#! /usr/bin/env octave cv; highgui; ## Rearrange the quadrants of Fourier image so that the origin is at ## the image center ## src & dst arrays of equal size & type function cvShiftDFT(src_arr, dst_arr ) size = cvGetSize(src_arr); dst_size = cvGetSize(dst_arr); if(dst_size.width != size.width || \ dst_size.height != size.height) cvError( CV_StsUnmatchedSizes, "cvShiftDFT", \ "Source and Destination arrays must have equal sizes", \ __FILE__, __LINE__ ); endif if(swig_this(src_arr) == swig_this(dst_arr)) tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)); endif cx = size.width/2; cy = size.height/2; # image center q1 = cvGetSubRect( src_arr, cvRect(0,0,cx, cy) ); q2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) ); q3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) ); q4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) ); d1 = cvGetSubRect( src_arr, cvRect(0,0,cx,cy) ); d2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) ); d3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) ); d4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) ); if(swig_this(src_arr) != swig_this(dst_arr)) if( !CV_ARE_TYPES_EQ( q1, d1 )) cvError( CV_StsUnmatchedFormats, \ "cvShiftDFT", "Source and Destination arrays must have the same format", \ __FILE__, __LINE__ ); endif cvCopy(q3, d1); cvCopy(q4, d2); cvCopy(q1, d3); cvCopy(q2, d4); else cvCopy(q3, tmp); cvCopy(q1, q3); cvCopy(tmp, q1); cvCopy(q4, tmp); cvCopy(q2, q4); cvCopy(tmp, q2); endif endfunction im = cvLoadImage( argv(){1}, CV_LOAD_IMAGE_GRAYSCALE); realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1); imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1); complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2); cvScale(im, realInput, 1.0, 0.0); cvZero(imaginaryInput); cvMerge(realInput, imaginaryInput, [], [], complexInput); dft_M = cvGetOptimalDFTSize( im.height - 1 ); dft_N = cvGetOptimalDFTSize( im.width - 1 ); dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ); image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); ## copy A to dft_A and pad dft_A with zeros tmp = cvGetSubRect( dft_A, cvRect(0,0, im.width, im.height)); cvCopy( complexInput, tmp, [] ); if(dft_A.width > im.width) tmp = cvGetSubRect( dft_A, cvRect(im.width,0, dft_N - im.width, im.height)); cvZero( tmp ); endif ## no need to pad bottom part of dft_A with zeros because of ## use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput.height ); cvNamedWindow("win", 0); cvNamedWindow("magnitude", 0); cvShowImage("win", im); ## Split Fourier in real and imaginary parts cvSplit( dft_A, image_Re, image_Im, [], [] ); ## Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_Re, image_Re, 2.0); cvPow( image_Im, image_Im, 2.0); cvAdd( image_Re, image_Im, image_Re, []); cvPow( image_Re, image_Re, 0.5 ); ## Compute log(1 + Mag) cvAddS( image_Re, cvScalarAll(1.0), image_Re, [] ); # 1 + Mag cvLog( image_Re, image_Re ); # log(1 + Mag) ## Rearrange the quadrants of Fourier image so that the origin is at ## the image center cvShiftDFT( image_Re, image_Re ); [min, max] = cvMinMaxLoc(image_Re); cvScale(image_Re, image_Re, 1.0/(max-min), 1.0*(-min)/(max-min)); cvShowImage("magnitude", image_Re); cvWaitKey(-1);