kvm: Conditionally apply workaround for KVM slot handling bug
[qemu] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19  */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #include "qemu-common.h"
24 #include "cpu-common.h"
25
26 /* some important defines:
27  *
28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29  * memory accesses.
30  *
31  * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32  * otherwise little endian.
33  *
34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35  *
36  * TARGET_WORDS_BIGENDIAN : same for target cpu
37  */
38
39 #include "softfloat.h"
40
41 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42 #define BSWAP_NEEDED
43 #endif
44
45 #ifdef BSWAP_NEEDED
46
47 static inline uint16_t tswap16(uint16_t s)
48 {
49     return bswap16(s);
50 }
51
52 static inline uint32_t tswap32(uint32_t s)
53 {
54     return bswap32(s);
55 }
56
57 static inline uint64_t tswap64(uint64_t s)
58 {
59     return bswap64(s);
60 }
61
62 static inline void tswap16s(uint16_t *s)
63 {
64     *s = bswap16(*s);
65 }
66
67 static inline void tswap32s(uint32_t *s)
68 {
69     *s = bswap32(*s);
70 }
71
72 static inline void tswap64s(uint64_t *s)
73 {
74     *s = bswap64(*s);
75 }
76
77 #else
78
79 static inline uint16_t tswap16(uint16_t s)
80 {
81     return s;
82 }
83
84 static inline uint32_t tswap32(uint32_t s)
85 {
86     return s;
87 }
88
89 static inline uint64_t tswap64(uint64_t s)
90 {
91     return s;
92 }
93
94 static inline void tswap16s(uint16_t *s)
95 {
96 }
97
98 static inline void tswap32s(uint32_t *s)
99 {
100 }
101
102 static inline void tswap64s(uint64_t *s)
103 {
104 }
105
106 #endif
107
108 #if TARGET_LONG_SIZE == 4
109 #define tswapl(s) tswap32(s)
110 #define tswapls(s) tswap32s((uint32_t *)(s))
111 #define bswaptls(s) bswap32s(s)
112 #else
113 #define tswapl(s) tswap64(s)
114 #define tswapls(s) tswap64s((uint64_t *)(s))
115 #define bswaptls(s) bswap64s(s)
116 #endif
117
118 typedef union {
119     float32 f;
120     uint32_t l;
121 } CPU_FloatU;
122
123 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
124    endian ! */
125 typedef union {
126     float64 d;
127 #if defined(WORDS_BIGENDIAN) \
128     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
129     struct {
130         uint32_t upper;
131         uint32_t lower;
132     } l;
133 #else
134     struct {
135         uint32_t lower;
136         uint32_t upper;
137     } l;
138 #endif
139     uint64_t ll;
140 } CPU_DoubleU;
141
142 #ifdef TARGET_SPARC
143 typedef union {
144     float128 q;
145 #if defined(WORDS_BIGENDIAN) \
146     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147     struct {
148         uint32_t upmost;
149         uint32_t upper;
150         uint32_t lower;
151         uint32_t lowest;
152     } l;
153     struct {
154         uint64_t upper;
155         uint64_t lower;
156     } ll;
157 #else
158     struct {
159         uint32_t lowest;
160         uint32_t lower;
161         uint32_t upper;
162         uint32_t upmost;
163     } l;
164     struct {
165         uint64_t lower;
166         uint64_t upper;
167     } ll;
168 #endif
169 } CPU_QuadU;
170 #endif
171
172 /* CPU memory access without any memory or io remapping */
173
174 /*
175  * the generic syntax for the memory accesses is:
176  *
177  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
178  *
179  * store: st{type}{size}{endian}_{access_type}(ptr, val)
180  *
181  * type is:
182  * (empty): integer access
