linux-user: fix ppc target_stat64 st_blocks layout
[qemu] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24
25 /* some important defines:
26  *
27  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28  * memory accesses.
29  *
30  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31  * otherwise little endian.
32  *
33  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34  *
35  * TARGET_WORDS_BIGENDIAN : same for target cpu
36  */
37
38 #include "softfloat.h"
39
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43
44 #ifdef BSWAP_NEEDED
45
46 static inline uint16_t tswap16(uint16_t s)
47 {
48     return bswap16(s);
49 }
50
51 static inline uint32_t tswap32(uint32_t s)
52 {
53     return bswap32(s);
54 }
55
56 static inline uint64_t tswap64(uint64_t s)
57 {
58     return bswap64(s);
59 }
60
61 static inline void tswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65
66 static inline void tswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70
71 static inline void tswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75
76 #else
77
78 static inline uint16_t tswap16(uint16_t s)
79 {
80     return s;
81 }
82
83 static inline uint32_t tswap32(uint32_t s)
84 {
85     return s;
86 }
87
88 static inline uint64_t tswap64(uint64_t s)
89 {
90     return s;
91 }
92
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104
105 #endif
106
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116
117 typedef union {
118     float32 f;
119     uint32_t l;
120 } CPU_FloatU;
121
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123    endian ! */
124 typedef union {
125     float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128     struct {
129         uint32_t upper;
130         uint32_t lower;
131     } l;
132 #else
133     struct {
134         uint32_t lower;
135         uint32_t upper;
136     } l;
137 #endif
138     uint64_t ll;
139 } CPU_DoubleU;
140
141 #ifdef TARGET_SPARC
142 typedef union {
143     float128 q;
144 #if defined(HOST_WORDS_BIGENDIAN) \
145     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146     struct {
147         uint32_t upmost;
148         uint32_t upper;
149         uint32_t lower;
150         uint32_t lowest;
151     } l;
152     struct {
153         uint64_t upper;
154         uint64_t lower;
155     } ll;
156 #else
157     struct {
158         uint32_t lowest;
159         uint32_t lower;
160         uint32_t upper;
161         uint32_t upmost;
162     } l;
163     struct {
164         uint64_t lower;
165         uint64_t upper;
166     } ll;
167 #endif
168 } CPU_QuadU;
169 #endif
170
171 /* CPU memory access without any memory or io remapping */
172
173 /*
174  * the generic syntax for the memory accesses is:
175  *
176  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177  *
178  * store: st{type}{size}{endian}_{access_type}(ptr, val)
179  *
180  * type is:
181  * (empty): integer access
182  *   f    : float access
183  *
184  * sign is:
185  * (empty): for floats or 32 bit size
186  *   u    : unsigned
187  *   s    : signed
188  *
189  * size is:
190  *   b: 8 bits
191  *   w: 16 bits
192  *   l: 32 bits
193  *   q: 64 bits
194  *
195  * endian is:
196  * (empty): target cpu endianness or 8 bit access
197  *   r    : reversed target cpu endianness (not implemented yet)
198  *   be   : big endian (not implemented yet)
199  *   le   : little endian (not implemented yet)
200  *
201  * access_type is:
202  *   raw    : host memory access
203  *   user   : user mode access using soft MMU
204  *   kernel : kernel mode access using soft MMU
205  */
206 static inline int ldub_p(const void *ptr)
207 {
208     return *(uint8_t *)ptr;
209 }
210
211 static inline int ldsb_p(const void *ptr)
212 {
213     return *(int8_t *)ptr;
214 }
215
216 static inline void stb_p(void *ptr, int v)
217 {
218     *(uint8_t *)ptr = v;
219 }
220
221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222    kernel handles unaligned load/stores may give better results, but
