

	Warping
	Shear
	WarpAffine
	GetAffineBound
	GetAffineQuad
	GetAffineTransform
	WarpBilinear, WarpBilinearQ
	GetBilinearBound
	GetBilinearQuad
	GetBilinearTransform
	WarpPerspective, WarpPerspectiveQ
	GetPerspectiveBound
	GetPerspectiveQuad
	GetPerspectiveTransform

	Arbitrary Transforms
	Remap

	Chapter 12 Image Statistics Functions
	Image Norms
	Norm

	Image Moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedSpatialMoment
	GetNormalizedCentralMoment
	SpatialMoment
	CentralMoment
	NormalizedSpatialMoment
	NormalizedCentralMoment

	Cross-Correlation
	NormCrossCorr

	Minimum and Maximum
	MinMaxFP

	Chapter 13 User Defined Functions
	UserFunc
	UserFuncFP
	UserFuncPixel
	UserProcess
	UserProcessFP
	UserProcessPixel

	Chapter 14 Library Version
	GetLibVersion

	Appendix A Supported Image Attributes and Operation Modes
	Appendix B Interpolation in GeometricTransform Functions
	Overview of Interpolation Modes
	Mathematical Notation
	Nearest Neighbor Interpolation
	Linear Interpolation
	Cubic Interpolation
	Super-Sampling

	Bibliography
	Glossary
	Index