183  *   f    : float access
184  *
185  * sign is:
186  * (empty): for floats or 32 bit size
187  *   u    : unsigned
188  *   s    : signed
189  *
190  * size is:
191  *   b: 8 bits
192  *   w: 16 bits
193  *   l: 32 bits
194  *   q: 64 bits
195  *
196  * endian is:
197  * (empty): target cpu endianness or 8 bit access
198  *   r    : reversed target cpu endianness (not implemented yet)
199  *   be   : big endian (not implemented yet)
200  *   le   : little endian (not implemented yet)
201  *
202  * access_type is:
203  *   raw    : host memory access
204  *   user   : user mode access using soft MMU
205  *   kernel : kernel mode access using soft MMU
206  */
207 static inline int ldub_p(const void *ptr)
208 {
209     return *(uint8_t *)ptr;
210 }
211
212 static inline int ldsb_p(const void *ptr)
213 {
214     return *(int8_t *)ptr;
215 }
216
217 static inline void stb_p(void *ptr, int v)
218 {
219     *(uint8_t *)ptr = v;
220 }
221
222 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
223    kernel handles unaligned load/stores may give better results, but
224    it is a system wide setting : bad */
225 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
226
227 /* conservative code for little endian unaligned accesses */
228 static inline int lduw_le_p(const void *ptr)
229 {
230 #ifdef _ARCH_PPC
231     int val;
232     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
233     return val;
234 #else
235     const uint8_t *p = ptr;
236     return p[0] | (p[1] << 8);
237 #endif
238 }
239
240 static inline int ldsw_le_p(const void *ptr)
241 {
242 #ifdef _ARCH_PPC
243     int val;
244     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
245     return (int16_t)val;
246 #else
247     const uint8_t *p = ptr;
248     return (int16_t)(p[0] | (p[1] << 8));
249 #endif
250 }
251
252 static inline int ldl_le_p(const void *ptr)
253 {
254 #ifdef _ARCH_PPC
255     int val;
256     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
257     return val;
258 #else
259     const uint8_t *p = ptr;
260     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
261 #endif
262 }
263
264 static inline uint64_t ldq_le_p(const void *ptr)
265 {
266     const uint8_t *p = ptr;
267     uint32_t v1, v2;
268     v1 = ldl_le_p(p);
269     v2 = ldl_le_p(p + 4);
270     return v1 | ((uint64_t)v2 << 32);
271 }
272
273 static inline void stw_le_p(void *ptr, int v)
274 {
275 #ifdef _ARCH_PPC
276     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
277 #else
278     uint8_t *p = ptr;
279     p[0] = v;
280     p[1] = v >> 8;
281 #endif
282 }
283
284 static inline void stl_le_p(void *ptr, int v)
285 {
286 #ifdef _ARCH_PPC
287     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
288 #else
289     uint8_t *p = ptr;
290     p[0] = v;
291     p[1] = v >> 8;
292     p[2] = v >> 16;
293     p[3] = v >> 24;
294 #endif
295 }
296
297 static inline void stq_le_p(void *ptr, uint64_t v)
298 {
299     uint8_t *p = ptr;
300     stl_le_p(p, (uint32_t)v);
301     stl_le_p(p + 4, v >> 32);
302 }
303
304 /* float access */
305
306 static inline float32 ldfl_le_p(const void *ptr)
307 {
308     union {
309         float32 f;
310         uint32_t i;
311     } u;
312     u.i = ldl_le_p(ptr);
313     return u.f;
314 }
315
316 static inline void stfl_le_p(void *ptr, float32 v)
317 {
318     union {
319         float32 f;
320         uint32_t i;
321     } u;
322     u.f = v;
323     stl_le_p(ptr, u.i);
324 }
325
326 static inline float64 ldfq_le_p(const void *ptr)
