CRIS: Fix remaining build warnings.
[qemu] / hw / etraxfs_timer.c
1 /*
2  * QEMU ETRAX Timers
3  *
4  * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "sysemu.h"
28 #include "qemu-timer.h"
29 #include "etraxfs.h"
30
31 #define D(x)
32
33 #define RW_TMR0_DIV   0x00
34 #define R_TMR0_DATA   0x04
35 #define RW_TMR0_CTRL  0x08
36 #define RW_TMR1_DIV   0x10
37 #define R_TMR1_DATA   0x14
38 #define RW_TMR1_CTRL  0x18
39 #define R_TIME        0x38
40 #define RW_WD_CTRL    0x40
41 #define R_WD_STAT     0x44
42 #define RW_INTR_MASK  0x48
43 #define RW_ACK_INTR   0x4c
44 #define R_INTR        0x50
45 #define R_MASKED_INTR 0x54
46
47 struct fs_timer_t {
48         CPUState *env;
49         qemu_irq *irq;
50         qemu_irq *nmi;
51
52         QEMUBH *bh_t0;
53         QEMUBH *bh_t1;
54         QEMUBH *bh_wd;
55         ptimer_state *ptimer_t0;
56         ptimer_state *ptimer_t1;
57         ptimer_state *ptimer_wd;
58         struct timeval last;
59
60         int wd_hits;
61
62         /* Control registers.  */
63         uint32_t rw_tmr0_div;
64         uint32_t r_tmr0_data;
65         uint32_t rw_tmr0_ctrl;
66
67         uint32_t rw_tmr1_div;
68         uint32_t r_tmr1_data;
69         uint32_t rw_tmr1_ctrl;
70
71         uint32_t rw_wd_ctrl;
72
73         uint32_t rw_intr_mask;
74         uint32_t rw_ack_intr;
75         uint32_t r_intr;
76         uint32_t r_masked_intr;
77 };
78
79 static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
80 {
81         struct fs_timer_t *t = opaque;
82         uint32_t r = 0;
83
84         switch (addr) {
85         case R_TMR0_DATA:
86                 r = ptimer_get_count(t->ptimer_t0);
87                 break;
88         case R_TMR1_DATA:
89                 r = ptimer_get_count(t->ptimer_t1);
90                 break;
91         case R_TIME:
92                 r = qemu_get_clock(vm_clock) / 10;
93                 break;
94         case RW_INTR_MASK:
95                 r = t->rw_intr_mask;
96                 break;
97         case R_MASKED_INTR:
98                 r = t->r_intr & t->rw_intr_mask;
99                 break;
100         default:
101                 D(printf ("%s %x\n", __func__, addr));
102                 break;
103         }
104         return r;
105 }
106
107 #define TIMER_SLOWDOWN 1
108 static void update_ctrl(struct fs_timer_t *t, int tnum)
109 {
110         unsigned int op;
111         unsigned int freq;
112         unsigned int freq_hz;
113         unsigned int div;
114         uint32_t ctrl;
115
116         ptimer_state *timer;
117
118         if (tnum == 0) {
119                 ctrl = t->rw_tmr0_ctrl;
120                 div = t->rw_tmr0_div;
121                 timer = t->ptimer_t0;
122         } else {
123                 ctrl = t->rw_tmr1_ctrl;
124                 div = t->rw_tmr1_div;
125                 timer = t->ptimer_t1;
126         }
127
128
129         op = ctrl & 3;
130         freq = ctrl >> 2;
131         freq_hz = 32000000;
132
133         switch (freq)
134         {
135         case 0:
136         case 1:
137                 D(printf ("extern or disabled timer clock?\n"));
138                 break;
139         case 4: freq_hz =  29493000; break;
140         case 5: freq_hz =  32000000; break;
141         case 6: freq_hz =  32768000; break;
142         case 7: freq_hz = 100000000; break;
143         default:
144                 abort();
145                 break;
146         }
147
148         D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
149         div = div * TIMER_SLOWDOWN;
150         div /= 1000;
151         freq_hz /= 1000;
152         ptimer_set_freq(timer, freq_hz);
153         ptimer_set_limit(timer, div, 0);
154
155         switch (op)
156         {
157                 case 0:
158                         /* Load.  */
159                         ptimer_set_limit(timer, div, 1);
160                         break;
161                 case 1:
162                         /* Hold.  */
163                         ptimer_stop(timer);
164                         break;
165                 case 2:
166                         /* Run.  */
167                         ptimer_run(timer, 0);
168                         break;
169                 default:
170                         abort();
171                         break;
172         }
173 }
174
175 static void timer_update_irq(struct fs_timer_t *t)
176 {
177         t->r_intr &= ~(t->rw_ack_intr);
178         t->r_masked_intr = t->r_intr & t->rw_intr_mask;
179
180         D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
181         if (t->r_masked_intr)
182                 qemu_irq_raise(t->irq[0]);
183         else
184                 qemu_irq_lower(t->irq[0]);
185 }
186
187 static void timer0_hit(void *opaque)
188 {
189         struct fs_timer_t *t = opaque;
190         t->r_intr |= 1;
191         timer_update_irq(t);
192 }
193
194 static void timer1_hit(void *opaque)
195 {
196         struct fs_timer_t *t = opaque;
