vmstate: port cirrus_vga device
[qemu] / hw / ptimer.c
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licenced under the GNU LGPL.
7  */
8 #include "hw.h"
9 #include "qemu-timer.h"
10 #include "host-utils.h"
11
12 struct ptimer_state
13 {
14     int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
15     uint64_t limit;
16     uint64_t delta;
17     uint32_t period_frac;
18     int64_t period;
19     int64_t last_event;
20     int64_t next_event;
21     QEMUBH *bh;
22     QEMUTimer *timer;
23 };
24
25 /* Use a bottom-half routine to avoid reentrancy issues.  */
26 static void ptimer_trigger(ptimer_state *s)
27 {
28     if (s->bh) {
29         qemu_bh_schedule(s->bh);
30     }
31 }
32
33 static void ptimer_reload(ptimer_state *s)
34 {
35     if (s->delta == 0) {
36         ptimer_trigger(s);
37         s->delta = s->limit;
38     }
39     if (s->delta == 0 || s->period == 0) {
40         fprintf(stderr, "Timer with period zero, disabling\n");
41         s->enabled = 0;
42         return;
43     }
44
45     s->last_event = s->next_event;
46     s->next_event = s->last_event + s->delta * s->period;
47     if (s->period_frac) {
48         s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
49     }
50     qemu_mod_timer(s->timer, s->next_event);
51 }
52
53 static void ptimer_tick(void *opaque)
54 {
55     ptimer_state *s = (ptimer_state *)opaque;
56     ptimer_trigger(s);
57     s->delta = 0;
58     if (s->enabled == 2) {
59         s->enabled = 0;
60     } else {
61         ptimer_reload(s);
62     }
63 }
64
65 uint64_t ptimer_get_count(ptimer_state *s)
66 {
67     int64_t now;
68     uint64_t counter;
69
70     if (s->enabled) {
71         now = qemu_get_clock(vm_clock);
72         /* Figure out the current counter value.  */
73         if (now - s->next_event > 0
74             || s->period == 0) {
75             /* Prevent timer underflowing if it should already have
76                triggered.  */
77             counter = 0;
78         } else {
79             uint64_t rem;
80             uint64_t div;
81             int clz1, clz2;
82             int shift;
83
84             /* We need to divide time by period, where time is stored in
85                rem (64-bit integer) and period is stored in period/period_frac
86                (64.32 fixed point).
87               
88                Doing full precision division is hard, so scale values and
89                do a 64-bit division.  The result should be rounded down,
90                so that the rounding error never causes the timer to go
91                backwards.
92             */
93
94             rem = s->next_event - now;
95             div = s->period;
96
97             clz1 = clz64(rem);
98             clz2 = clz64(div);
99             shift = clz1 < clz2 ? clz1 : clz2;
100
101             rem <<= shift;
102             div <<= shift;
103             if (shift >= 32) {
104                 div |= ((uint64_t)s->period_frac << (shift - 32));
105             } else {
106                 if (shift != 0)
107                     div |= (s->period_frac >> (32 - shift));
108                 /* Look at remaining bits of period_frac and round div up if 
109                    necessary.  */
110                 if ((uint32_t)(s->period_frac << shift))
111                     div += 1;
112             }
113             counter = rem / div;
114         }
115     } else {
116         counter = s->delta;
117     }
118     return counter;
119 }
120
121 void ptimer_set_count(ptimer_state *s, uint64_t count)
122 {
123     s->delta = count;
124     if (s->enabled) {
125         s->next_event = qemu_get_clock(vm_clock);
126         ptimer_reload(s);
127     }
128 }
129
130 void ptimer_run(ptimer_state *s, int oneshot)
131 {
132     if (s->enabled) {
133         return;
134     }
135     if (s->period == 0) {
136         fprintf(stderr, "Timer with period zero, disabling\n");
137         return;
138     }
139     s->enabled = oneshot ? 2 : 1;
140     s->next_event = qemu_get_clock(vm_clock);
141     ptimer_reload(s);
142 }
143
144 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
145    is immediately restarted.  */
146 void ptimer_stop(ptimer_state *s)
147 {
148     if (!s->enabled)
149         return;
150
151     s->delta = ptimer_get_count(s);
152     qemu_del_timer(s->timer);
153     s->enabled = 0;
154 }
155
156 /* Set counter increment interval in nanoseconds.  */
157 void ptimer_set_period(ptimer_state *s, int64_t period)
158 {
159     s->period = period;
160     s->period_frac = 0;
161     if (s->enabled) {
162         s->next_event = qemu_get_clock(vm_clock);
163         ptimer_reload(s);
164     }
165 }
166
167 /* Set counter frequency in Hz.  */
168 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
169 {
170     s->period = 1000000000ll / freq;
171     s->period_frac = (1000000000ll << 32) / freq;
172     if (s->enabled) {
173         s->next_event = qemu_get_clock(vm_clock);
174         ptimer_reload(s);
175     }
176 }
177
178 /* Set the initial countdown value.  If reload is nonzero then also set
179    count = limit.  */
180 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
181 {
182     s->limit = limit;
183     if (reload)
184         s->delta = limit;
185     if (s->enabled && reload) {
186         s->next_event = qemu_get_clock(vm_clock);
187         ptimer_reload(s);
188     }
189 }
190
191 void qemu_put_ptimer(QEMUFile *f, ptimer_state *s)
192 {
193     qemu_put_byte(f, s->enabled);
194     qemu_put_be64s(f, &s->limit);
195     qemu_put_be64s(f, &s->delta);
196     qemu_put_be32s(f, &s->period_frac);
197     qemu_put_sbe64s(f, &s->period);
198     qemu_put_sbe64s(f, &s->last_event);
199     qemu_put_sbe64s(f, &s->next_event);
200     qemu_put_timer(f, s->timer);
201 }
202
203 void qemu_get_ptimer(QEMUFile *f, ptimer_state *s)
204 {
205     s->enabled = qemu_get_byte(f);
206     qemu_get_be64s(f, &s->limit);
207     qemu_get_be64s(f, &s->delta);
208     qemu_get_be32s(f, &s->period_frac);
209     qemu_get_sbe64s(f, &s->period);
210     qemu_get_sbe64s(f, &s->last_event);
211     qemu_get_sbe64s(f, &s->next_event);
212     qemu_get_timer(f, s->timer);
213 }
214
215 static int get_ptimer(QEMUFile *f, void *pv, size_t size)
216 {
217     ptimer_state *v = pv;
218
219     qemu_get_ptimer(f, v);
220     return 0;
221 }
222
223 static void put_ptimer(QEMUFile *f, const void *pv, size_t size)
224 {
225     ptimer_state *v = (void *)pv;
226
227     qemu_put_ptimer(f, v);
228 }
229
230 const VMStateInfo vmstate_info_ptimer = {
231     .name = "ptimer",
232     .get  = get_ptimer,
233     .put  = put_ptimer,
234 };
235
236 ptimer_state *ptimer_init(QEMUBH *bh)
237 {
238     ptimer_state *s;
239
240     s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state));
241     s->bh = bh;
242     s->timer = qemu_new_timer(vm_clock, ptimer_tick, s);
243     return s;
244 }