327 {
328     CPU_DoubleU u;
329     u.l.lower = ldl_le_p(ptr);
330     u.l.upper = ldl_le_p(ptr + 4);
331     return u.d;
332 }
333
334 static inline void stfq_le_p(void *ptr, float64 v)
335 {
336     CPU_DoubleU u;
337     u.d = v;
338     stl_le_p(ptr, u.l.lower);
339     stl_le_p(ptr + 4, u.l.upper);
340 }
341
342 #else
343
344 static inline int lduw_le_p(const void *ptr)
345 {
346     return *(uint16_t *)ptr;
347 }
348
349 static inline int ldsw_le_p(const void *ptr)
350 {
351     return *(int16_t *)ptr;
352 }
353
354 static inline int ldl_le_p(const void *ptr)
355 {
356     return *(uint32_t *)ptr;
357 }
358
359 static inline uint64_t ldq_le_p(const void *ptr)
360 {
361     return *(uint64_t *)ptr;
362 }
363
364 static inline void stw_le_p(void *ptr, int v)
365 {
366     *(uint16_t *)ptr = v;
367 }
368
369 static inline void stl_le_p(void *ptr, int v)
370 {
371     *(uint32_t *)ptr = v;
372 }
373
374 static inline void stq_le_p(void *ptr, uint64_t v)
375 {
376     *(uint64_t *)ptr = v;
377 }
378
379 /* float access */
380
381 static inline float32 ldfl_le_p(const void *ptr)
382 {
383     return *(float32 *)ptr;
384 }
385
386 static inline float64 ldfq_le_p(const void *ptr)
387 {
388     return *(float64 *)ptr;
389 }
390
391 static inline void stfl_le_p(void *ptr, float32 v)
392 {
393     *(float32 *)ptr = v;
394 }
395
396 static inline void stfq_le_p(void *ptr, float64 v)
397 {
398     *(float64 *)ptr = v;
399 }
400 #endif
401
402 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
403
404 static inline int lduw_be_p(const void *ptr)
405 {
406 #if defined(__i386__)
407     int val;
408     asm volatile ("movzwl %1, %0\n"
409                   "xchgb %b0, %h0\n"
410                   : "=q" (val)
411                   : "m" (*(uint16_t *)ptr));
412     return val;
413 #else
414     const uint8_t *b = ptr;
415     return ((b[0] << 8) | b[1]);
416 #endif
417 }
418
419 static inline int ldsw_be_p(const void *ptr)
420 {
421 #if defined(__i386__)
422     int val;
423     asm volatile ("movzwl %1, %0\n"
424                   "xchgb %b0, %h0\n"
425                   : "=q" (val)
426                   : "m" (*(uint16_t *)ptr));
427     return (int16_t)val;
428 #else
429     const uint8_t *b = ptr;
430     return (int16_t)((b[0] << 8) | b[1]);
431 #endif
432 }
433
434 static inline int ldl_be_p(const void *ptr)
435 {
436 #if defined(__i386__) || defined(__x86_64__)
437     int val;
438     asm volatile ("movl %1, %0\n"
439                   "bswap %0\n"
440                   : "=r" (val)
441                   : "m" (*(uint32_t *)ptr));
442     return val;
443 #else
444     const uint8_t *b = ptr;
445     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
446 #endif
447 }
448
449 static inline uint64_t ldq_be_p(const void *ptr)
450 {
451     uint32_t a,b;
452     a = ldl_be_p(ptr);
453     b = ldl_be_p((uint8_t *)ptr + 4);
454     return (((uint64_t)a<<32)|b);
455 }
456
457 static inline void stw_be_p(void *ptr, int v)
458 {
459 #if defined(__i386__)
460     asm volatile ("xchgb %b0, %h0\n"
461                   "movw %w0, %1\n"
462                   : "=q" (v)
463                   : "m" (*(uint16_t *)ptr), "0" (v));
464 #else
465     uint8_t *d = (uint8_t *) ptr;
466     d[0] = v >> 8;
467     d[1] = v;
468 #endif
469 }
470
471 static inline void stl_be_p(void *ptr, int v)
472 {
473 #if defined(__i386__) || defined(__x86_64__)
474     asm volatile ("bswap %0\n"
475                   "movl %0, %1\n"