223    it is a system wide setting : bad */
224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225
226 /* conservative code for little endian unaligned accesses */
227 static inline int lduw_le_p(const void *ptr)
228 {
229 #ifdef _ARCH_PPC
230     int val;
231     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232     return val;
233 #else
234     const uint8_t *p = ptr;
235     return p[0] | (p[1] << 8);
236 #endif
237 }
238
239 static inline int ldsw_le_p(const void *ptr)
240 {
241 #ifdef _ARCH_PPC
242     int val;
243     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244     return (int16_t)val;
245 #else
246     const uint8_t *p = ptr;
247     return (int16_t)(p[0] | (p[1] << 8));
248 #endif
249 }
250
251 static inline int ldl_le_p(const void *ptr)
252 {
253 #ifdef _ARCH_PPC
254     int val;
255     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256     return val;
257 #else
258     const uint8_t *p = ptr;
259     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260 #endif
261 }
262
263 static inline uint64_t ldq_le_p(const void *ptr)
264 {
265     const uint8_t *p = ptr;
266     uint32_t v1, v2;
267     v1 = ldl_le_p(p);
268     v2 = ldl_le_p(p + 4);
269     return v1 | ((uint64_t)v2 << 32);
270 }
271
272 static inline void stw_le_p(void *ptr, int v)
273 {
274 #ifdef _ARCH_PPC
275     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276 #else
277     uint8_t *p = ptr;
278     p[0] = v;
279     p[1] = v >> 8;
280 #endif
281 }
282
283 static inline void stl_le_p(void *ptr, int v)
284 {
285 #ifdef _ARCH_PPC
286     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287 #else
288     uint8_t *p = ptr;
289     p[0] = v;
290     p[1] = v >> 8;
291     p[2] = v >> 16;
292     p[3] = v >> 24;
293 #endif
294 }
295
296 static inline void stq_le_p(void *ptr, uint64_t v)
297 {
298     uint8_t *p = ptr;
299     stl_le_p(p, (uint32_t)v);
300     stl_le_p(p + 4, v >> 32);
301 }
302
303 /* float access */
304
305 static inline float32 ldfl_le_p(const void *ptr)
306 {
307     union {
308         float32 f;
309         uint32_t i;
310     } u;
311     u.i = ldl_le_p(ptr);
312     return u.f;
313 }
314
315 static inline void stfl_le_p(void *ptr, float32 v)
316 {
317     union {
318         float32 f;
319         uint32_t i;
320     } u;
321     u.f = v;
322     stl_le_p(ptr, u.i);
323 }
324
325 static inline float64 ldfq_le_p(const void *ptr)
326 {
327     CPU_DoubleU u;
328     u.l.lower = ldl_le_p(ptr);
329     u.l.upper = ldl_le_p(ptr + 4);
330     return u.d;
331 }
332
333 static inline void stfq_le_p(void *ptr, float64 v)
334 {
335     CPU_DoubleU u;
336     u.d = v;
337     stl_le_p(ptr, u.l.lower);
338     stl_le_p(ptr + 4, u.l.upper);
339 }
340
341 #else
342
343 static inline int lduw_le_p(const void *ptr)
344 {
345     return *(uint16_t *)ptr;
346 }
347
348 static inline int ldsw_le_p(const void *ptr)
349 {
350     return *(int16_t *)ptr;
351 }
352
353 static inline int ldl_le_p(const void *ptr)
354 {
355     return *(uint32_t *)ptr;
356 }
357
358 static inline uint64_t ldq_le_p(const void *ptr)
359 {
360     return *(uint64_t *)ptr;
361 }
362
363 static inline void stw_le_p(void *ptr, int v)
364 {
365     *(uint16_t *)ptr = v;
366 }
367
368 static inline void stl_le_p(void *ptr, int v)
369 {
370     *(uint32_t *)ptr = v;
371 }
372
373 static inline void stq_le_p(void *ptr, uint64_t v)
374 {
375     *(uint64_t *)ptr = v;
376 }
377
378 /* float access */
379
380 static inline float32 ldfl_le_p(const void *ptr)
381 {
382     return *(float32 *)ptr;
383 }
384
385 static inline float64 ldfq_le_p(const void *ptr)
386 {
387     return *(float64 *)ptr;
388 }
389
390 static inline void stfl_le_p(void *ptr, float32 v)
391 {
392     *(float32 *)ptr = v;
393 }
394
395 static inline void stfq_le_p(void *ptr, float64 v)
396 {
397     *(float64 *)ptr = v;
398 }
399 #endif
400
401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402