197         t->r_intr |= 2;
198         timer_update_irq(t);
199 }
200
201 static void watchdog_hit(void *opaque)
202 {
203         struct fs_timer_t *t = opaque;
204         if (t->wd_hits == 0) {
205                 /* real hw gives a single tick before reseting but we are
206                    a bit friendlier to compensate for our slower execution.  */
207                 ptimer_set_count(t->ptimer_wd, 10);
208                 ptimer_run(t->ptimer_wd, 1);
209                 qemu_irq_raise(t->nmi[0]);
210         }
211         else
212                 qemu_system_reset_request();
213
214         t->wd_hits++;
215 }
216
217 static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
218 {
219         unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
220         unsigned int wd_key = t->rw_wd_ctrl >> 9;
221         unsigned int wd_cnt = t->rw_wd_ctrl & 511;
222         unsigned int new_key = value >> 9 & ((1 << 7) - 1);
223         unsigned int new_cmd = (value >> 8) & 1;
224
225         /* If the watchdog is enabled, they written key must match the
226            complement of the previous.  */
227         wd_key = ~wd_key & ((1 << 7) - 1);
228
229         if (wd_en && wd_key != new_key)
230                 return;
231
232         D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
233                  wd_en, new_key, wd_key, new_cmd, wd_cnt));
234
235         if (t->wd_hits)
236                 qemu_irq_lower(t->nmi[0]);
237
238         t->wd_hits = 0;
239
240         ptimer_set_freq(t->ptimer_wd, 760);
241         if (wd_cnt == 0)
242                 wd_cnt = 256;
243         ptimer_set_count(t->ptimer_wd, wd_cnt);
244         if (new_cmd)
245                 ptimer_run(t->ptimer_wd, 1);
246         else
247                 ptimer_stop(t->ptimer_wd);
248
249         t->rw_wd_ctrl = value;
250 }
251
252 static void
253 timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
254 {
255         struct fs_timer_t *t = opaque;
256
257         switch (addr)
258         {
259                 case RW_TMR0_DIV:
260                         t->rw_tmr0_div = value;
261                         break;
262                 case RW_TMR0_CTRL:
263                         D(printf ("RW_TMR0_CTRL=%x\n", value));
264                         t->rw_tmr0_ctrl = value;
265                         update_ctrl(t, 0);
266                         break;
267                 case RW_TMR1_DIV:
268                         t->rw_tmr1_div = value;
269                         break;
270                 case RW_TMR1_CTRL:
271                         D(printf ("RW_TMR1_CTRL=%x\n", value));
272                         t->rw_tmr1_ctrl = value;
273                         update_ctrl(t, 1);
274                         break;
275                 case RW_INTR_MASK:
276                         D(printf ("RW_INTR_MASK=%x\n", value));
277                         t->rw_intr_mask = value;
278                         timer_update_irq(t);
279                         break;
280                 case RW_WD_CTRL:
281                         timer_watchdog_update(t, value);
282                         break;
283                 case RW_ACK_INTR:
284                         t->rw_ack_intr = value;
285                         timer_update_irq(t);
286                         t->rw_ack_intr = 0;
287                         break;
288                 default:
289                         printf ("%s " TARGET_FMT_plx " %x\n",
290                                 __func__, addr, value);
291                         break;
292         }
293 }
294
295 static CPUReadMemoryFunc *timer_read[] = {
296         NULL, NULL,
297         &timer_readl,
298 };
299
300 static CPUWriteMemoryFunc *timer_write[] = {
301         NULL, NULL,
302         &timer_writel,
303 };
304
305 static void etraxfs_timer_reset(void *opaque)
306 {
307         struct fs_timer_t *t = opaque;
308
309         ptimer_stop(t->ptimer_t0);
310         ptimer_stop(t->ptimer_t1);
311         ptimer_stop(t->ptimer_wd);
312         t->rw_wd_ctrl = 0;
313         t->r_intr = 0;
314         t->rw_intr_mask = 0;
315         qemu_irq_lower(t->irq[0]);
316 }
317
318 void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
319                         target_phys_addr_t base)
320 {
321         static struct fs_timer_t *t;
322         int timer_regs;
323
324         t = qemu_mallocz(sizeof *t);
325
326         t->bh_t0 = qemu_bh_new(timer0_hit, t);
327         t->bh_t1 = qemu_bh_new(timer1_hit, t);
328         t->bh_wd = qemu_bh_new(watchdog_hit, t);
329         t->ptimer_t0 = ptimer_init(t->bh_t0);
330         t->ptimer_t1 = ptimer_init(t->bh_t1);
331         t->ptimer_wd = ptimer_init(t->bh_wd);
332         t->irq = irqs;
333         t->nmi = nmi;
334         t->env = env;
335
336         timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
337         cpu_register_physical_memory (base, 0x5c, timer_regs);
338
339         qemu_register_reset(etraxfs_timer_reset, t);
340 }