476                   : "=r" (v)
477                   : "m" (*(uint32_t *)ptr), "0" (v));
478 #else
479     uint8_t *d = (uint8_t *) ptr;
480     d[0] = v >> 24;
481     d[1] = v >> 16;
482     d[2] = v >> 8;
483     d[3] = v;
484 #endif
485 }
486
487 static inline void stq_be_p(void *ptr, uint64_t v)
488 {
489     stl_be_p(ptr, v >> 32);
490     stl_be_p((uint8_t *)ptr + 4, v);
491 }
492
493 /* float access */
494
495 static inline float32 ldfl_be_p(const void *ptr)
496 {
497     union {
498         float32 f;
499         uint32_t i;
500     } u;
501     u.i = ldl_be_p(ptr);
502     return u.f;
503 }
504
505 static inline void stfl_be_p(void *ptr, float32 v)
506 {
507     union {
508         float32 f;
509         uint32_t i;
510     } u;
511     u.f = v;
512     stl_be_p(ptr, u.i);
513 }
514
515 static inline float64 ldfq_be_p(const void *ptr)
516 {
517     CPU_DoubleU u;
518     u.l.upper = ldl_be_p(ptr);
519     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
520     return u.d;
521 }
522
523 static inline void stfq_be_p(void *ptr, float64 v)
524 {
525     CPU_DoubleU u;
526     u.d = v;
527     stl_be_p(ptr, u.l.upper);
528     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
529 }
530
531 #else
532
533 static inline int lduw_be_p(const void *ptr)
534 {
535     return *(uint16_t *)ptr;
536 }
537
538 static inline int ldsw_be_p(const void *ptr)
539 {
540     return *(int16_t *)ptr;
541 }
542
543 static inline int ldl_be_p(const void *ptr)
544 {
545     return *(uint32_t *)ptr;
546 }
547
548 static inline uint64_t ldq_be_p(const void *ptr)
549 {
550     return *(uint64_t *)ptr;
551 }
552
553 static inline void stw_be_p(void *ptr, int v)
554 {
555     *(uint16_t *)ptr = v;
556 }
557
558 static inline void stl_be_p(void *ptr, int v)
559 {
560     *(uint32_t *)ptr = v;
561 }
562
563 static inline void stq_be_p(void *ptr, uint64_t v)
564 {
565     *(uint64_t *)ptr = v;
566 }
567
568 /* float access */
569
570 static inline float32 ldfl_be_p(const void *ptr)
571 {
572     return *(float32 *)ptr;
573 }
574
575 static inline float64 ldfq_be_p(const void *ptr)
576 {
577     return *(float64 *)ptr;
578 }
579
580 static inline void stfl_be_p(void *ptr, float32 v)
581 {
582     *(float32 *)ptr = v;
583 }
584
585 static inline void stfq_be_p(void *ptr, float64 v)
586 {
587     *(float64 *)ptr = v;
588 }
589
590 #endif
591
592 /* target CPU memory access functions */
593 #if defined(TARGET_WORDS_BIGENDIAN)
594 #define lduw_p(p) lduw_be_p(p)
595 #define ldsw_p(p) ldsw_be_p(p)
596 #define ldl_p(p) ldl_be_p(p)
597 #define ldq_p(p) ldq_be_p(p)
598 #define ldfl_p(p) ldfl_be_p(p)
599 #define ldfq_p(p) ldfq_be_p(p)
600 #define stw_p(p, v) stw_be_p(p, v)
601 #define stl_p(p, v) stl_be_p(p, v)
602 #define stq_p(p, v) stq_be_p(p, v)
603 #define stfl_p(p, v) stfl_be_p(p, v)
604 #define stfq_p(p, v) stfq_be_p(p, v)
605 #else
606 #define lduw_p(p) lduw_le_p(p)
607 #define ldsw_p(p) ldsw_le_p(p)
608 #define ldl_p(p) ldl_le_p(p)
609 #define ldq_p(p) ldq_le_p(p)
610 #define ldfl_p(p) ldfl_le_p(p)
611 #define ldfq_p(p) ldfq_le_p(p)
612 #define stw_p(p, v) stw_le_p(p, v)
613 #define stl_p(p, v) stl_le_p(p, v)
614 #define stq_p(p, v) stq_le_p(p, v)
615 #define stfl_p(p, v) stfl_le_p(p, v)
616 #define stfq_p(p, v) stfq_le_p(p, v)
617 #endif
618
619 /* MMU memory access macros */
620
621 #if defined(CONFIG_USER_ONLY)
622 #include <assert.h>
623 #include "qemu-types.h"
624
625 /* On some host systems the guest address space is reserved on the host.