403 static inline int lduw_be_p(const void *ptr)
404 {
405 #if defined(__i386__)
406     int val;
407     asm volatile ("movzwl %1, %0\n"
408                   "xchgb %b0, %h0\n"
409                   : "=q" (val)
410                   : "m" (*(uint16_t *)ptr));
411     return val;
412 #else
413     const uint8_t *b = ptr;
414     return ((b[0] << 8) | b[1]);
415 #endif
416 }
417
418 static inline int ldsw_be_p(const void *ptr)
419 {
420 #if defined(__i386__)
421     int val;
422     asm volatile ("movzwl %1, %0\n"
423                   "xchgb %b0, %h0\n"
424                   : "=q" (val)
425                   : "m" (*(uint16_t *)ptr));
426     return (int16_t)val;
427 #else
428     const uint8_t *b = ptr;
429     return (int16_t)((b[0] << 8) | b[1]);
430 #endif
431 }
432
433 static inline int ldl_be_p(const void *ptr)
434 {
435 #if defined(__i386__) || defined(__x86_64__)
436     int val;
437     asm volatile ("movl %1, %0\n"
438                   "bswap %0\n"
439                   : "=r" (val)
440                   : "m" (*(uint32_t *)ptr));
441     return val;
442 #else
443     const uint8_t *b = ptr;
444     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445 #endif
446 }
447
448 static inline uint64_t ldq_be_p(const void *ptr)
449 {
450     uint32_t a,b;
451     a = ldl_be_p(ptr);
452     b = ldl_be_p((uint8_t *)ptr + 4);
453     return (((uint64_t)a<<32)|b);
454 }
455
456 static inline void stw_be_p(void *ptr, int v)
457 {
458 #if defined(__i386__)
459     asm volatile ("xchgb %b0, %h0\n"
460                   "movw %w0, %1\n"
461                   : "=q" (v)
462                   : "m" (*(uint16_t *)ptr), "0" (v));
463 #else
464     uint8_t *d = (uint8_t *) ptr;
465     d[0] = v >> 8;
466     d[1] = v;
467 #endif
468 }
469
470 static inline void stl_be_p(void *ptr, int v)
471 {
472 #if defined(__i386__) || defined(__x86_64__)
473     asm volatile ("bswap %0\n"
474                   "movl %0, %1\n"
475                   : "=r" (v)
476                   : "m" (*(uint32_t *)ptr), "0" (v));
477 #else
478     uint8_t *d = (uint8_t *) ptr;
479     d[0] = v >> 24;
480     d[1] = v >> 16;
481     d[2] = v >> 8;
482     d[3] = v;
483 #endif
484 }
485
486 static inline void stq_be_p(void *ptr, uint64_t v)
487 {
488     stl_be_p(ptr, v >> 32);
489     stl_be_p((uint8_t *)ptr + 4, v);
490 }
491
492 /* float access */
493
494 static inline float32 ldfl_be_p(const void *ptr)
495 {
496     union {
497         float32 f;
498         uint32_t i;
499     } u;
500     u.i = ldl_be_p(ptr);
501     return u.f;
502 }
503
504 static inline void stfl_be_p(void *ptr, float32 v)
505 {
506     union {
507         float32 f;
508         uint32_t i;
509     } u;
510     u.f = v;
511     stl_be_p(ptr, u.i);
512 }
513
514 static inline float64 ldfq_be_p(const void *ptr)
515 {
516     CPU_DoubleU u;
517     u.l.upper = ldl_be_p(ptr);
518     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519     return u.d;
520 }
521
522 static inline void stfq_be_p(void *ptr, float64 v)
523 {
524     CPU_DoubleU u;
525     u.d = v;
526     stl_be_p(ptr, u.l.upper);
527     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
528 }
529
530 #else
531
532 static inline int lduw_be_p(const void *ptr)
533 {
534     return *(uint16_t *)ptr;
535 }
536
537 static inline int ldsw_be_p(const void *ptr)
538 {
539     return *(int16_t *)ptr;
540 }
541
542 static inline int ldl_be_p(const void *ptr)
543 {
544     return *(uint32_t *)ptr;
545 }
546
547 static inline uint64_t ldq_be_p(const void *ptr)
548 {
549     return *(uint64_t *)ptr;
550 }
551
552 static inline void stw_be_p(void *ptr, int v)
553 {
554     *(uint16_t *)ptr = v;
555 }
556
557 static inline void stl_be_p(void *ptr, int v)
558 {
559     *(uint32_t *)ptr = v;
560 }
561
562 static inline void stq_be_p(void *ptr, uint64_t v)
563 {
564     *(uint64_t *)ptr = v;
565 }
566
567 /* float access */
568
569 static inline float32 ldfl_be_p(const void *ptr)
570 {