626  * This allows the guest address space to be offset to a convenient location.
627  */
628 //#define GUEST_BASE 0x20000000
629 #define GUEST_BASE 0
630
631 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
632 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
633 #define h2g(x) ({ \
634     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
635     /* Check if given address fits target address space */ \
636     assert(__ret == (abi_ulong)__ret); \
637     (abi_ulong)__ret; \
638 })
639 #define h2g_valid(x) ({ \
640     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
641     (__guest == (abi_ulong)__guest); \
642 })
643
644 #define saddr(x) g2h(x)
645 #define laddr(x) g2h(x)
646
647 #else /* !CONFIG_USER_ONLY */
648 /* NOTE: we use double casts if pointers and target_ulong have
649    different sizes */
650 #define saddr(x) (uint8_t *)(long)(x)
651 #define laddr(x) (uint8_t *)(long)(x)
652 #endif
653
654 #define ldub_raw(p) ldub_p(laddr((p)))
655 #define ldsb_raw(p) ldsb_p(laddr((p)))
656 #define lduw_raw(p) lduw_p(laddr((p)))
657 #define ldsw_raw(p) ldsw_p(laddr((p)))
658 #define ldl_raw(p) ldl_p(laddr((p)))
659 #define ldq_raw(p) ldq_p(laddr((p)))
660 #define ldfl_raw(p) ldfl_p(laddr((p)))
661 #define ldfq_raw(p) ldfq_p(laddr((p)))
662 #define stb_raw(p, v) stb_p(saddr((p)), v)
663 #define stw_raw(p, v) stw_p(saddr((p)), v)
664 #define stl_raw(p, v) stl_p(saddr((p)), v)
665 #define stq_raw(p, v) stq_p(saddr((p)), v)
666 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
667 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
668
669
670 #if defined(CONFIG_USER_ONLY)
671
672 /* if user mode, no other memory access functions */
673 #define ldub(p) ldub_raw(p)
674 #define ldsb(p) ldsb_raw(p)
675 #define lduw(p) lduw_raw(p)
676 #define ldsw(p) ldsw_raw(p)
677 #define ldl(p) ldl_raw(p)
678 #define ldq(p) ldq_raw(p)
679 #define ldfl(p) ldfl_raw(p)
680 #define ldfq(p) ldfq_raw(p)
681 #define stb(p, v) stb_raw(p, v)
682 #define stw(p, v) stw_raw(p, v)
683 #define stl(p, v) stl_raw(p, v)
684 #define stq(p, v) stq_raw(p, v)
685 #define stfl(p, v) stfl_raw(p, v)
686 #define stfq(p, v) stfq_raw(p, v)
687
688 #define ldub_code(p) ldub_raw(p)
689 #define ldsb_code(p) ldsb_raw(p)
690 #define lduw_code(p) lduw_raw(p)
691 #define ldsw_code(p) ldsw_raw(p)
692 #define ldl_code(p) ldl_raw(p)
693 #define ldq_code(p) ldq_raw(p)
694
695 #define ldub_kernel(p) ldub_raw(p)
696 #define ldsb_kernel(p) ldsb_raw(p)
697 #define lduw_kernel(p) lduw_raw(p)
698 #define ldsw_kernel(p) ldsw_raw(p)
699 #define ldl_kernel(p) ldl_raw(p)
700 #define ldq_kernel(p) ldq_raw(p)
701 #define ldfl_kernel(p) ldfl_raw(p)
702 #define ldfq_kernel(p) ldfq_raw(p)
703 #define stb_kernel(p, v) stb_raw(p, v)
704 #define stw_kernel(p, v) stw_raw(p, v)
705 #define stl_kernel(p, v) stl_raw(p, v)
706 #define stq_kernel(p, v) stq_raw(p, v)
707 #define stfl_kernel(p, v) stfl_raw(p, v)
708 #define stfq_kernel(p, vt) stfq_raw(p, v)
709
710 #endif /* defined(CONFIG_USER_ONLY) */
711
712 /* page related stuff */
713
714 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
715 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
716 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
717
718 /* ??? These should be the larger of unsigned long and target_ulong.  */
719 extern unsigned long qemu_real_host_page_size;
720 extern unsigned long qemu_host_page_bits;
721 extern unsigned long qemu_host_page_size;
722 extern unsigned long qemu_host_page_mask;
723
724 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
725
726 /* same as PROT_xxx */
727 #define PAGE_READ      0x0001
728 #define PAGE_WRITE     0x0002
729 #define PAGE_EXEC      0x0004
730 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
731 #define PAGE_VALID     0x0008
732 /* original state of the write flag (used when tracking self-modifying
733    code */
734 #define PAGE_WRITE_ORG 0x0010
735 #define PAGE_RESERVED  0x0020
736
737 void page_dump(FILE *f);
738 int page_get_flags(target_ulong address);
739 void page_set_flags(target_ulong start, target_ulong end, int flags);
740 int page_check_range(target_ulong start, target_ulong len, int flags);
741
742 void cpu_exec_init_all(unsigned long tb_size);
743 CPUState *cpu_copy(CPUState *env);
744
745 void cpu_dump_state(CPUState *env, FILE *f,
746                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
747                     int flags);
748 void cpu_dump_statistics (CPUState *env, FILE *f,
749                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
750                           int flags);
751
752 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
753     __attribute__ ((__format__ (__printf__, 2, 3)));
754 extern CPUState *first_cpu;
755 extern CPUState *cpu_single_env;
756 extern int64_t qemu_icount;
757 extern int use_icount;
758
759 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
760 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
761 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
762 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
763 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
764 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
765 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
766 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
767 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
768
769 void cpu_interrupt(CPUState *s, int mask);
770 void cpu_reset_interrupt(CPUState *env, int mask);
771
772 void cpu_exit(CPUState *s);
773
774 int qemu_cpu_has_work(CPUState *env);
775
776 /* Breakpoint/watchpoint flags */
777 #define BP_MEM_READ           0x01
778 #define BP_MEM_WRITE          0x02
779 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
780 #define BP_STOP_BEFORE_ACCESS 0x04
781 #define BP_WATCHPOINT_HIT     0x08
782 #define BP_GDB                0x10
783 #define BP_CPU                0x20
784
785 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
786                           CPUBreakpoint **breakpoint);
787 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
788 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
789 void cpu_breakpoint_remove_all(CPUState *env, int mask);
790 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
791                           int flags, CPUWatchpoint **watchpoint);
792 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
793                           target_ulong len, int flags);
794 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
795 void cpu_watchpoint_remove_all(CPUState *env, int mask);
796
797 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
798 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
799 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
800
801 void cpu_single_step(CPUState *env, int enabled);
802 void cpu_reset(CPUState *s);
803
804 /* Return the physical page corresponding to a virtual one. Use it
805    only for debugging because no protection checks are done. Return -1
806    if no page found. */
807 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
808
809 #define CPU_LOG_TB_OUT_ASM (1 << 0)
810 #define CPU_LOG_TB_IN_ASM  (1 << 1)