571     return *(float32 *)ptr;
572 }
573
574 static inline float64 ldfq_be_p(const void *ptr)
575 {
576     return *(float64 *)ptr;
577 }
578
579 static inline void stfl_be_p(void *ptr, float32 v)
580 {
581     *(float32 *)ptr = v;
582 }
583
584 static inline void stfq_be_p(void *ptr, float64 v)
585 {
586     *(float64 *)ptr = v;
587 }
588
589 #endif
590
591 /* target CPU memory access functions */
592 #if defined(TARGET_WORDS_BIGENDIAN)
593 #define lduw_p(p) lduw_be_p(p)
594 #define ldsw_p(p) ldsw_be_p(p)
595 #define ldl_p(p) ldl_be_p(p)
596 #define ldq_p(p) ldq_be_p(p)
597 #define ldfl_p(p) ldfl_be_p(p)
598 #define ldfq_p(p) ldfq_be_p(p)
599 #define stw_p(p, v) stw_be_p(p, v)
600 #define stl_p(p, v) stl_be_p(p, v)
601 #define stq_p(p, v) stq_be_p(p, v)
602 #define stfl_p(p, v) stfl_be_p(p, v)
603 #define stfq_p(p, v) stfq_be_p(p, v)
604 #else
605 #define lduw_p(p) lduw_le_p(p)
606 #define ldsw_p(p) ldsw_le_p(p)
607 #define ldl_p(p) ldl_le_p(p)
608 #define ldq_p(p) ldq_le_p(p)
609 #define ldfl_p(p) ldfl_le_p(p)
610 #define ldfq_p(p) ldfq_le_p(p)
611 #define stw_p(p, v) stw_le_p(p, v)
612 #define stl_p(p, v) stl_le_p(p, v)
613 #define stq_p(p, v) stq_le_p(p, v)
614 #define stfl_p(p, v) stfl_le_p(p, v)
615 #define stfq_p(p, v) stfq_le_p(p, v)
616 #endif
617
618 /* MMU memory access macros */
619
620 #if defined(CONFIG_USER_ONLY)
621 #include <assert.h>
622 #include "qemu-types.h"
623
624 /* On some host systems the guest address space is reserved on the host.
625  * This allows the guest address space to be offset to a convenient location.
626  */
627 #if defined(CONFIG_USE_GUEST_BASE)
628 extern unsigned long guest_base;
629 extern int have_guest_base;
630 #define GUEST_BASE guest_base
631 #else
632 #define GUEST_BASE 0ul
633 #endif
634
635 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637 #define h2g(x) ({ \
638     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639     /* Check if given address fits target address space */ \
640     assert(__ret == (abi_ulong)__ret); \
641     (abi_ulong)__ret; \
642 })
643 #define h2g_valid(x) ({ \
644     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645     (__guest == (abi_ulong)__guest); \
646 })
647
648 #define saddr(x) g2h(x)
649 #define laddr(x) g2h(x)
650
651 #else /* !CONFIG_USER_ONLY */
652 /* NOTE: we use double casts if pointers and target_ulong have
653    different sizes */
654 #define saddr(x) (uint8_t *)(long)(x)
655 #define laddr(x) (uint8_t *)(long)(x)
656 #endif
657
658 #define ldub_raw(p) ldub_p(laddr((p)))
659 #define ldsb_raw(p) ldsb_p(laddr((p)))
660 #define lduw_raw(p) lduw_p(laddr((p)))
661 #define ldsw_raw(p) ldsw_p(laddr((p)))
662 #define ldl_raw(p) ldl_p(laddr((p)))
663 #define ldq_raw(p) ldq_p(laddr((p)))
664 #define ldfl_raw(p) ldfl_p(laddr((p)))
665 #define ldfq_raw(p) ldfq_p(laddr((p)))
666 #define stb_raw(p, v) stb_p(saddr((p)), v)
667 #define stw_raw(p, v) stw_p(saddr((p)), v)
668 #define stl_raw(p, v) stl_p(saddr((p)), v)
669 #define stq_raw(p, v) stq_p(saddr((p)), v)
670 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
671 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
672
673
674 #if defined(CONFIG_USER_ONLY)
675
676 /* if user mode, no other memory access functions */
677 #define ldub(p) ldub_raw(p)
678 #define ldsb(p) ldsb_raw(p)
679 #define lduw(p) lduw_raw(p)
680 #define ldsw(p) ldsw_raw(p)
681 #define ldl(p) ldl_raw(p)
682 #define ldq(p) ldq_raw(p)
683 #define ldfl(p) ldfl_raw(p)
684 #define ldfq(p) ldfq_raw(p)
685 #define stb(p, v) stb_raw(p, v)
686 #define stw(p, v) stw_raw(p, v)
687 #define stl(p, v) stl_raw(p, v)
688 #define stq(p, v) stq_raw(p, v)
689 #define stfl(p, v) stfl_raw(p, v)
690 #define stfq(p, v) stfq_raw(p, v)
691
692 #define ldub_code(p) ldub_raw(p)
693 #define ldsb_code(p) ldsb_raw(p)
694 #define lduw_code(p) lduw_raw(p)
695 #define ldsw_code(p) ldsw_raw(p)
696 #define ldl_code(p) ldl_raw(p)
697 #define ldq_code(p) ldq_raw(p)
698
699 #define ldub_kernel(p) ldub_raw(p)