811 #define CPU_LOG_TB_OP      (1 << 2)
812 #define CPU_LOG_TB_OP_OPT  (1 << 3)
813 #define CPU_LOG_INT        (1 << 4)
814 #define CPU_LOG_EXEC       (1 << 5)
815 #define CPU_LOG_PCALL      (1 << 6)
816 #define CPU_LOG_IOPORT     (1 << 7)
817 #define CPU_LOG_TB_CPU     (1 << 8)
818 #define CPU_LOG_RESET      (1 << 9)
819
820 /* define log items */
821 typedef struct CPULogItem {
822     int mask;
823     const char *name;
824     const char *help;
825 } CPULogItem;
826
827 extern const CPULogItem cpu_log_items[];
828
829 void cpu_set_log(int log_flags);
830 void cpu_set_log_filename(const char *filename);
831 int cpu_str_to_log_mask(const char *str);
832
833 /* IO ports API */
834
835 /* NOTE: as these functions may be even used when there is an isa
836    brige on non x86 targets, we always defined them */
837 #ifndef NO_CPU_IO_DEFS
838 void cpu_outb(CPUState *env, int addr, int val);
839 void cpu_outw(CPUState *env, int addr, int val);
840 void cpu_outl(CPUState *env, int addr, int val);
841 int cpu_inb(CPUState *env, int addr);
842 int cpu_inw(CPUState *env, int addr);
843 int cpu_inl(CPUState *env, int addr);
844 #endif
845
846 /* memory API */
847
848 extern int phys_ram_fd;
849 extern uint8_t *phys_ram_dirty;
850 extern ram_addr_t ram_size;
851 extern ram_addr_t last_ram_offset;
852
853 /* physical memory access */
854
855 /* MMIO pages are identified by a combination of an IO device index and
856    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
857    so only a limited number of ids are avaiable.  */
858
859 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
860
861 /* Flags stored in the low bits of the TLB virtual address.  These are
862    defined so that fast path ram access is all zeros.  */
863 /* Zero if TLB entry is valid.  */
864 #define TLB_INVALID_MASK   (1 << 3)
865 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
866    contain the page physical address.  */
867 #define TLB_NOTDIRTY    (1 << 4)
868 /* Set if TLB entry is an IO callback.  */
869 #define TLB_MMIO        (1 << 5)
870
871 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
872                         uint8_t *buf, int len, int is_write);
873
874 #define VGA_DIRTY_FLAG       0x01
875 #define CODE_DIRTY_FLAG      0x02
876 #define KQEMU_DIRTY_FLAG     0x04
877 #define MIGRATION_DIRTY_FLAG 0x08
878
879 /* read dirty bit (return 0 or 1) */
880 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
881 {
882     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
883 }
884
885 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
886                                                 int dirty_flags)
887 {
888     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
889 }
890
891 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
892 {
893     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
894 }
895
896 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
897                                      int dirty_flags);
898 void cpu_tlb_update_dirty(CPUState *env);
899
900 int cpu_physical_memory_set_dirty_tracking(int enable);
901
902 int cpu_physical_memory_get_dirty_tracking(void);
903
904 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
905
906 void dump_exec_info(FILE *f,
907                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
908
909 /* Coalesced MMIO regions are areas where write operations can be reordered.
910  * This usually implies that write operations are side-effect free.  This allows
911  * batching which can make a major impact on performance when using
912  * virtualization.
913  */
914 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
915
916 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
917
918 /*******************************************/
919 /* host CPU ticks (if available) */
920
921 #if defined(_ARCH_PPC)
922
923 static inline int64_t cpu_get_real_ticks(void)
924 {
925     int64_t retval;
926 #ifdef _ARCH_PPC64
927     /* This reads timebase in one 64bit go and includes Cell workaround from:
928        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
929      */
930     __asm__ __volatile__ (
931         "mftb    %0\n\t"
932         "cmpwi   %0,0\n\t"
933         "beq-    $-8"
934         : "=r" (retval));
935 #else
936     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
937     unsigned long junk;
938     __asm__ __volatile__ (
939         "mftbu   %1\n\t"
940         "mftb    %L0\n\t"
941         "mftbu   %0\n\t"
942         "cmpw    %0,%1\n\t"
943         "bne     $-16"
944         : "=r" (retval), "=r" (junk));
945 #endif
946     return retval;
947 }
948
949 #elif defined(__i386__)
950
951 static inline int64_t cpu_get_real_ticks(void)
952 {
953     int64_t val;
954     asm volatile ("rdtsc" : "=A" (val));
955     return val;
956 }
957
958 #elif defined(__x86_64__)
959
960 static inline int64_t cpu_get_real_ticks(void)
961 {
962     uint32_t low,high;
963     int64_t val;
964     asm volatile("rdtsc" : "=a" (low), "=d" (high));
965     val = high;
966     val <<= 32;
967     val |= low;
968     return val;
969 }
970
971 #elif defined(__hppa__)
972
973 static inline int64_t cpu_get_real_ticks(void)
974 {
975     int val;
976     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
977     return val;
978 }
979
980 #elif defined(__ia64)
981
982 static inline int64_t cpu_get_real_ticks(void)
983 {
984         int64_t val;
985         asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
986         return val;
987 }
988
989 #elif defined(__s390__)
990
991 static inline int64_t cpu_get_real_ticks(void)
992 {
993     int64_t val;
994     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
995     return val;
996 }
997
998 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
999
1000 static inline int64_t cpu_get_real_ticks (void)
1001 {
1002 #if     defined(_LP64)
1003         uint64_t        rval;
1004         asm volatile("rd %%tick,%0" : "=r"(rval));
1005         return rval;
1006 #else
1007         union {
1008                 uint64_t i64;
1009                 struct {
1010                         uint32_t high;
1011                         uint32_t low;
1012                 }       i32;
1013         } rval;
1014         asm volatile("rd %%tick,%1; srlx %1,32,%0"
1015                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1016         return rval.i64;
1017 #endif
1018 }
1019
1020 #elif defined(__mips__)
1021
1022 static inline int64_t cpu_get_real_ticks(void)
1023 {
1024 #if __mips_isa_rev >= 2
1025     uint32_t count;
1026     static uint32_t cyc_per_count = 0;
1027
1028     if (!cyc_per_count)
1029         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1030
1031     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1032     return (int64_t)(count * cyc_per_count);
1033 #else
1034     /* FIXME */
1035     static int64_t ticks = 0;
1036     return ticks++;
1037 #endif
1038 }
1039
1040 #else
1041 /* The host CPU doesn't have an easily accessible cycle counter.
1042    Just return a monotonically increasing value.  This will be
1043    totally wrong, but hopefully better than nothing.  */
1044 static inline int64_t cpu_get_real_ticks (void)
1045 {
1046     static int64_t ticks = 0;
1047     return ticks++;
1048 }
1049 #endif
1050
1051 /* profiling */
1052 #ifdef CONFIG_PROFILER
1053 static inline int64_t profile_getclock(void)
1054 {
1055     return cpu_get_real_ticks();
1056 }
1057
1058 extern int64_t kqemu_time, kqemu_time_start;
1059 extern int64_t qemu_time, qemu_time_start;
1060 extern int64_t tlb_flush_time;
1061 extern int64_t kqemu_exec_count;
1062 extern int64_t dev_time;
1063 extern int64_t kqemu_ret_int_count;
1064 extern int64_t kqemu_ret_excp_count;
1065 extern int64_t kqemu_ret_intr_count;
1066 #endif
1067
1068 #endif /* CPU_ALL_H */