700 #define ldsb_kernel(p) ldsb_raw(p)
701 #define lduw_kernel(p) lduw_raw(p)
702 #define ldsw_kernel(p) ldsw_raw(p)
703 #define ldl_kernel(p) ldl_raw(p)
704 #define ldq_kernel(p) ldq_raw(p)
705 #define ldfl_kernel(p) ldfl_raw(p)
706 #define ldfq_kernel(p) ldfq_raw(p)
707 #define stb_kernel(p, v) stb_raw(p, v)
708 #define stw_kernel(p, v) stw_raw(p, v)
709 #define stl_kernel(p, v) stl_raw(p, v)
710 #define stq_kernel(p, v) stq_raw(p, v)
711 #define stfl_kernel(p, v) stfl_raw(p, v)
712 #define stfq_kernel(p, vt) stfq_raw(p, v)
713
714 #endif /* defined(CONFIG_USER_ONLY) */
715
716 /* page related stuff */
717
718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
721
722 /* ??? These should be the larger of unsigned long and target_ulong.  */
723 extern unsigned long qemu_real_host_page_size;
724 extern unsigned long qemu_host_page_bits;
725 extern unsigned long qemu_host_page_size;
726 extern unsigned long qemu_host_page_mask;
727
728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
729
730 /* same as PROT_xxx */
731 #define PAGE_READ      0x0001
732 #define PAGE_WRITE     0x0002
733 #define PAGE_EXEC      0x0004
734 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735 #define PAGE_VALID     0x0008
736 /* original state of the write flag (used when tracking self-modifying
737    code */
738 #define PAGE_WRITE_ORG 0x0010
739 #define PAGE_RESERVED  0x0020
740
741 void page_dump(FILE *f);
742 int walk_memory_regions(void *,
743     int (*fn)(void *, unsigned long, unsigned long, unsigned long));
744 int page_get_flags(target_ulong address);
745 void page_set_flags(target_ulong start, target_ulong end, int flags);
746 int page_check_range(target_ulong start, target_ulong len, int flags);
747
748 void cpu_exec_init_all(unsigned long tb_size);
749 CPUState *cpu_copy(CPUState *env);
750 CPUState *qemu_get_cpu(int cpu);
751
752 void cpu_dump_state(CPUState *env, FILE *f,
753                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
754                     int flags);
755 void cpu_dump_statistics (CPUState *env, FILE *f,
756                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
757                           int flags);
758
759 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
760     __attribute__ ((__format__ (__printf__, 2, 3)));
761 extern CPUState *first_cpu;
762 extern CPUState *cpu_single_env;
763 extern int64_t qemu_icount;
764 extern int use_icount;
765
766 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
767 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
768 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
769 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
770 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
771 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
772 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
773 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
774 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
775 #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
776 #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
777 #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
778
779 void cpu_interrupt(CPUState *s, int mask);
780 void cpu_reset_interrupt(CPUState *env, int mask);
781
782 void cpu_exit(CPUState *s);
783
784 int qemu_cpu_has_work(CPUState *env);
785
786 /* Breakpoint/watchpoint flags */
787 #define BP_MEM_READ           0x01
788 #define BP_MEM_WRITE          0x02
789 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
790 #define BP_STOP_BEFORE_ACCESS 0x04
791 #define BP_WATCHPOINT_HIT     0x08
792 #define BP_GDB                0x10
793 #define BP_CPU                0x20
794
795 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
796                           CPUBreakpoint **breakpoint);
797 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
798 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
799 void cpu_breakpoint_remove_all(CPUState *env, int mask);
800 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
801                           int flags, CPUWatchpoint **watchpoint);
802 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
803                           target_ulong len, int flags);
804 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
805 void cpu_watchpoint_remove_all(CPUState *env, int mask);
806
807 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
808 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
809 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
810
811 void cpu_single_step(CPUState *env, int enabled);
812 void cpu_reset(CPUState *s);
813
814 /* Return the physical page corresponding to a virtual one. Use it
815    only for debugging because no protection checks are done. Return -1
816    if no page found. */
817 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
818
819 #define CPU_LOG_TB_OUT_ASM (1 << 0)
820 #define CPU_LOG_TB_IN_ASM  (1 << 1)
821 #define CPU_LOG_TB_OP      (1 << 2)
822 #define CPU_LOG_TB_OP_OPT  (1 << 3)
823 #define CPU_LOG_INT        (1 << 4)
824 #define CPU_LOG_EXEC       (1 << 5)
825 #define CPU_LOG_PCALL      (1 << 6)
826 #define CPU_LOG_IOPORT     (1 << 7)
827 #define CPU_LOG_TB_CPU     (1 << 8)
828 #define CPU_LOG_RESET      (1 << 9)
829
830 /* define log items */
831 typedef struct CPULogItem {
832     int mask;
833     const char *name;
834     const char *help;
835 } CPULogItem;
836
837 extern const CPULogItem cpu_log_items[];
838
839 void cpu_set_log(int log_flags);
840 void cpu_set_log_filename(const char *filename);
841 int cpu_str_to_log_mask(const char *str);
842
843 /* IO ports API */
844 #include "ioport.h"
845
846 /* memory API */
847
848 extern int phys_ram_fd;
849 extern uint8_t *phys_ram_dirty;
850 extern ram_addr_t ram_size;
851 extern ram_addr_t last_ram_offset;
852
853 /* physical memory access */
854
855 /* MMIO pages are identified by a combination of an IO device index and
856    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
857    so only a limited number of ids are avaiable.  */
858
859 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
860
861 /* Flags stored in the low bits of the TLB virtual address.  These are
862    defined so that fast path ram access is all zeros.  */
863 /* Zero if TLB entry is valid.  */
864 #define TLB_INVALID_MASK   (1 << 3)
865 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
866    contain the page physical address.  */
867 #define TLB_NOTDIRTY    (1 << 4)
868 /* Set if TLB entry is an IO callback.  */
869 #define TLB_MMIO        (1 << 5)
870
871 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
872                         uint8_t *buf, int len, int is_write);
873
874 #define VGA_DIRTY_FLAG       0x01
875 #define CODE_DIRTY_FLAG      0x02
876 #define MIGRATION_DIRTY_FLAG 0x08
877
878 /* read dirty bit (return 0 or 1) */
879 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
880 {
881     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
882 }
883
884 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
885                                                 int dirty_flags)
886 {
887     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
888 }
889
890 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
891 {
892     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
893 }
894
895 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
896                                      int dirty_flags);
897 void cpu_tlb_update_dirty(CPUState *env);
898
899 int cpu_physical_memory_set_dirty_tracking(int enable);
900
901 int cpu_physical_memory_get_dirty_tracking(void);
902
903 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
904                                    target_phys_addr_t end_addr);
905
906 void dump_exec_info(FILE *f,
907                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
908
909 /* Coalesced MMIO regions are areas where write operations can be reordered.
910  * This usually implies that write operations are side-effect free.  This allows
911  * batching which can make a major impact on performance when using
912  * virtualization.
913  */
914 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
915
916 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
917
918 /*******************************************/
919 /* host CPU ticks (if available) */
920
921 #if defined(_ARCH_PPC)
922
923 static inline int64_t cpu_get_real_ticks(void)
924 {
925     int64_t retval;
926 #ifdef _ARCH_PPC64
927     /* This reads timebase in one 64bit go and includes Cell workaround from:
928        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
929      */
930     __asm__ __volatile__ (
931         "mftb    %0\n\t"
932         "cmpwi   %0,0\n\t"
933         "beq-    $-8"
934         : "=r" (retval));
935 #else
936     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
937     unsigned long junk;
938     __asm__ __volatile__ (
939         "mftbu   %1\n\t"
940         "mftb    %L0\n\t"
941         "mftbu   %0\n\t"
942         "cmpw    %0,%1\n\t"
943         "bne     $-16"
944         : "=r" (retval), "=r" (junk));
945 #endif
946     return retval;
947 }
948
949 #elif defined(__i386__)
950
951 static inline int64_t cpu_get_real_ticks(void)
952 {
953     int64_t val;
954     asm volatile ("rdtsc" : "=A" (val));
955     return val;
956 }
957
958 #elif defined(__x86_64__)
959
960 static inline int64_t cpu_get_real_ticks(void)
961 {
962     uint32_t low,high;
963     int64_t val;
964     asm volatile("rdtsc" : "=a" (low), "=d" (high));
965     val = high;
966     val <<= 32;
967     val |= low;
968     return val;
969 }
970
971 #elif defined(__hppa__)
972
973 static inline int64_t cpu_get_real_ticks(void)
974 {
975     int val;
976     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
977     return val;
978 }
979
980 #elif defined(__ia64)
981
982 static inline int64_t cpu_get_real_ticks(void)
983 {
984         int64_t val;
985         asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
986         return val;
987 }
988
989 #elif defined(__s390__)
990
991 static inline int64_t cpu_get_real_ticks(void)
992 {
993     int64_t val;
994     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
995     return val;
996 }
997
998 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
999
1000 static inline int64_t cpu_get_real_ticks (void)
1001 {
1002 #if     defined(_LP64)
1003         uint64_t        rval;
1004         asm volatile("rd %%tick,%0" : "=r"(rval));
1005         return rval;
1006 #else
1007         union {
1008                 uint64_t i64;
1009                 struct {
1010                         uint32_t high;
1011                         uint32_t low;
1012                 }       i32;
1013         } rval;
1014         asm volatile("rd %%tick,%1; srlx %1,32,%0"
1015                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1016         return rval.i64;
1017 #endif
1018 }
1019
1020 #elif defined(__mips__)
1021
1022 static inline int64_t cpu_get_real_ticks(void)
1023 {
1024 #if defined(__mips_isa_rev) && __mips_isa_rev >= 2
1025     uint32_t count;
1026     static uint32_t cyc_per_count = 0;
1027
1028     if (!cyc_per_count)
1029         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1030
1031     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1032     return (int64_t)(count * cyc_per_count);
1033 #else
1034     /* FIXME */
1035     static int64_t ticks = 0;
1036     return ticks++;
1037 #endif
1038 }
1039
1040 #else
1041 /* The host CPU doesn't have an easily accessible cycle counter.
1042    Just return a monotonically increasing value.  This will be
1043    totally wrong, but hopefully better than nothing.  */
1044 static inline int64_t cpu_get_real_ticks (void)
1045 {
1046     static int64_t ticks = 0;
1047     return ticks++;
1048 }
1049 #endif
1050
1051 /* profiling */
1052 #ifdef CONFIG_PROFILER
1053 static inline int64_t profile_getclock(void)
1054 {
1055     return cpu_get_real_ticks();
1056 }
1057
1058 extern int64_t qemu_time, qemu_time_start;
1059 extern int64_t tlb_flush_time;
1060 extern int64_t dev_time;
1061 #endif
1062
1063 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1064                         uint64_t mcg_status, uint64_t addr, uint64_t misc);
1065
1066 #endif /* CPU_ALL_H */